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Abstract

Learning from multi-view data is important in many applioats, such as image
classification and annotation. In this paper, we presentge{margin learning
framework to discover a predictive latent subspace reptasen shared by mul-
tiple views. Our approach is based on an undirected laterttesplarkov network
that fulfills a weak conditional independence assumptianttulti-view observa-
tions and response variables are independent given a satieot bariables. We
provide efficient inference and parameter estimation nustHor the latent sub-
space model. Finally, we demonstrate the advantages @&-faaygin learning on
real video and web image data for discovering predictiveriatepresentations
and improving the performance on image classification, tatiom and retrieval.

1 Introduction

In many scientific and engineering applications, such ag&zmnotation [14] and web-page clas-
sification [5], the available data usually come from divedteenains or are extracted from different
aspects, which will be referred to agews Standard predictive methods, such as support vector
machines, are built with all the variables available, withtaking into consideration the presence
of distinct views. These methods would sacrifice the predigherformance [6] and may also be
incapable of performingiew-level analysi$11], such as predicting the tags for image annotation
and analyzing the underlying relationships amongst vi&ifferent from the existing work that has
been done on exploring multi-view information to alleviale difficult semi-supervised learning
[5, 11, 2, 15] and unsupervised clustering [7] problemsgmai is to develop a statistical framework
that learns gredictivesubspace representation shared by multiple views wheltslabe provided
and perform view-level analysis, particularly view-lepekdictions.

To discover a subspace representation shared by multi-d&s; the unsupervised canonical cor-
relation analysis (CCA) [18] and its kernelized versionigriore the widely available supervised

information, such as image categories. Therefore, theldaiscover a subspace with weak predic-
tive ability. The multi-view fisher discriminant analysiBIIA) [23] provides a supervised approach
to finding such a projected subspace. However, this det@stigimpproach cannot provide view-

level predictions, such as image annotation; and it wowdd aked a density estimator in order to
apply the information criterion [8] to detect view disagment. In this paper, we consider a prob-
abilistic approach to model multi-view data, which can peri both the response-level predictions
(e.g., image classification) and view-level predictiong.(@émage annotation).

Specifically, we propose a large-margin learning approacliscovering a predictive subspace rep-
resentation for multi-view data. The approach is based amagcmulti-view latent space Markov
network(MN) that fulfills a weak conditional independence assupipthat the data from different
views and the response variables are conditionally indeggetgiven a set of latent variables. This
conditional independence is much weaker than the typicairaption (e.g., in the seminal work of



co-training [5]) that multi-view data are conditionallydependent given the very low dimensional
response variables [15]. Although directed Bayesian netsy@NSs) (e.g., latent Dirichlet allocation
(LDA) [4] and probabilistic CCA [3]) can also be designed tdfifl the conditional independence,
the posterior inference can be hard because all the lateiaibl@s are coupled together given the
input variables [27]. Therefore, we ground our approachhenundirected MNs. Undirected latent
variable models have shown promising performance in mapjicgtions [27, 22]. In the multi-
view MN, conditioned on latent variables, each view defingsirat distribution similar to that in a
conditional random field (CRF) [19] and thus it can effedivextract latent topics from structured
data. For example, considering word ordering informationld improve the quality of discovered
latent topics [26] compared to a method (e.g., LDA) solelgdzhon the natural bag-of-word rep-
resentation, and spatial relationship among regions inmege is also useful for computer vision
applications [16]. To learn the multi-view latent space M develop a large-margin approach,
which jointly maximizes the data likelihood and minimizée thinge-loss on training data. The
learning and inference problems are efficiently solved ittontrastive divergence method [21].
Finally, we concentrate on one special case of the larggimarult-view MN and extensively eval-
uate it on real video and web image datasets for image cleet#iin, annotation and retrieval tasks.
Our results show that the large-margin approach can ackignéicant improvements in terms of
prediction performance and discovered latent subspaceseptations.

The paper is structured as follows. Sec 2 and Sec 3 presentutieview latent space MN and
its large-margin training. Sec 4 presents a special caseb peesents empirical results and Sec 6
concludes.

2 Multi-view Latent Space Markov Networks

The unsupervised two-view latent space Markov network asvsh
in Fig. 1, which consists of two views of input da¥a := {X,}
andZ := {Z,,} and a set of latent variabl&d := {H,}. For _ i o

ease of presentation, we assume that the variables on eagh {f9uré 1: Multi-view Markov
are connected via a linear-chain. Extensions to multipdevgiand networks with latent variables.
more complex structures on each view can be easily done vedtbave presented the constructive
definition of the model distribution. The model is constagtbased on an underlying conditional
independence assumption that given the latent varid)d¢ke two viewsX andZ are independent.

Graphically, we can see that both the exponential familynktarium (EFH) [27] and its extension
of dual-wing Harmonium (DWH) [14] are special cases of muiéw latent space MNs. Therefore,
it is not surprising to see that multi-view MNs inherit thedely advocated property of EFH that
the model distribution can be constructively defined basedocal conditionals on each view.
Specifically, we first define marginal distributions of theéadan each view and the latent variables.
For each view, we consider the first-order Markov network iy random field theory, we have

_exp{ZH (zi, Titr1) A(H)}, andp():exp{Z:njT Zj72j+1)—B(77)},

where¢ andy are feature functions4 and B are log partition functlons For latent variablHs
each componerit; has an exponential family distribution and therefore thegimal distribution

is:
h) = [ [ p(hx) HeXP {M o(hi) — Ci( M)}
k
wherep(hy) is the feature vector diy, Cy, is another log-partition function.

Next, the joint model distribution is defined by combining thbove components in the log-domain
and introducing additional terms that couple the randorabtesX, Z andH. Specifically, we have

p(x,2,h) x exp {ZG O(zi, Tit1 —t—Zm (24, zj4+1 +Z)\k<p (hk)

+Z¢> rires1) WHi(h) +Z¢ o1 2ren) TUSe(h) }- (1)
Then, we can directly write the condltlonal dlstrlbutlorrsetach view with shifted parameters,
p(x[h)= exp{z 07 $(as, wis1)— } where; =0,+ 5, W¥o(ha);
p(z/h)=exp {Z; i (25, zj41) — }, wheren; =n;+3°, Urp(hi); and

p(hlx,z)=]],exp {;\gw(hk)—Ck(;\k)}, wherede = X\e+ 3, Wb (2, 2i1)+3; USh (25, 241).
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We can see that conditioned on the latent variables, p@thh) and p(z|h) are defined in the

exponential form with a pairwise potential function, whishvery similar to conditional random
fields [19]. Reversely, we can start with defining the locatditional distributions as above and
directly write the compatible joint distribution, whichad the log-linear form as in (1). We will use
O to denote all the parametgis n, A, W, U).

Since the latent variables are not directly connected, dngpdexity of inferring the posterior distri-
bution ofH is the same as in EFH when all the input data are observed|asted in the factorized
form of p(h|x, z). Therefore, multi-view latent space MNs do not increasetimplexity on testing

if our task depends solely on the latent representation éxpectation oH), such as information
retrieval [27], classification, clustering etc. Howevéie tomplexity of parameter estimation and
inferring the posterior distribution of each view (e }.) will be increased, depending on the struc-
ture on the view. For the simple case of linear-chain, thergrice can be efficiently done with a
forward-backward message passing scheme [19]. For a demedal structure, which may contain
many loops, approximate inference such as variational @astf25] is needed to perform the task.
We will provide more details when presenting the learningpopem.

Up to now, we have sticken on unsupervised multi-view laggrtice MNs, which are of wide use
in discovering latent subspace shared by multi-view datathis paper, however, we are more
interested in the supervised setting where each input sishpssociated with a supervised response
variable, such as image categories. Accordingly, our go#d idiscover gredictivesubspace by
exploring the supervised information. The supervised rvigiv latent space MNs are defined
similarly as above, but with an additional view of responseiablesY. Now, the conditional
independence isX, Z andY are independent H is given. As we have stated, this assumption is
much weaker than the typical conditional independencenaggan thatX andZ are independent
givenY. Based on the constructive definition, we only need to speb#é conditional distribution

of Y givenH. In principle,Y can be continuous or discrete. Here, we consider the déscaste,
wherey € {1,---,T}, and define

exp{V'f(h,y)}
> exp{VTf(h,y)}’

wheref(h, y) is the feature vector whose elements frgm- 1) K + 1 to y K are those oh and all
others ard). Accordingly,V is a stacking parameter vector’Bfsub-vectorV,,, of which each one
corresponds to a class lahel Then, the joint distributiop(x, z, h, y) has the same form as in Eq.
(1), but with an additional term & " f(h, y) = V] h in the exponential.

We note that a supervised version of DWH, which will be deddg TWH (i.e., triple wing Harmo-
nium), was proposed in [29], and the parameter estimatiandeae by maximizing the joint data
likelihood. However, the resultant TWH model does not yietgproved performance compared to
the naive method that combines an unsupervised DWH for disotg latent representations and
an SVM for classification. This observation further motesatis to develop a more discriminative
learning approach to exploring the supervised informdtoudiscovering predictive latent subspace
representations. As we shall see, integrating the larggimprinciple into one objective function
for joint latent subspace model and prediction model legyiean yield much better results, in terms
of prediction performance and predictiveness of discav&ent subspace representations.

p(y/h) = )

3 Parameter Estimation: a Large Margin Approach

To learn the supervised multi-view latent space MNs, a m&method is the maximum likelihood
estimation (MLE), which has been widely used to train dieeldtL2, 30] and undirected latent vari-
able models [27, 22, 14, 29]. However, likelihood-base@puaater estimation pays additional efforts
in defining a normalized probabilistic model as in Eq. (2)wdfich the normalization factor can
make the inference hard, especially in directed models [#2feover, the standard MLE could re-
sult in non-conclusive results, as reported in [29] andfsetiin our experiments. These have been
motivating us to develop a more discriminative learningrapph. An arguably more discriminative
way to learn a classification model is to directly estimat decision boundary, which is the es-
sential idea underlying the very successful large-marngissifiers (e.g., SVMs). Here, we integrate
the large-margin idea into the learning of supervised ruidtiv MNs for multi-view data analysis,
analogous to the development of MedLDA [31], which is diegtcand has single-view. For brevity,
we consider the general multi-class classification, as eéfibove.
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3.1 Problem Definition

As in the log-linear model in Eq. (2), we assume that the disoant functionF'(y, h; V) is linear,
that is,F(y,h; V) = V' f(h,y), wheref andV are defined the same as above. For prediction, we
take the expectation over the latent variaHl@nd define the prediction rule as

y* ‘= arg man Ep(h|x,z) [F(Ha Y; V)] = arg mq?,X VTEp(h\x,z) [f(Ha y)]a (3)

where the expectation can be efficiently computed with theofized form ofp(h|x,z) whenx and
z are fully observed. If missing values existsror z, an inference procedure is needed to compute
the expectation of the missed components, as detailed belggy. (5).

Then, learning is to find an optim&* that minimizes a loss function. Here, we minimize the hinge
loss, as used in SVMs. Given training dd®a= {(x4, z4,va) }2_,, the hinge loss of the predictive

rule (3) is .
Riinge (V) i= 1 3" max(Ala(y) = V" Byquiua [Mav)],

whereA/,(y) is a loss function that measures how different the predicgigs compared to the
true labelyy, andE, mx,») [Afa(y)] = Epnix,2) [f(Ha, ya)] — Epnjx,2) [f(Ha, v)]. It can be proved
that the hinge loss is an upper bound of the empirical oss, := % > a Al(yy). Applying the
principle ofregularized risk minimizatiorwe define the learning problem as solving

. 1
min L(©) + §C1HV||§ + CoRhinge(V), 4

whereL(0©) := — 3, log p(x4, z4) is the negative data likelihood aigy andC’; are non-negative
constants, which can be selected via cross-validatiore MattRR ;.4 is also a function 0B.

Since problem (4) jointly maximizes the data likelihood anohimizes a training loss, it can be
expected that by solving this problem we can find a predidsitent space representatipth|x, z)

and a prediction model parame®ér which on the one hand tend to predict as accurate as possible
on training data, while on the other hand tend to explain tita dell.

3.2 Optimization

Variational approximation with Contrastive Divergence: Since the data likelihood.(©) is
generally intractable to compute, our method is based oneffieient contrastive divergence
technique [17, 21, 27, 14]. Specifically, we derive a vaoiadl approximationC¥(qo, g1) of the
negative log-likelihood.(©) , that is:

L%(q0,q1) := R(qo(x,2,h),p(x,2,h)) — R(q1(x,2,h), p(x,2,h)),

whereR(q, p) is the relative entropy, angh is a variational distribution witkk andz clamped to
their observed values whilg is a distribution with all variables free. Fg(qo or ¢1) in general, we
make thestructuredmean field assumption [28] thag(x, z, h) = ¢(x)q(z)q(h).

Solving the approximate problem Applying the variational approximatiofi® in problem (4), we
get an approximate objective functidi{®, V, qo, ¢1). Then, we can develop an alternating mini-
mization method, which iteratively minimize¥©, V, qo, ¢1) overgo and(©, V). The distribution
q1 is reconstructed once the optimglis achieved, see [21] for detalils.

The problem of solving, andq; is theposterior inferenceroblem. Specifically, for a variational
distributiong (can beg, or ¢1) in general, we keef9, V) fixed and update each marginal as

4(x) = p(x|Eqqe)[H]), 4(2) = p(z[Eqqn[H]). and q(h) = [ [ p(he|Eqex) [X], Eq(z)[Z]). (5)
k

For qo, (x,2) are clamped at their observed values, and gplh) is updated, which can be very
efficiently done because of its factorized form. The disiiiin ¢; is achieved by performing the
above updates starting frogg. Several iterations can yield a gogd Again, we can see that both
q(x) andq(z) are CRFs, with the expectation Bf as the condition. Therefore, for linear-chain
models, we can use a message passing scheme [19] to infemidugjinal distributions, as needed
for parameter estimation and view-level prediction (eilgage annotation), as we shall see. For
generally structured models, approximate inference tigcias [25] can be applied.

After we have inferredy, and ¢;, parameter estimation can be done by alternating between
(1) estimatingV with © fixed: this problem is learning a multi-class SVM [10], whichn be

1The parametric form assumptionsgfas made in previous work [14, 29], are not needed.



efficiently done with existing solvers; and (2) estimati@gvith V fixed: this can be solved with
sub-gradient descent, where the sub-gradient is compated a
VOi=—Eqo[¢(2i, Tit1)] + Eq [p(@4, Tiy1)],
Vn;=—Eq [¥(25, zi+1)] + Eq, [ (25, 2j41)],
VAr=—Eq, [W(hk)] +Eq [W(hk)]v —
VW =~y 01,010 () T+ Eay [, 2i01) () T = Cah Sl Vi = Viyar) T,
VU =By [ (251 251 p(he) T+ 1025 251 @(he) T]=Co s Ea (Ve = Vi) e,
wherey, = arg max, [Aly(y) + V  Ey [f(Hy, y)] is theloss-augmented predictipand the expec-
tationE,, [¢(x;, z;+1)] is actually the count frequency 6fx;, z;41), likewise forE, [¥(z;, zj4+1)]-

Note that in our integrated max-margin formulation, the-guhdients ofW and U contain an
additional term (i.e., the third term) compared to the staddWH [14] with contrastive divergence
approximation. This additional term introduces a regaktion effect to the latent subspace model.
If the prediction labely, differs from the true labej,, this term will be non-zero and it biases the
model towards discovering a better representation forigtied.

4 Application to Image Classification, Annotation and Retrieval

We have developed the large-margin framework with a geneauit-view latent space MN to model
structured data. In order to carefully examine the basimlag principle and compare with existing
work, in this paper, we concentrate on a simplified but vech Gase that the data on each view
are not structured, which has been extensively studied i [2F, 14, 29] for image classification,
annotation and retrieval. We denote the specialized mogdillH (max-margin Harmonium).
In theory, extensions to model structured multi-view dega be easily done under the general
framework, and the only needed change is on the step of infeqi, which can be treated as a
black box, given the wide literature on approximate infeeef25]. We defer the systematical study
in this direction to the full extension of this work.

Specifically, we consider two-views, whexds a vector of discrete word features (e.g., image tags)
andz is a vector of real-valued features (e.g., color histoglartachz; is a Bernoulli variable
that denotes whether thith term of a dictionary appears or not in an image, and eadh a real
number that denotes the normalized color histogram of agém#/e assume that each real-valued
hy, follows a univariate Gaussian distribution. Therefore deéine the conditional distributions as

1

p(z=1h)= T e @aw,m’ p(

zj|h) =N (z;]03 (B;4U.h), 03), p(hilx,z) =N (hi|x "Wtz Uk, 1),

whereW;. andW ;. denote th&th row andkth column of W, respectively. Alike folU;. andU .

With the above definitions, we can follow exactly the samecpdure as above to do parameter
estimation. For the step of inferring andq, , the distributions ok, z andh are all fully factorized.
Therefore, the sub-gradients can be easily computed. |Datai deferred to the Appendix.

Testing: For classification and retrieval, we need to infer the pastalistribution of H and its
expectation. In this case, we hallgy|x ) [H] = v, wherev, = x"W., +z"U.;, V1 < k < K.
Therefore, theelassificationrule isy* = argmax, V "f(v,y). Forretrieval, the expectatiow of
each image is used to compute a similarity (e.g., cosineydmt images. Faannotation we use
x to represent tags, which are observed in training. In tgstive infer the posterior distribution
p(x]z), which can be approximately computed by running the updguations (5) withz clamped
at its observed values. Then, tags with high probabilitressalected as annotation.

5 Experiments

We report empirical results on TRECVID2003 and flickr imagéasets.Our results demonstrate that
the large-margin approach can achieve significantly bgieformance on discovering predictive
subspace representations and the tasks of image classifiatnotation and retrieval.

5.1 Datasets and Features

The first dataset is the TRECVID2003 video dataset [14], tvitiontains 1078 manually labeled
video shots that belong to 5 categories. Each shot is reptexbas a 1894-dim vector of text features



0 -40 -3 -20 -10 O 10 20 30 40 ~80 -60 -40 -20 0 20 40 6  -40 -3 -20 -10 0 10 20 30 40 50

Figure 2:t-SNE 2D embedding of the discovered latent space reprsamby (Left) MMH, (Middle) DWH
and (Right) TWH on the TRECVID video dataset (Better viewedalor).

and a 165-dim vector of HSV color histogram, which is exteddtom the associated keyframe. We
evenly split this dataset for training and testing. The sécone is a subset selected from NUS-
WIDE [9], which is a big image dataset constructed from flialeb images. This dataset contains
3411 images about 13 animals, includicat, tiger, etc. See Fig. 6 for example images for each
category. For each image, six types of low-level featurg¢afé extracted, including 634-dim real
valued features (i.e., 64-dim color histogram, 144-dinocaorrelogram, 73-dim edge direction
histogram, 128-dim wavelet texture and 225-dim block-vaig®r moments) and 500-dim bag-of-
word representation based on SIFT [20] features. We rangdsehéct 2054 images for training and
use the rest for testing. The online tags are also downloieyaluating image annotation.

5.2 Discovering Predictive Latent Subspace Representatis
We first evaluate the predictive power of the discoverediladabspace representations.

Fig. 2 shows the 2D embedding of the discovered 10-dim latmtesentations by three models
(i.e., MMH, DWH and TWH) on the video data. Here, we use thdNESalgorithm [24] to find
the embedding. We can see that clearly the latent subspai@sentations discovered by the large-
margin based MMH show a strong grouping pattern for the irmd&gdonging to the same category,
while images from different categories tend to be separated each other on the 2D embedding
space. In contrast, the latent subspace representatiscmvdired by the likelihood-based unsuper-
vised DWH and supervised TWH do not show a clear groupingpatexcept for the first category.
Images from different categories tend to mix together. €tasservations suggest that the large-
margin based latent subspace model can discover more fivedic discriminative latent subspace
representations, which will result in better predictiomfpemance, as we shall see.

To quantitatively evaluate the predictiveness of the disoed latent subspace representations, we
compute the pair-wise average KL-divergence between thelpss average distribution over latent
topicg. As shown on the top of each plot in Fig. 2, the large-margisedaMMH obtains a much
larger average KL-divergence than the other likelihoodelsamethods. This again suggests that
the latent subspace representations discovered by MMH are discriminative or predictive. We
obtain the similar observations and conclusions on therflieitaset (see Fig. 3 for some example
topics), where the average KL-divergence scores of 6@ tepiiH, DWH and TWH are 3.23, 2.56
and 0.463, respectively.

Finally, we examine the predictive power of discoveredratepics. Fig. 3 shows five example
topics discovered by the large-margin MMH on the flickr imalg¢a. For each topifl;,, we show
the 5 top-ranked images that yield a high expected valuggftogether with the associated tags.
Also, to qualitatively visualize the discriminative powafreach topic among the 13 categories, we
show the average probability of each category distributethe particular topic. From the results,
we can see that many of the discovered topics are very presifor one or several categories. For
example, topics 3 and 4 are discriminative in predictingitegoriehawkandwhales respectively.
Similarly, topics 1 and 5 are good at predictsguirrel andzebra respectively. We also have some
topics which are good at discriminating a subset of categ@against another subset. For example,
the topic 2 is good at discriminatingquirrel, wolf, rabbit} against{tiger, whales zebrg; but it is
not very discriminative betweesquirrel andwolf.

2To compute this score, we first turn the expected valld t6 be non-negative by subtracting each element
by the smallest value and then normalize it into a distridutbver theK topics. The per-class average is
computed by averaging the topic distributions of the imagi¢isin the same class. For a pair of distributigns
andg, the average KL-divergence i92(R(p, ¢) + R(q, p)).
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Figure 3:Example latent topics discovered by a 60-topic MMH on theflanimal dataset.

5.3 Prediction Performance on Image Classification, Retrieal, and Annotation
5.3.1 Classification

We first compare the MMH with SVM, DWH, TWH, Gaussian Mixtu@NI-Mix), Gaussian Mix-
ture LDA (GM-LDA), and Correspondence LDA (CorrLDA) on th&RECVID data. See [13] for
the details of the last three models. We use$h@\/stm <t 3 to solve the sub-step of learningin
MMH and build an SVM classifier, which uses both the text anlbicbistogram features without
distinguishing them in different views. For each of the ipewised DWH, GM-Mix, GM-LDA and
CorrLDA, a downstream SVM is built with the same tool basedtmndiscovered latent represen-
tations. Fig. 4 (a) shows the classification accuracy oed#ifit models, where CorrLDA is omitted
because of its too low performance. We can see that the magimtzased multi-view MMH per-
forms consistently better than any other competitors. Imrest, the likelihood-based TWH does
not show any conclusive improvements compared to the umgigpd DWH. These results show
that supervised information can help in discovering préadidatent space representations that are
more suitable for prediction if the model is appropriatedgrined, e.g., by using the large-margin
method. The superior performance of MMH compared to the ¥l §emonstrates the usefulness
of modeling multi-view inputs for prediction. The reasows the inferior performance of other
models (e.g., CorrLDA and GM-Mix) are analyzed in [14, 29].

Fig. 4 (b) shows the classification accuracy on the flickr ahidataset. For brevity, we compare
MMH only with the best performed DWH, TWH and SVM. For thesethuels, we use the 500-
dim SIFT and 634-dim real features, which are treated as tewssof inputs for MMH, DWH
and TWH. Also, we compare with the single-view MedLDA [31]hieh uses SIFT features only.
To be fair, we also evaluate a version of MMH that uses SIFTufes, and denote it by MMH
(SIFT). Again, we can see that the large-margin based migt- MMH performs much better than
any other methods, including SVM which ignores the preseasfamulti-view features. For the
single-view MMH (SIFT), it performs comparably (slightletier than) with the large-margin based
MedLDA, which is a directed BN. With the similar large-margirinciple, MMH is an important
extension of MedLDA to the undirected latent subspace nsoaledi for multi-view data analysis.

5.3.2 Retrieval

For image retrieval, each test image is treated as a queryrainthg images are ranked based on
their cosine similarity with the given query, which is conigadibased on latent subspace representa-
tions. Animage is considered relevant to the query if thdgigto the same category. We evaluate
the retrieval results by computing the average precisioR)(écore and drawing precision-recall
curves. Fig. 4 (c) compares MMH with four other models whemfttipic number changes. Here,

3http://svmlight.joachims.org/svimulticlass.html
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Figure 6:Example images from the 13 categories on the flickr animalsgetwith predicted annotations. Tags
in blue are correct annotations while red ones are wronggifeds. The other tags are neutral.

we show the precision-recall curves when the topic numbseisat 15 and 20. We can see that
for the AP measure, MMH outperforms all other methods in ntastes, and MMH consistently
outperforms all the other methods in the measure of pracisoall curve. On the flickr dataset, we
have similar observations. The AP scores of the 60-topic MEWH, and TWH are 0.163, 0.153
and 0.158, respectively. Due to space limitation, we défedetails to a full extension.

i [ MMH DWH TWH sLDA
5.3.3  Annotation F1@1{0.165 0.144 0.145 0.07

Finally, we report the annotation results on the flickr detasith I aa|o2a1 0780 0.792 0.2

a dictionary of 1000 unique tags. The average number of tags |#1a4|0.258 0.208 0.228 0.15
per image is about.5. We compare MMH with DWH and TWH | £125 02620210 0236 0.9
with two views of inputsX for tag andZ for all the 634-dim F1@7]0.256 0.206 0.239 0.17
real-valued fea_tures. We also compare with the sLDA aniootat Figure 5:Top-N F1-measure.
model [12], which uses SIFT features and tags as inputs. e us

the top4V F1-measure [12], denoted iyl@N. With 60 latent topics, the tops F-measure scores
are shown in Fig. 5. We can see that the large-margin based Kilyttificantly outperforms all the
competitors. Fig. 6 shows example images from all the 13joaies, where for each category the
left image is generally of a good annotation quality and tgbktrone is relatively worse.

OFPo0OoCO &N

6 Conclusions and Future Work

We have presented a generic large-margin learning franiefopdiscovering predictive latent sub-
space representations shared by structured multi-viesv ddite inference and learning can be effi-
ciently done with contrastive divergence methods. Finally concentrate on a specialized model
with applications to image classification, annotation asiieval. Extensive experiments on real
video and web image datasets demonstrate the advantagegeihargin learning for both predic-
tion and predictive latent subspace discovery. In futurekywave plan to systematically investigate
the large-margin learning framework on structured mukiavdata analysis, e.g., on text mining [26]
and computer vision [16] applications.
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Appendix

A.1 MMH: Max-margin Harmonium

For the special max-margin Harmonium (MMH), the learninglpem is the same as defined in
Section 3.1, and only several changes are needed to espiarat@eters based on the general learn-
ing procedure. In this section, we present the necessangelsdor learning MMH. For any other
special cases of multi-view Markov networks, the learniag be similarly done.

With the definitions of local conditionals in Section 4, wencdirectly write the joint model
distributionp(x, z, h) based on the constructive definition and the marginal diettiioodp(x, z)

1 ;1
p(x,2z) xexp aTx+BTZ—§; j—%+§ ;(XTWk—'—ZTUJC)Q}.

Then, we use the contrastive divergence method and inteodwo variational distribution
qgo and ¢;. In this case, we can make a superficially simpler mean fiekliraption that
q(x,z,h) =[], q(x:) [, ¢(2;) 1 a(hx). Indeed, the general structured mean field assumption as

made in Section 3.2 will lead to the same results, that is)la factorized form ofq(x), ¢(z) and
q(h). Specifically, we have the following fully factorized updatiles for posterior inference of

X)= H q(z;) = Hp(ﬂfi|Eq<H) [H])
Hq zj) Hp 2| Eqqen) [H])

= H q(hx) = Hp(hkl]quc) (X1, Eq(z) [2])-
k k

Similarly, (z;, z;) are clamped at their observed values §gr and onlyg(hs) is updated. The
distribution¢; is achieved by performing the above updates starting fgpmSeveral iterations
can yield a goody;. After we have inferred, andq,, parameter estimation can be done by an
alternating procedure as in Section 3.2. The first step @hatihg V with © fixed is to learn a
multi-class SVM, wh|ch is

m\}n —C1||V||2+C2—Zmax Alq(y) — VTE (hx,z) [Afa(y)]].
Note that in this case, the latent representatlon (i.e.eetgpion of H) is simply written as
Ephix,z) [H] = v, wherev,, = x W, +2"Uy, V1 < k < K, when input data andz are
fuIIy observed. If missing values exist #or z, the corresponding components are replaced with

their expected values. Therefore, the prediction tasks, [@assification and retrieval) can be easily
done in testing, as detailed in Section 3.2.

For the second step of estimatifg the sub-gradient is computed as
Va; = —Eq, [ml] +Eq [1’117 VBj = —Eq, [ZJ] +Eq [z]] v(gk_l) = —Eq [Z/%U_l] +Eq [zlzg_l]v

1
VWi = —Eqq[wih ]+ Eq, [wih] —Capy D (Vigk = Vi) B [2]
d

1
VUjk = —Eqo[2j ]+ Eq, [ 3] —C2py D (Vi = Viyui)Ea 2],
d

whereh) = xT_VV_.k +2z'Uy and ya = argmaxy[Aly(y) + VTE,[f(Hg4,vy)] is the loss-
augmented predictiorBased on the definition af, the expectationg,, [x;] andE,, [z;] are actu-
ally the count frequency of; andz;, respectively.
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