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Abstract
We present sparse topical coding (STC), a
non-probabilistic formulation of topic mod-
els for discovering latent representations of
large collections of data. Unlike probabilis-
tic topic models, STC relaxes the normal-
ization constraint of admixture proportions
and the constraint of defining a normalized
likelihood function. Such relaxations make
STC amenable to: 1) directly control the
sparsity of inferred representations by using
sparsity-inducing regularizers; 2) be seam-
lessly integrated with a convex error function
(e.g., SVM hinge loss) for supervised learn-
ing; and 3) be efficiently learned with a sim-
ply structured coordinate descent algorithm.
Our results demonstrate the advantages of
STC and supervised MedSTC on identify-
ing topical meanings of words and improving
classification accuracy and time efficiency.

1 Introduction

Learning a representation that captures the latent se-
mantics of a large collection of data is important in
many scientific and engineering applications. Prob-
abilistic topic models (PTM) such as latent Dirich-
let allocation (LDA) [2] posits that each document is
an admixture of latent topics where each topic is a
unigram distribution over the terms in a vocabulary.
The document-specific admixture proportion can be
regarded as a representation of the document in the
topic space, which can be used for classification or re-
trieval; and the inferred word-level topic assignment
distributions can be used for word sense induction [3].
However, a limitation of such a PTM is that it lacks a
mechanism to directly control the posterior sparsity [8]
of the inferred representations. Sparsity of the repre-
sentations in a semantic space is desirable in text mod-
eling [21, 25] and human vision [20]. For example, very
often it makes intuitive sense to assume that each doc-
ument or word has a few salient topical meanings or
senses [21, 25], rather than letting every topic make a
non-zero contribution; this is important in practice for

large scale text mining endeavors such as those under-
taken in Google or Yahoo, where it is not uncommon
to learn hundreds or thousands of topics for hundreds
of millions of documents – without an explicit sparci-
fication procedure, it would be extremely challenging,
if not impossible, to nail down the semantic meanings
of a document or word.

To achieve sparsity in a PTM is non-trivial. Existing
attempts by using a sparse prior (e.g., Dirichlet [2])
or introducing auxiliary variables [25] could indirectly
introduce a sparsity bias over the posterior represen-
tations. An arguably better way is to directly impose
posterior regularization (e.g., posterior regularization
using moment constraints [8] or entropic priors [21]).
However, due to the smoothness of the regularizer
(e.g., entropic regularizer), such methods often do not
yield truly sparse posterior representations in practice.

A technical reason for the difficulty in achieving spar-
sity in PTMs is that the admixing proportions or
topics are normalized distributions. Therefore, it
is unhelpful to directly use a sparsity inducing `1-
regularizer as in lasso [24]. In contrast, the non-
probabilistic sparse coding (SPC) [20] or non-negative
matrix factorization (NMF) [16, 9] provides an elegant
framework to achieve sparsity on the usually unnor-
malized code vector or dictionary by using the theo-
retically sound `1-regularizer or other composite regu-
larizers [13, 12, 1]. Due to the same reason of having to
define a normalized likelihood function, another lim-
itation of a PTM is that it usually has to deal with
a hard-to-compute log-sum-exp function when consid-
ering discrete side information, such as label cate-
gories [26] and rich conditional features [30].

To address the above limitations, we present sparse
topical coding (STC), a non-probabilistic formulation
of topic models for learning hierarchical latent rep-
resentations of input samples (e.g., text documents).
In STC, each individual input feature (e.g., a word
count) is reconstructed from a linear combination of a
set of bases, where the coefficient vectors (or codes)
are unnormalized, and the representation of an en-
tire document is derived via an aggregation strategy
(e.g., truncated averaging) from the codes of all its in-



dividual features. When applied to text, we use the
log-Poisson loss to model discrete word counts and
learn the topical bases that are unigram distributions
over the terms in a vocabulary. The relaxed non-
probabilistic STC enjoys three nice properties which
make it an appealing alternative formulation of topic
models: 1) by imposing appropriate regularizers, STC
can directly control the sparsity of the inferred repre-
sentations; 2) the learning problem can be efficiently
solved with a coordinate descent algorithm, which has
closed-form solutions for updating code vectors; 3)
STC can be seamlessly integrated with any convex
loss function, which does not necessarily arise from a
normalized probabilistic model, to incorporate super-
vised side-information for discovering predictive repre-
sentations. Specifically, we describe a supervised Med-
STC that integrates STC with a large-margin hinge-
loss for considering categorical labels. Due to the non-
probabilistic nature, MedSTC avoids dealing with an
annoying normalization factor, which can make a su-
pervised PTM [26] hard to do inference and learning.
Our empirical studies show that: 1) STC can learn
meaningful topical bases and identify sparse topical
senses of words; and 2) both STC and MedSTC out-
perform several competing methods on document clas-
sification and are significantly more efficient (an order
of magnitude speed up) on training and testing.

Related work: Although much work has been done
on learning a structured dictionary [13, 1], existing
SPC typically discovers flat representations, such as
single-layer sparse codes of image patches or word
terms [13, 1]. In order to achieve a representation of
an entire document, post-processing such as average or
max pooling [27] is needed. This two-step procedure
can be rather sub-optimal because it lacks a channel
to directly correlate individual component representa-
tions [11], or to leverage the possibly available super-
vision (e.g., document categories) to discover predic-
tive representations [28] or learn a supervised dictio-
nary [18]. NMF [16] uses one document-specific code
vector to reconstruct all the word counts in the same
document. This assumption is too limiting to capture
the sparse topical meanings of each individual word.
STC generalizes both SPC and NMF to discover hi-
erarchical topical representations and allows different
words in one document to exhibit different sparsity
patterns via using different word codes (please see Ap-
pendix A.5 and Sec 2.4.3 for more details).

2 Sparse Topical Coding

Let V ={1, · · · , N} be a vocabulary with N words. We
represent a document as a vector w=(w1, · · · , w|I|)>,
where I is the index set of words that appear and
each wn (n ∈ I) represents the number of appearances
of word n in this document. Let β ∈ RK×N be a

dictionary with K bases. We assume that each row βk
is a topic basis, i.e., a unigram distribution over V . Let
P be a (N−1)-simplex, then βk ∈ P. We will use β.n to
denote the nth column of β. Then we present STC as a
technique to project the input w into a semantic space
that is spanned by a set of automatically learned bases
β and achieve a high-level representation of the entire
document jointly. Graphically, STC is a hierarchical
latent variable model, as shown in Fig. 1, where θd ∈
RK is the document code of document d and sdn ∈ RK
is the word code of word n. Both document codes and
word codes can be used for many tasks [2, 3].

In STC, we are particularly interested in learning
sparse latent representations. We formulate STC as
regularized loss minimization [24, 20, 13]. However,
purely for the ease of understanding, we start with
describing a probabilistic generative procedure.

2.1 A Probabilistic Generative Process

For simplicity, we assume that for each document the
word codes sn are conditionally independent given its
document code θ and the observed word counts are
independent given their latent representations s. We
first sample a dictionary β from a uniform distribu-
tion1 on P. Then, each document can be described as
arising from the following process

1. sample the document code θ from a prior p(θ).

2. for each observed word n ∈ I
(a) sample the word code sn from a conditional dis-

tribution p(sn|θ)

(b) sample the observed word count wn from a dis-
tribution with the mean being s>nβ.n.

The idea is that we treat sn as a coefficient vector
and use the linear combination s>nβ.n to reconstruct
the observed word count wn, under some loss measure
as explained below; and the document code θ is ob-
tained via an aggregation of the individual codes of
all its terms. The aggregation strategy depends on
the choices of p(θ) and p(s|θ), which also reflect our
bias on the discovered representations. We will dis-
cuss them in the next section. For the last step of
generating observed word counts, we adopt the broad
class of exponential family distributions to make STC
applicable to rich forms of data. Formally, we use the
linear combination s>nβ.n as the mean parameter of an
exponential family distribution that generates the ob-
servations wn. In other words, we find an exponential
family distribution p(wn|sn,β) that satisfies

Ep(wn|sn,β)[T (wn)] = s>nβ.n, (1)

where T (wn) are the sufficient statistics2 of wn. We
note that [17] uses the similar linear combination as

1Using a sophisticated prior is our future study.
2In general, sn will be a matrix if T is a vector.
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Figure 1: A two layer sparse topical coding model.

the natural parameter of an exponential family dis-
tribution. We choose to use it as mean parameter
because: 1) it is natural to constrain the feasible do-
mains (e.g., non-negative for modeling word counts) of
word codes for good interpretation, as explained be-
low; and 2) in many cases, such as Poisson, Bernoulli
and Gaussian, the distribution is commonly expressed
with mean parameters. [4] uses a similar method as
ours in defining exponential family distributions.

2.2 STC for Sparse MAP Estimation

Now, we formally define STC as finding the MAP es-
timate of the above probabilistic model, under a bias
towards finding sparse latent representations.

The above generating procedure defines a joint dis-
tribution p(θ, s,w|β) = p(θ)

∏
n∈I p(sn|θ)p(wn|sn,β).

For discrete word counts, we use the Poisson distribu-
tion to generate the observations, i.e., p(wn|sn,β) =

Poiss(wn; s>nβ.n), where Poiss(x; ν) = νxe−ν

x! . In order
to achieve sparse codes θ and s, we choose the Laplace
prior p(θ)∝ exp(−λ‖θ‖1), and we define p(sn|θ) as a
composite distribution p(sn|θ) ∝ exp(−γ‖sn−θ‖22 −
ρ‖sn‖1), which is supergaussian [10]. The `1-norm
will bias towards finding sparse codes. The hyper-
parameters (λ, γ, ρ) are non-negative and they can be
selected via cross-validation or integrated out by in-
troducing hyper-priors [5, 7].

Let Θ = {θd, sd}Dd=1 denote the codes for a collection
of documents {wd}Dd=1. STC solves the problem

min
Θ,β

∑
d,n∈Id

`(sdn,β)+λ
∑
d

‖θd‖1+
∑

d,n∈Id

(γ‖sdn−θd‖22+ρ‖sdn‖1)

s.t. : θd ≥ 0, ∀d; sdn ≥ 0, ∀d, n ∈ Id; βk ∈ P, ∀k, (2)

where the objective function is the negative loga-
rithm of the posterior p(Θ,β|{wd}) with a constant
omitted and ` is a loss function. For text, we have
`(sn,β) = − logPoiss(wn; s>nβ.n). Minimizing the
log-Poisson loss is actually equivalent to minimiz-
ing an unnormalized KL-divergence between observed
word counts wn and their reconstructions s>nβ.n [23].
Since word counts are non-negative, a negative θ or
s will lose interpretability. Therefore, we constrain
θ and s to be non-negative. A non-negative code
can be interpreted as representing the relative impor-
tance of topics. Moreover, as shown in [16], imposing
non-negativity constraints could potentially result in
sparser and more interpretable patterns.

2.3 Optimization with Coordinate Descent

Let f(Θ,β) denote the objective of problem (2). When
using a convex loss function ` (e.g., log-loss under the
exponential family of distributions), f(Θ,β) is gener-
ally bi-convex, that is, convex over either Θ or β when
the other one is fixed. Moreover, the feasible set is a
convex set. Therefore, a natural algorithm to solve this
bi-convex problem is coordinate descent, as typically
used in sparse coding methods [17, 1]. Specifically, the
procedure alternatively performs:

Hierarchical sparse coding: this step involves find-
ing the codes Θ when β is fixed. Due to the condi-
tional independency, we can perform this step for each
document separately by solving the convex problem

min
θ,s

∑
n∈I

`(sn,β)+λ‖θ‖1+
∑
n∈I

(γ‖sn−θ‖22+ρ‖sn‖1)

s.t. : θ ≥ 0; sn ≥ 0, ∀n ∈ I.

While previous work used local quadratic approxima-
tion to achieve a lasso type problem [17] or specialized
Poisson likelihood estimation [23], we solve this prob-
lem with coordinate descent, which has a closed-form
solution for each component of s and θ. Moreover, our
method offers an algorithmic comparison with LDA, as
discussed later. Specifically, we alternatively solve:

Optimize over s: when θ is fixed, sn are not coupled.
For each sn, we solve the problem

min
sn

`(sn,β) + γ‖sn−θ‖22 + ρ
∑
k

snk, s.t. : sn≥0,

where we have explicitly written the `1-norm of sn
under the non-negativity constraint. Let g(sn) be the
objective. Then, we solve for each snk alternatively.
By Proposition 1, as to be presented, the solution is
snk = max(0, νk), where νk = arg minsnk g(sn) with
snj , j 6= k fixed at current solutions. By setting the
gradient ∇snkg=(1− wn

s>nβ.n
)βkn+2γ(snk−θk)+ρ equal

to zero, we have that νk is the solution of the equation

2γβknν
2
k + (2γµ+ βknτ)νk + µτ − wnβkn = 0,

where µ =
∑
j 6=k snjβjn and τ = βkn + ρ− 2γθk. If

βkn = 0, we have νk = θk− ρ
2γ ; otherwise, we need

to solve a quadratic equation, which always has real
solutions because the discriminant ∇ , (2γµ+βknτ)2−
4(2γβkn)(µτ −wnβkn) = (2γµ−βknτ)2 + 8γwnβ

2
kn is

guaranteed to be positive. νk is the larger one of the
two possible solutions.

Optimize over θ: when s is fixed, this step involves
solving the convex problem

min
θ

λ‖θ‖1 + γ
∑
n∈I

‖sn − θ‖22, s.t. : θ ≥ 0.

Since different dimensions of θ are not coupled, we can
solve for each θk separately. By Proposition 1, we have

∀k, θk = max(0, s̄k −
λ

2γ|I| ), (3)



where s̄k = 1
|I|

∑
n∈Isnk. Therefore, using an `1-

regularizer gives us a truncated averaging3 strategy for
aggregating individual word codes to obtain θ.

Dictionary learning: after we have inferred the la-
tent representations (θ, s) of all the documents, we
update the dictionary β by minimizing the log-Poisson
loss, which is convex and can be efficiently solved with
a high-performance method, such as projected gradi-
ent descent, where the projection to the simplex P can
be performed with a linear algorithm [6].

2.4 Discussions

Now, we investigate some properties of STC.

2.4.1 Generality

According to the following proposition, the coordinate
descent algorithm is generally applicable for any con-
vex loss function `, e.g., log-loss of exponential family
distributions. For different loss functions, the differ-
ence lies in solving a univariate minimization problem
for each snk, which can have a closed-form solution in
some cases such as Poisson and Gaussian. In general,
this univariate problem can be efficiently solved with
a numerical method if no closed-form solution exists.

Proposition 1 Let h(x) be a strictly convex function.
The optimum solution x? of the constrained problem
P0 : minx≥0 h(x) is x? = max(0, x0), where x0 is the
solution of the unconstrained problem P1 : minx h(x).

Proof: See Appendix A.1 for details.

2.4.2 Connections to Probabilistic LDA

STC is a non-probabilistic formulation of topic models.
Now, we provide a systematical comparison with the
representative probabilistic topic model – LDA [2].

First, LDA doesn’t have an explicit definition of word
code. In LDA, a document is represented as a sequence
w = (~w1, · · · , ~wM ), where M is document length and
~wm is an N -dim indicator vector (i.e., wmn=1 if word
n appears in position m, otherwise 0). LDA asso-
ciates each position m with a topic assignment vari-
able Zm and assumes that the topics of all the words
in a document are sampled from the same document-
specific mixing proportion (denoted by θ too), which
has a Dirichlet prior p(θ|α). For comparison, an equiv-
alence to word code can be defined as the empiri-
cal word-topic assignment distribution p̃(z(n) = k) ∝∑
m wmnp(zmk=1|w), where z(n) is the topic of word

3If we use a normal prior p(θ) ∝ exp(−λ‖θ‖22), we will
have θk = γ

λ/|I|+γ s̄k. If λ � γ, θ will be close to the av-

eraging aggregation of its individual word codes. Another

choice is to set λ= γ, and we have θk = |I|
1+|I| s̄k, which is

again close to the average if |I| is large.

n. The distribution p̃(z(n)) can be regarded as a rep-
resentation of word n in the topic space, and it can be
inferred using sampling [3] or variational [2] methods.

Second, LDA lacks an explicit sparcification procedure
on the inferred representations as discussed in Sec 1.
Although we can adjust α to make θ concentrate much
of its mass on a small number of topics a priori, it can
only indirectly influence the sparsity of inferred poste-
rior representations [8]. In practice, using a Dirichlet
prior is not effective in controlling the posterior spar-
sity of LDA models. Fig. 2(L) shows the sparsity ratio
of word code (i.e., number of zeros in the code divided
by topic number K) and classification accuracy (see
Sec 4.2) with different pre-specified Dirichlet parame-
ter α of LDA using variational inference4. We can see
that a small α (i.e., a weak Dirichlet smoothing [2]) can
yield sparse representations because of data scarcity,
but this sparsity is not good for classification. Using
a large α (i.e., a strong Dirichlet smoothing) can in-
crease the accuracy, but it dramatically reduces the
sparsity ratio. Also, there is a sharp change point
around α = 10−3.

Finally, the learning algorithm of STC has the similar
structure as the variational EM algorithm of LDA [2],
as outlined in Appendix A.2. The difference lies in: 1)
STC is doing deterministic coordinate descent while
LDA performs probabilistic inference under normaliza-
tion constraints; and 2) STC uses projected gradient
descent to solve for the topics β while LDA performs
this step in a closed-form. Empirically, as we shall see
in Sec 4.3, STC is much more efficient than LDA on in-
ferring latent representations and the overall training
time of STC is also much smaller than that of LDA be-
cause the dictionary learning step is much faster than
the hierarchical sparse coding step, especially when the
number of samples is large.

2.4.3 Comparison with SPC and NMF

As we have stated, STC is an extension of SPC and
NMF for discovering hierarchical representations with
the bases being distributional topics. Another differ-
ence is that STC only encodes the words with nonzero
counts, while the SPC [17] and standard NMF encode
all the words in a vocabulary. This difference could
make STC more efficient and scalable to a large vo-
cabulary. See Appendix A.5 for more comparison.

3 Supervised Sparse Topical Coding

We have described the unsupervised STC for learning
dictionary and inferring sparse representations of un-

4In theory, variational methods don’t produce zero code
elements because of the exponential update rule. But in
practice, it is safe to truncate very small values to be zero.
Similarly, sampling methods don’t have a direct control on
the posterior sparsity either.



labeled samples. But with the increasing availability
of free on-line information such as image tags, user
ratings, etc., it is desirable to develop new models and
training schemes that can make effective use of such
“free” supervised side information to achieve better
results, such as more discriminative latent representa-
tions of text contents, and more accurate classifiers.

Now, we present a supervised STC to learn predictive
representations and a supervised dictionary [18] by ex-
ploring the available side-information. We consider the
classification problem, where the response variable Y
takes a value from a finite set of categorical labels. As
we mentioned, the non-probabilistic STC can be nat-
urally integrated with any convex loss function, which
may or may not arise from a probabilistic model. Here,
we adopt the large margin principle to define a clas-
sifier, which can avoid dealing with a normalization
factor as involved in probabilistic models [26] and has
been successfully explored in MedLDA [28].

Specifically, we use document code θ as input features
for a large margin classifier, and define the linear dis-
criminant function F (y,θ) = η>y θ, where ηy ∈ RK .
Let η denote the set of ηy, and let ∆`(y, y′) be a
cost function that measures how different a predic-
tion y′ is from the true label y. Then, given a train-
ing set D = {(wd, yd)}Dd=1, the multi-class hinge loss
is Rh({θd},η) = 1

D

∑
d maxy[∆`(yd, y) + F (y,θd)−

F (yd,θd)]. We define the max-margin supervised STC
(MedSTC) as jointly learning a large-margin classifier
η, learning a dictionary β, and discovering latent rep-
resentations Θ. The joint optimization problem is

min
Θ,β,η

f(Θ,β) + CRh({θd},η) +
1

2
‖η‖22 (4)

s.t. : θd ≥ 0, ∀d; sdn ≥ 0, ∀d, n ∈ Id; βk ∈ P, ∀k,

where C is a positive constant. We can see that the
document code θ plays a role of bridging the internal
latent representations to the external supervision.

For problem (4), we can use the similar coordinate de-
scent method, with slight changes on solving for θ and
an additional step for learning η. For η, the problem is
to learn a multi-class SVM, which can be done with an
existing solver [14]; for θ, we can again achieve its op-
timum as in Eq. (3) with s̄k being a shifted mean. For
document d, s̄k= 1

|Id|
∑
n∈Idsdnk+ C

2D|Id|λ (ηydk−ηŷdk),

where ŷd = arg maxy(∆`(yd, y)+F (y,θd)) is the loss
augmented prediction.

4 Experiments

Now, we provide qualitative as well as quantitative
evaluation of STC and MedSTC on the 20 Newsgroups
dataset, which contains 18775 postings in 20 cate-
gories. The vocabulary contains 61188 terms, and we
remove a standard list of 524 stop words as in [15, 28].
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Figure 2: (L) sparsity ratio of word codes and classifica-
tion accuracy of 70-topic LDA with different pre-specified
α of a symmetric Dirichlet prior; and (R) sparsity ratio
of word codes discovered by different models. For LDA
models, we estimate the optimal Dirichlet parameter α.

We observe that using `2-norm on θ leads to sparser
word codes, but denser document codes. We report the
results of STC and MedSTC using `2-norm on θ and
leave other results to Appendix. To see the effects of
`1-norm, we also report the performance of gaussSTC
(i.e., an STC that uses `2-norm on both θ and s). The
supervised guassSTC is denoted by gaussMedSTC.

4.1 Characteristics of Code Representation

Word code: Fig. 3 shows the average word codes
of some representative words5 in 6 example cate-
gories. Here, we compare STC with LDA [2] using
variational inference. The Dirichlet parameter α in
LDA is automatically estimated using the Newton-
Raphson method [2]. For each word n, we compute
the average code weights s̄nk = 1

|Dn|
∑
d∈Dnsdnk over

all the documents (indexed by Dn) that word n ap-
pears in. For LDA, the average code of word n is
p̄(z(n)) = 1

|Dn|
∑
d∈Dnp̃(zd(n)) (See Sec 2.4.2 for def-

inition of p̃(z(n))). For each category, we show the
topics learned by STC that have non-zero weights on
at least one representative word. We can see that the
codes discovered by STC are much sparser than those
discovered by LDA. For STC, on average, each word
has a small number of non-zero code elements, all of
which are significantly larger than zero. In contrast,
the word codes discovered by LDA tend to have many
small non-zeros, as also characterized by the sparsity
ratio in Fig. 2. LDA does have sparse codes for some
words (e.g., jpeg), but the sparsity is mainly due to
data scarcity, as we have analyzed in Sec 2.4.2.

By closely examining the learned topics, we can see
that in STC each non-zero element in the code of
a word roughly represents one of its topical mean-
ings. For instance, the word speed has non-zero code
values on topics T14, T17, T18 and T19, which are
roughly about hardware speed, circuit speed (e.g., scsi
bus speed), drive speed, and the cost/price on system
speed, respectively. The weights on these topics reflect

5We choose 3 words that most frequently appear in the
documents in each category (independent of models). To
be diverse, overlapping words are avoided.
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Figure 3: Average word code of representative words for different categories discovered by STC and LDA models.

their relative significance in the corpus. We can also
see that some words (e.g., religion and medical) have
only one or two topical meanings, while some other
words (e.g., speed and system) tend to have a broad
spectrum of topical meanings.

Fig. 2(R) shows the average sparsity ratio of differ-
ent models on testing documents6. We can see that
the word codes discovered by LDA (with estimated α)
and NMF7 are very dense. In contrast, STC achieves
much sparser codes by using the sparsity-inducing `1-
regularizer on word codes. For the similar reason,
MedSTC is much sparser than MedLDA [28] and su-
pervised LDA (sLDA) [26] whose sparsity is compa-
rable to that of NMF and omitted for clarity. The
reason why MedSTC is denser than STC is that re-
sponse variables introduce additional correlations be-
tween different topics during inference, which lead to
a spread of non-zero values. By comparing STC and
gaussSTC, we can see that using the `1-norm can sig-
nificantly improve the sparsity ratio (and classification
performance as we shall see). This suggests that us-
ing non-negativity constraints only is insufficient to
achieve sparse representations. The similar observa-
tion applies to MedSTC and guassMedSTC.

We also compare with regularized LDA (regLDA) that
uses an entropic regularizer [21] on the word-topic
assignment distribution p(zmk = 1|w) during varia-
tional inference (See Appendix A.4). Fig. 2(R) shows
the regLDA+ that achieves the best classification per-
formance. We can see that an entropic regularizer

6We use the same train/test split as in [15, 28].
7For NMF, word codes are the same as document codes.

For improving efficiency, we ignore non-appearing words
when implementing NMF. See Appendix A.5 for details.

Class STC MedSTC

alt.atheism

0 20 40 60
0

0.02

0.04

0.06

0.08

av
g−

th
et

a

alt.atheism
0 20 40 60

0

0.05

0.1

0.15

0.2

av
g−

th
et

a

alt.atheism

misc.forsale

0 20 40 60
0

0.02

0.04

0.06

0.08

av
g−

th
et

a

misc.forsale
0 20 40 60

0

0.05

0.1

0.15

0.2

av
g−

th
et

a

misc.forsale

rec.autos

0 20 40 60
0

0.05

0.1

av
g−

th
et

a

rec.autos
0 20 40 60

0

0.05

0.1

0.15

0.2

av
g−

th
et

a

rec.autos

sport.baseball

0 20 40 60
0

0.05

0.1

0.15

0.2

av
g−

th
et

a

rec.sport.baseball
0 20 40 60

0

0.05

0.1

0.15

0.2

av
g−

th
et

a

rec.sport.baseball

sci.med

0 20 40 60
0

0.05

0.1

av
g−

th
et

a

sci.med
0 20 40 60

0

0.02

0.04

0.06

0.08

av
g−

th
et

a

sci.med

religion.christian

0 20 40 60
0

0.05

0.1

0.15

0.2

av
g−

th
et

a

soc.religion.christian
0 20 40 60

0

0.05

0.1

0.15

0.2

av
g−

th
et

a
soc.religion.christian

Figure 4: Average document code θ for example categories
discovered by STC and MedSTC.

can bias LDA toward finding a sparser representation.
But, it is not so effective as STC due to its smooth-
ness. Moreover, as shown in Fig. 5 (regLDA−), if we
use a strong entropic regularizer to achieve the similar
sparsity ratio in word code as STC, the classification
performance will decrease dramatically.

Document code: Fig. 4 shows the average document
code θ for 6 example categories discovered by STC and
MedSTC. For each category, we average θ over all the
documents in that category and then normalize it. We
can see that the average θ for different categories are
quite different, which indicates that document codes
have a good discriminative power. Moreover, by using
supervised information, MedSTC can discover more
discriminative representations. To save space, we omit
the results of LDA, which is worse than STC as shown
by classification accuracy. Note that the average θ is
not sparse even though each document code θd can be
sparse, especially when using `1-norm on θ).
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Figure 5: Classification accuracy of different models.

4.2 Prediction Accuracy

Now, we report the classification accuracy on the
20 Newsgroup data with all the 20 categories. We
compare STC (and gaussSTC) with LDA, NMF and
regLDA; and we compare MedSTC (and gaussMed-
STC) with the max-margin based MedLDA and like-
lihood based sLDA and discriminative LDA (Dis-
cLDA) [15]. For regLDA, we consider two versions
– regLDA+ (achieving best classification performance)
and regLDA− (achieving similar sparsity in word code
as STC). For unsupervised models, we use all the data
to learn their parameters, including α in LDA mod-
els, and then use the training documents with their
topical representations as features to build multi-class
SVM classifiers. We use the same solver as in [28]
with a cost function ∆`(yd, y) , `I(y 6= yd) to solve
the sub-step of learning η in MedSTC, and learn the
SVM classifiers for STC, gaussSTC, NMF and LDA.
For regularization constants, we set γ = λ, and per-
form cross-validation to select C, λ and ρ 8.

Fig. 5 shows the results with 5 randomly initialized
runs. For STC models, we initialize β and (θ, s) to
be uniform. We can see that STC performs better
than LDA and NMF, especially when K is large. One
possible reason for this improvement is that STC is
flexible in discovering sparse code representations for
each word. In contrast, the additional normalized con-
straint imposed on the word code (i.e., p̃(z(n))) may
limit the flexibility of LDA to capture the intrinsic
sparsity of topic meanings for an individual word, as
shown in Fig. 2. NMF is limited too by using one code
vector to reconstruct all the words in a document, as
discussed in Sec 1. For supervised models, MedSTC
performs better than MedLDA because of its similar
sparsity property. The importance of learning sparse
representations can also be seen from the inferior per-
formance of gaussSTC (gaussMedSTC) compared to
STC (MedSTC). Moreover, the max-margin model
(e.g., MedSTC) generally outperform sLDA which is
learned by using likelihood estimation. Finally, using
an entropic regularizer in LDA (i.e., regLDA+) can
improve the accuracy a bit, but it is not so effective as
STC, as indicated by regLDA− which achieves similar
sparsity as STC but decreases accuracy dramatically.

8We set ` at 16 for MedLDA and 3600 for MedSTC.
A reason for the difference is that MedLDA discovers nor-
malized representations, while MedSTC generally discovers
representations that are of a larger scale of magnitude.
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Figure 6: (L) training and (R) testing time.

4.3 Time Efficiency

All the models are implemented using the same data
structures in C++ and run on a standard desktop with
a 2.66GHz processor. To save space, we omit the result
of gaussSTC (gaussMedSTC), which is comparable to
that of STC (MedSTC). See Appendix A.5 for NMF.

Fig. 6 shows the training and test time of different
topic models with 5 randomly initialized runs. For
LDA and STC, training includes building SVM classi-
fiers. Clearly, STC is much more efficient than LDA in
training. The main reason is that the coordinate de-
scent algorithm of STC is much more efficient than the
probabilistic inference of LDA, as shown in Fig. 6(R).
Moreover, the sparsity of word codes in STC can be
utilized to further improve the efficiency (e.g., zeros
aren’t needed to be stored or multiplied). For the su-
pervised MedSTC and MedLDA, which rely on a solver
to learn a SVM, the training is mainly dependent on
learning SVM as the inference is generally fast. Thus
they have comparable training time, also comparable
to LDA which usually needs more iterations to con-
verge. Here, we use the 1-slack formulation of multi-
class SVM, which is faster than an equivalent n-slack
formulation [14]. Among all the models, sLDA is the
slowest one because it defines a normalized probabilis-
tic model for the discrete variable Y , whose normaliza-
tion factor (i.e., a sum-exp function) strongly couples
the topic assignments of different words in the same
document. Thus the posterior inference in training is
much slower than that of LDA and MedLDA which
uses LDA as the underlying topic model.

For testing, we can see that STC is much faster than
probabilistic LDA. As compared in Sec 2.4.2, the main
reason for this efficiency improvement is that the co-
ordinate descent method is much more efficient than
the variational inference procedure in LDA, which
involves many calls to digamma functions [2] and
needs an additional normalization step in order to get
word-topic assignment distributions. For supervised
models, MedSTC is much faster than MedLDA and
sLDA, both of which use the same variational inference
procedure as in LDA. The slight difference between
MedLDA, sLDA and LDA is because they have differ-
ent topics and the inference converges differently. Dis-
cLDA is roughly about 20 times slower than MedLDA
or sLDA in testing because it needs to infer the latent
representations for each possible category.



5 Conclusions and Future Work

We have presented sparse topical coding (STC), an al-
ternative non-probabilistic formulation of topic mod-
els for discovering latent representations of large col-
lections of data. STC relaxes the normalization con-
straints made in probabilistic topic models. Such a
relaxation makes STC enjoy nice properties, such as
direct control on the sparsity of discovered represen-
tations, efficient learning algorithm, and seamless in-
tegration with a convex loss function for learning pre-
dictive latent representations. STC offers a systemati-
cal connection between sparse coding and probabilistic
topic modeling. Our empirical studies demonstrate the
advantages of STC and supervised MedSTC on identi-
fying sparse topical meanings of words, and improving
time efficiency and classification accuracy.

Due to the relaxation from defining normalized distri-
butions, STC can efficiently incorporate rich features
without dealing with annoying normalization factors,
which can make the inference hard in probabilistic
models [30]. We have extended STC to consider rich
features and preliminary results are presented in [29].
For future work, we are interested in developing par-
allel STC for large-scale applications [19, 22], and we
want to do a systematical study on automatically es-
timating the hyper-parameters [7].

Finally, the appendix and our code are available at
http://www.cs.cmu.edu/∼junzhu/stc.htm.
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