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Abstract

Logistic-normal topic models can effectively discover correlation structures
among latent topics. However, their inference remains a challenge because of the
non-conjugacy between the logistic-normal prior and multinomial topic mixing
proportions. Existing algorithms either make restricting mean-field assumptions
or are not scalable to large-scale applications. This paper presents a partially col-
lapsed Gibbs sampling algorithm that approaches the provably correct distribution
by exploring the ideas of data augmentation. To improve time efficiency, we fur-
ther present a parallel implementation that can deal with large-scale applications
and learn the correlation structures of thousands of topics from millions of docu-
ments. Extensive empirical results demonstrate the promise.

1 Introduction

In Bayesian models, though conjugate priors normally result in easier inference problems, non-
conjugate priors could be more expressive in capturing desired model properties. One popular ex-
ample is admixture topic models which have obtained much success in discovering latent semantic
structures from data. For the most popular latent Dirichlet allocation (LDA) [5], a Dirichlet dis-
tribution is used as the conjugate prior for multinomial mixing proportions. But a Dirichlet prior
is unable to model topic correlation, which is important for understanding/visualizing the semantic
structures of complex data, especially in large-scale applications. One elegant extension of LDA
is the logistic-normal topic models (aka correlated topic models, CTMs) [3], which use a logistic-
normal prior to capture the correlation structures among topics effectively. Along this line, many
subsequent extensions have been developed, including dynamic topic models [4] that deal with time
series via a dynamic linear system on the Gaussian variables and infinite CTMs [11] that can resolve
the number of topics from data.

The modeling flexibility comes with computational cost. Although significant progress has been
made on developing scalable inference algorithms for LDA using either distributed [10, 16, 1] or on-
line [7] learning methods, the inference of logistic-normal topic models still remains a challenge, due
to the non-conjugate priors. Existing algorithms on learning logistic-normal topic models mainly
rely on approximate techniques, e.g., variational inference with unwarranted mean-field assump-
tions [3]. Although variational methods have a deterministic objective to optimize and are usually
efficient, they could only achieve an approximate solution. If the mean-field assumptions are not
made appropriately, the approximation could be unsatisfactory. Furthermore, existing algorithms
can only deal with small corpora and learn a limited number of topics. It is important to develop
scalable algorithms in order to apply the models to large collections of documents, which are be-
coming increasingly common in both scientific and engineering fields.

To address the limitations listed above, we develop a scalable Gibbs sampling algorithm for logistic-
normal topic models, without making any restricting assumptions on the posterior distribution. Tech-
nically, to deal with the non-conjugate logistic-normal prior, we introduce auxiliary Polya-Gamma
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variables [13], following the statistical ideas of data augmentation [17, 18, 8]; and the augmented
posterior distribution leads to conditional distributions from which we can draw samples easily with-
out accept/reject steps. Moreover, the auxiliary variables are locally associated with each individual
document, and this locality naturally allows us to develop a distributed sampler by splitting the doc-
uments into multiple subsets and allocating them to multiple machines. The global statistics can
be updated asynchronously without sacrificing the predictive ability on unseen testing documents.
We successfully apply the scalable inference algorithm to learning a correlation graph of thousands
of topics on large corpora with millions of documents. These results are the largest automatically
learned topic correlation structures to our knowledge.

2 Logistic-Normal Topic Models

Let W = {wd}Dd=1 be a set of documents, where wd = {wdn}
Nd
n=1 denote the words appearing

in document d of length Nd. A hierarchical Bayesian topic model posits each document as an
admixture of K topics, where each topic Φk is a multinomial distribution over a V -word vocabulary.
For a logistic-normal topic model (e.g., CTM), the generating process of document d is:

ηd ∼ N (µ,Σ), θkd =
eη

k
d

∑K

j=1
eη

j
d

, ∀n ∈ {1, · · · , Nd} : zdn ∼ Mult(θd), wdn ∼ Mult(Φzdn),

where Mult(·) denotes the multinomial distribution; zdn is a K-binary vector with only one nonzero
element; and Φzdn denotes the topic selected by the non-zero entry of zdn. For Bayesian CTM, the
topics are samples drawn from a prior, e.g., Φk ∼ Dir(β), where Dir(·) is a Dirichlet distribution.
Note that for identifiability, normally we assume ηKd = 0.

Given a set of documents W, CTM infers the posterior distribution p(η,Z,Φ|W) ∝
p0(η,Z,Φ)p(W|Z,Φ) by the Bayes’ rule. This problem is generally hard because of the non-
conjugacy between the normal prior and the logistic transformation function (can be seen as a like-
lihood model for θ). Existing approaches resort to variational approximate methods [3] with strict
factorization assumptions. To avoid mean-field assumptions and improve the inference accuracy,
below we present a partially collapsed Gibbs sampler, which is simple to implement and can be
naturally parallelized for large-scale applications.

3 Gibbs Sampling with Data Augmentation

We now present a block-wise Gibbs sampling algorithm for logistic-normal topic models. To
improve mixing rates, we first integrate out the Dirichlet variables Φ, by exploring the conjugacy
between a Dirichlet prior and multinomial likelihood. Specifically, we can integrate out Φ and
perform Gibbs sampling for the marginalized distribution:

p(η,Z|W)∝ p(W|Z)
D
∏

d=1

(

Nd
∏

n=1

θzdnd

)

N (ηd|µ,Σ) ∝
K
∏

k=1

δ(Ck + β)

δ(β)

D
∏

d=1

(

Nd
∏

n=1

eη
zdn
d

∑K

j=1
eη

j
d

)

N (ηd|µ,Σ),

where Ct
k is the number of times topic k being assigned to the term t over the whole corpus; Ck =

{Ct
k}

V
t=1; and δ(x) =

∏dim(x)
i=1 Γ(xi)

Γ(
∑dim(x)

i=1 xi)
is a function defined with the Gamma function Γ(·).

3.1 Sampling Topic Assignments

When the variables η = {ηd}Dd=1 are given, we draw samples from p(Z|η,W). In our Gibbs
sampler, this is done by iteratively drawing a sample for each word in each document. The local
conditional distribution is:

p(zkdn = 1|Z¬n, wdn,W¬dn,η) ∝ p(wdn|z
k
dn = 1,Z¬n,W¬dn)e

ηk
d ∝

C
wdn
k,¬n + βwdn

∑V

j=1
Cj

k,¬n +
∑V

j=1
βj

eη
k
d ,(1)

where C ·
·,¬n indicates that term n is excluded from the corresponding document or topic.

3.2 Sampling Logistic-Normal Parameters

When the topic assignments Z are given, we draw samples from the posterior distribution

p(η|Z,W) ∝
∏D

d=1

(

∏Nd

n=1
e
ηd
zn

∑K
j=1 e

ηd
j

)

N (ηd|µ,Σ), which is a Bayesian logistic regression model
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with Z as the multinomial observations. Though it is hard to draw samples directly due to non-
conjugacy, we can leverage recent advances in data augmentation to solve this inference task effi-
ciently, with analytical local conditionals for Gibbs sampling, as detailed below.

Specifically, we have the likelihood of “observing” the topic assignments zd for document d 1 as

p(zd|ηd) =
∏Nd

n=1
e
η
zdn
d

∑K
j=1 e

η
j
d

. Following Homes & Held [8], the likelihood for ηdk conditioned on

η¬k
d is:

ℓ(ηk
d |η

¬k
d ) =

Nd
∏

n=1

( eρ
k
d

1 + eρ
k
d

)zkdn
( 1

1 + eρ
k
d

)

1−zkdn
=

(eρ
k
d )C

k
d

(1 + eρ
k
d )Nd

,

where ρkd = ηkd − ζkd ; ζkd = log(
∑

j 6=k e
η
j
d); and Ck

d =
∑Nd

n=1 z
k
dn is the number of words assigned

to topic k in document d. Therefore, we have the conditional distribution

p(ηk
d |η

¬k
d ,Z,W) ∝ ℓ(ηk

d |η
¬k
d )N (ηk

d |µ
k
d, σ

2

k), (2)

where µk
d = µk − Λ

−1
kkΛk¬k(η

¬k
d − µ¬k) and σ2

k = Λ
−1
kk . Λ = Σ

−1 is the precision matrix of a
Gaussian distribution.

This is a posterior distribution of a Bayesian logistic model with a Gaussian prior, where zkdn are
binary response variables. Due to the non-conjugacy between the normal prior and logistic likeli-
hood, we do not have analytical form of this posterior distribution. Although standard Monte Carlo
methods (e.g., rejection sampling) can be applied, they normally require a good proposal distribu-
tion and may have the trouble to deal with accept/reject rates. Data augmentation techniques have
been developed, e.g., [8] presented a two layer data augmentation representation with logistic dis-
tributions and [9] applied another data augmentation with uniform variables and truncated Gaussian
distributions, which may involve sophisticated accept/reject strategies [14]. Below, we develop a
simple exact sampling method without a proposal distribution.

Our method is based on a new data augmentation representation, following the recent developments
in Bayesian logistic regression [13], which is a direct data augmentation scheme with only one layer
of auxiliary variables and does not need to tune in order to get optimal performance. Specifically,
for the above posterior inference problem, we can show the following lemma.

Lemma 1 (Scale Mixture Representation). The likelihood ℓ(ηkd |η
¬k
d ) can be expressed as

(eρ
k
d )C

k
d

(1 + eρ
k
d )Nd

=
1

2Nd
eκ

k
dρ

k
d

∫

∞

0

e−
λk
d(ρkd)2

2 p(λk
d|Nd, 0)dλ

k
d,

where κk
d = Ck

d −Nd/2 and p(λk
d|Nd, 0) is the Polya-Gamma distribution PG(Nd, 0).

The lemma suggest that p(ηkd |η
¬k
d ,Z,W) is a marginal distribution of the complete distribution

p(ηk
d , λ

k
d|η

−k
d ,Z,W) ∝

1

2Nd
exp

(

κk
dρ

k
d −

λk
d(ρ

k
d)

2

2

)

p(λk
d|Nd, 0)N (ηk

d |µ
k
d, σ

2

k).

Therefore, we can draw samples from the complete distribution. By discarding the augmented
variable λk

d , we get the samples of the posterior distribution p(ηkd |η
¬k
d ,Z,W).

For ηkd : we have p(ηkd |η
¬k
d ,Z,W, λk

d) ∝ exp
(

κk
dη

k
d − λk

d(η
k
d)

2

2

)

N (ηkd |µ, σ
2) = N (γk

d , (τ
k
d )

2),

where the posterior mean is γk
d = (τkd )

2(σ−2
k µk

d + κk
d + λk

dζ
k
d ) and the variance is (τkd )

2 = (σ−2
k +

λk
d)

−1. Therefore, we can easily draw a sample from a univariate Gaussian distribution.

For λk
d: the conditional distribution of the augmented variable is p(λk

d|Z,W,η) ∝ exp
(

−
λk
d(ρ

k
d)

2

2

)

p(λk
d|Nd, 0) = PG

(

λk
d;Nd, ρ

k
d

)

, which is again a Polya-Gamma distribution by using the

construction definition of the general PG(a, b) class through an exponential tilting of the PG(a, 0)
density [13]. To draw samples from the Polya-Gamma distribution, note that a naive implementation
of the sampling using the infinite sum-of-Gamma representation is not efficient and it also involves
a potentially inaccurate step of truncating the infinite sum. Here we adopt the exact method pro-
posed in [13], which draws the samples through drawing Nd samples from PG(1, ηkd). Since Nd is
normally large, we will develop a fast and effective approximation in the next section.

1Due to the independence, we can treat documents separately.
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Figure 3: (a) frequency of f(z) with z ∼
PG(m, ρ); and (b) frequency of samples
from ηkd ∼ p(ηkd |η

¬k
d ,Z,W). Though z

is not from the exact distribution, the dis-
tribution of ηkd is very accurate. The pa-

rameters ρkd = −4.19, Ck
d = 19, Nd =

1155, µk
d = 0.40, σ2

d = 0.31, and ζ = 5.35
are from a real distribution when training
on the NIPS data set.

3.3 Fully-Bayesian Models

We can treat µ and Σ as random variables and perform fully-Bayesian inference, by using the
conjugate Normal-Inverse-Wishart prior, p0(µ,Σ) = NIW(µ0, ρ, κ,W ), that is

Σ|κ,W ∼ IW(Σ;κ,W−1), µ|Σ,µ0, ρ ∼ N (µ;µ0,Σ/ρ),

where IW(Σ;κ,W−1) = |W |κ/2

2
κM
2 ΓM (κ

2 )|Σ|
κ+M+1

2

exp(− 1
2Tr(WΣ

−1)) is the inverse Wishart

distribution and (µ0, ρ, κ,W ) are hyper-parameters. Then, the conditional distribution is

p(µ,Σ|η,Z,W)∝ p0(µ,Σ)
∏

d

p(ηd|µ,Σ) = NIW(µ′

0, ρ
′, κ′,W ′), (3)

which is still a Normal-Inverse-Wishart distribution due to the conjugate property and the parameters

are µ′
0 = ρ

ρ+D
µ0+

D
ρ+D

η̄, ρ′ = ρ+D, κ′ = κ+D and W ′ = W +Q+ ρD
ρ+D

(η̄−µ0)(η̄−µ0)
⊤,

where η̄ = 1
D

∑

d ηd is the empirical mean of the data and Q =
∑

d(ηd − η̄)(ηd − η̄)⊤.

4 Parallel Implementation and Fast Approximate Sampling

The above Gibbs sampler can be naturally parallelized to extract large correlation graphs from mil-
lions of documents, due to the following observations:

First, both ηd and λd are conditionally independent given µ and Σ, which makes it natural to dis-
tribute documents over machines and infer local ηd and λd. No communication is needed for this
sampling step. Second, the global variables µ and Σ can be inferred and broadcast to every machine
after each iteration. As mentioned in Section 3.3, this involves: 1) computing NIW posterior pa-
rameters, and 2) sampling from Eq. 3. Notice that ηd contribute to the posterior parameters µ′

0,W
′

through the simple summation operator, so that we can perform local summation on each machine,
followed by a global aggregation. Similarly, NIW sample can be drawn distributively, by com-
puting sample covariance of x1, · · · , xκ′ , drawn from N (x|0,W ′) distributively after broadcasting
W ′. Finally, the topic assignments zd are conditionally independent given the topic counts Ck. We
synchronize Ck globally by leveraging the recent advances on scalable inference of LDA [1, 16],
which implemented a general framework to synchronize such counts.

To further speed up the inference algorithm, we designed a fast approximate sampling method to
draw PG(n, ρ) samples, reducing the time complexity from O(n) in [13] to O(1). Specifically,
Polson et al. [13] show how to efficiently generate PG(1, ρ) random variates. Due to additive prop-
erty of Polya-Gamma distribution, y ∼ PG(n, ρ) if xi ∼ PG(1, ρ) and y =

∑n
i=1 xi. However,

this sampler can be slow when n is large. For our Gibbs sampler, n is the document length, often
around hundreds. Fortunately, an effective approximation can be developed to achieve constant time
sampling of PG. Since n is relatively large, the sum variable y should be almost normally dis-
tributed, according to the central limit theorem. Fig. 3(a) confirms this intuition. Consider another
PG variable z ∼ PG(m, ρ). If both m and n are large, y and z should be both samples from normal
distribution. Hence, we can do a simple linear transformation of z to approximate y. Specifically,

we have f(z) =
√

V ar(y)/V ar(z)(z − E[z]) + E[y], where E[y] = n
2ρ tanh(ρ/2) from [12], and

V ar(z)
V ar(y) = m

n
since both y and z are sum of PG(1, ρ) variates. It can be shown that f(z) and y

have the same mean and variance. In practice, we found that even when m = 1, the algorithm
still can draw good samples from p(ηkd |η

¬k
d ,Z,W) (See Fig. 3(b)). Hence, we are able to speed up

the Polya-Gamma sampling process significantly by applying this approximation. More empirical
analysis can be found in the appendix.
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Furthermore, we can perform sparsity-aware fast sampling [19] in the Gibbs sampler. Specifically,

let Ak =
C

wdn
k,¬n

∑V
j=1 C

j
k,¬n+

∑V
j=1 βj

eη
k
d , Bk =

βwdn∑V
j=1 C

j
k,¬n+

∑V
j=1 βj

eη
k
d , then Eq. (1) can be written as

p(zkdn = 1|Z¬n, wdn,W¬dn,η) ∝ Ak + Bk. Let ZA =
∑

k Ak and ZB =
∑

k Bk. We can show

that the sampling of zdn can be done by sampling from Mult( A
ZA

) or Mult( B
ZB

), due to the fact:

p(zkdn = 1|Z¬n, wdn,W¬dn,η) =
Ak

ZA + ZB

+
Bk

ZA + ZB

= (1− p)
Ak

ZA

+ p
Bk

ZB

, (4)

where p = ZB

ZA+ZB
. Note that Eq. (4) is a marginalization with respect to an auxiliary binary

variable. Thus a sample of zdn can be drawn by flipping a coin with probability p being head. If
it is tail, we draw zdn from Mult( A

ZA
); otherwise from Mult( B

ZB
). The advantage is that we only

need to consider all non-zero entries of A to sample from Mult( A
ZA

). In fact, A has few non-zero

entries due to the sparsity of the topic counts Ck. Thus, the time complexity would be reduced from
O(K) to O(s(K)), where s(K) is the average number of non-zero entries in Ck. In practice, Ck is

very sparse, hence s(K) ≪ K when K is large. To sample from Mult( B
ZB

), we iterate over all K

potential assignments. But since p is typically small, O(K) time complexity is acceptable.

With the above techniques, the time complexity per document of the Gibbs sampler is O(Nds(K))
for sampling zd, O(K2) for computing (µk

d, σ
2
k), and O(SK) for sampling ηd with Eq. (2),

where S is the number of sub-burn-in steps over sampling ηkd . Thus the overall time complexity
is O(Nds(K) +K2 + SK), which is higher than the O(Nds(K)) complexity of LDA [1] when K
is large, indicating a cost for the enriched representation of CTM comparing to LDA.

5 Experiments

We now present qualitative and quantitative evaluation to demonstrate the efficacy and scalability of
the Gibbs sampler for CTM (denoted by gCTM). Experiments are conducted on a 40-node cluster,
where each node is equipped with two 6-core CPUs (2.93GHz). For all the experiments, if not
explicitly mentioned, we set the hyper-parameters as β = 0.01, T = 350, S = 8, m = 1, ρ = κ =
0.01D, µ0 = 0, and W = κI , where T is the number of burn-in steps. We will use M to denote
the number of machines and P to denote the number of CPU cores. For baselines, we compare
with the variational CTM (vCTM) [3] and the state-of-the-art LDA implementation, Yahoo! LDA
(Y!LDA) [1]. In order to achieve fair comparison, for both vCTM and gCTM we select T such that
the models converge sufficiently, as we shall discuss later in Section 5.3.

Data Sets: Experiments are conducted on several benchmark data sets, including NIPS paper ab-
stracts, 20Newsgroups, and NYTimes (New York Times) corpora from [2] and the Wikipedia corpus
from [20]. All the data sets are randomly split into training and testing sets. Following the settings
in [3], we partition each document in the testing set into an observed part and a held-out part.

5.1 Qualitative Evaluation

We first examine the correlation structure of 1,000 topics learned by CTM using our scalable sampler
on the NYTimes corpus with 285,000 documents. Since the entire correlation graph is too large, we
build a 3-layer hierarchy by clustering the learned topics, with their learned correlation strength
as the similarity measure. Fig. 4 shows a part of the hierarchy2, where the subgraph A represents
the top layer with 10 clusters. The subgraphs B and C are two second layer clusters; and D and
E are two correlation subgraphs consisting of leaf nodes (i.e., learned topics). To represent their
semantic meanings, we present 4 most frequent words for each topic; and for each topic cluster,
we also show most frequent words by building a hyper-topic that aggregates all the included topics.
On the top layer, the font size of each word in a word cloud is proportional to its frequency in the
hyper-topic. Clearly, we can see that many topics have strong correlations and the structure is useful
to help humans understand/browse the large collection of topics. With 40 machines, our parallel
Gibbs sampler finishes the training in 2 hours, which means that we are able to process real world
corpus in considerable speed. More details on scalability will be provided below.

2The entire correlation graph can be found on http://ml-thu.net/˜scalable-ctm
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Figure 4: A hierarchical visualization of the correlation graph with 1,000 topics learned from
285,000 articles of the NYTimes. A denotes the top-layer subgraph with 10 big clusters; B and
C denote two second-layer clusters; and D and E are two subgraphs with leaf nodes (i.e., topics).
We present most frequent words of each topic cluster. Edges denote a correlation (above some
threshold) and the distance between two nodes represents the strength of their correlation. The node
size of a cluster is determined by the number of topics included in that cluster.
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Figure 5: (a)(b): Perplexity and training time of vCTM, single-core gCTM, and multi-core gCTM
on the NIPS data set; (c)(d): Perplexity and training time of single-machine gCTM, multi-machine
gCTM, and multi-machine Y!LDA on the NYTimes data set.

5.2 Performance

We begin with an empirical assessment on the small NIPS data set, whose training set contains
1.2K documents. Fig. 5(a)&(b) show the performance of three single-machine methods: vCTM
(M = 1, P = 1), sequential gCTM (M = 1, P = 1), and parallel gCTM (M = 1, P = 12).
Fig. 5(a) shows that both versions of gCTM produce similar or better perplexity, compared to vCTM.
Moreover, Fig. 5(b) shows that when K is large, the advantage of gCTM becomes salient, e.g.,
sequential gCTM is about 7.5 times faster than vCTM; and multi-core gCTM achieves almost two
orders of magnitude of speed-up compared to vCTM.

data set D K vCTM gCTM

NIPS 1.2K 100 1.9 hr 8.9 min
20NG 11K 200 16 hr 9 min

NYTimes 285K 400 N/A* 0.5 hr
Wiki 6M 1000 N/A* 17 hr

*not finished within 1 week.
Table 1: Training time of vCTM and gCTM (M = 40)
on various datasets.

In Table 1, we compare the efficiency
of vCTM and gCTM on different sized
data sets. It can be observed that vCTM
immediately becomes impractical when
the data size reaches 285K, while by uti-
lizing additional computing resources,
gCTM is able to process larger data sets
with considerable speed, making it ap-
plicable to real world problems. Note
that gCTM has almost the same training time on NIPS and 20Newsgroups data sets, due to their
small sizes. In such cases, the algorithm is dominated by synchronization rather than computation.

Fig. 5(c)&(d) show the results on the NYTimes corpus, which contains over 285K training docu-
ments and cannot be handled well by non-parallel methods. Therefore we concentrate on three par-
allel methods — single-machine gCTM (M = 1, P = 12), multi-machine gCTM (M = 40, P =
480), and multi-machine Y!LDA (M = 40, P = 480). We can see that: 1) both versions of gCTM
obtain comparable perplexity to Y!LDA; and 2) gCTM (M = 40) is over an order of magnitude
faster than the single-machine method, achieving considerable speed-up with additional computing
resources. These observations suggest that gCTM is able to handle large data sets without sacrificing
the quality of inference. Also note that Y!LDA is faster than gCTM because of the model differ-
ence — LDA does not learn correlation structure among topics. As analyzed in Section 4, the time
complexity of gCTM is O(K2 + SK +Nds(K)) per document, while for LDA it is O(Nds(K)).

5.3 Sensitivity

Burn-In and Sub-Burn-In: Fig. 6(a)&(b) show the effect of burn-in steps and sub-burn-in steps on
the NIPS data set with K = 100. We also include vCTM for comparison. For vCTM, T denotes
the number of iteration of its EM loop in variational context. Our main observations are twofold:
1) despite various S, all versions of gCTMs reach a similar level of perplexity that is better than
vCTM; and 2) a moderate number of sub-iterations, e.g. S = 8, leads to the fastest convergence.

This experiment also provides insights on determining the number of outer iterations T that assures
convergence for both models. We adopt Cauchy’s criterion [15] for convergence: given an ǫ > 0, an
algorithm converges at iteration T if ∀i, j ≥ T, |Perpi − Perpj | < ǫ, where Perpi and Perpj are
perplexity at iteration i and j respectively. In practice, we set ǫ = 20 and run experiments with very
large number of iterations. As a result, we obtained T = 350 for gCTM and T = 8 for vCTM, as
pointed out with corresponing verticle line segments in Fig. 6(a)&(b).
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Figure 6: Sensitivity analysis with respect to key hyper-parameters: (a) perplexity at each iteration
with different S; (b) convergence speed with different S; (c) perplexity tested with different prior.

Prior: Fig. 6(c) shows perplexity under different prior settings. To avoid expensive search in a huge
space, we set (µ0, ρ,W, κ) = (0, a, aI, a) to test the effect of NIW prior, where a larger a implies
more pseudo-observations of µ = 0,Σ = I . We can see that for both K = 50 and K = 100, the
perplexity is invariant under a wide range of prior settings. This suggests that gCTM is insensitive
to prior values.

5.4 Scalability

1.2M 2.4M 3.6M 4.8M 6M

5

10

15
x 10

4

#docs

tim
e 

(s
)

 

 

Fixed M=8
Linearly scaling M
Ideal

Figure 7: Scalability analysis. We set
M = 8, 16, 24, 32, 40 so that each ma-
chine processes 150K documents.

Fig. 7 shows the scalability of gCTM on the large
Wikipedia data set with K = 500. A practical problem
in real world machine learning is that when computing
resources are limitted, as the data size grows, the run-
ning time soon upsurges to an untolerable level. Ideally,
this problem can be solved by adding the same ratio
of computing nodes. Our experiment demonstrates that
gCTM performs well in this scenario — as we pour in
the same proportion of data and machines, the training
time is almost kept constant. In fact, the largest differ-
ence from ideal curve is about 1,000 seconds, which is
almost unobservable in the figure. This suggests that
parallel gCTM enjoys nice scalability.

6 Conclusions and Discussions

We present a scalable Gibbs sampling algorithm for logistic-normal topic models. Our method
builds on a novel data augmentation formulation and addresses the non-conjugacy without making
strict mean-field assumptions. The algorithm is naturally parallelizable and can be further boosted
by approximate sampling techniques. Empirical results demonstrate significant improvement in time
efficiency over existing variational methods, with slightly better perplexity. Our method enjoys good
scalability, suggesting the ability to extract large structures from massive data.

In the future, we plan to study the performance of Gibbs CTM on industry level clusters with thou-
sands of machines. We are also interested in developing scalable sampling algorithms of other
logistic-normal topic models, e.g., infinite CTM and dynamic topic models. Finally, the fast sam-
pler of Poly-Gamma distributions can be used in relational and supervised topic models [6, 21].
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Appendix

1 Sampling from Polya-Gamma Distribution

A random variable X has a Polya-Gamma distribution with parameters a > 0
and c ∈ R, if

X
D

=
1

2π2

∞
∑

k=1

gk
(k − 1/2)2 + c2/(4π2)

(1)

where gk ∼ Ga(a, 1) are gamma random variables. By computing the truncated
sum of Eq. 1, we can obtain a approximate sampler

Xtruncated =
1

2π2

K
∑

k=1

gk
(k − 1/2)2 + c2/(4π2)

(2)

however, this approximation sampler is biased. [1] proposed a sampler which
corrects the bias by multipling a constant

Xtruncated =
E[X]

E[Xtruncated]
(3)

where E[X] = a
2c tanh(

c
2 ) and E[Xtruncated] =

1
2π2

∑K
k=1

a
(k−1/2)2+c2/(4π2) , ac-

cording to [3, 1]. Denote this approach as truncatedK .
[4] proposed a precise sampling algorithm for Polya-Gamma distributions

Xprecise
D

=

a
∑

n=1

Xn (4)

where Xn ∼ PG(1, c) are i.i.d. samples. Denote this approach of precise.
Draw samples from PG(1, c) can be done in O(1).[4]. However, a is document
lengthNd in logistic-normal topic models, sinceNd is quite large, O(Nd) sampler
is too slow. In this paper we draw K << a samples instead. Denote this
approach as pg1K , note that pg1K = precise.

Notes that a = Nd is large, X is sum of i.i.d. random variables. There is
another approximation by the central limit theorem

Xgaussian ∼ N (µ, σ2) (5)

1



Table 1: Comparison for different PG samplers.
method precise distribution? precise mean? precise variance? time complexity

truncatedK no yes no O(K)
precise yes yes yes O(a)
pg1K no yes yes O(K)

gaussian no yes yes O(1)

where µ = E[X], σ2 = Var[X]. [3] has shown the moment-generating function
of PG(a, c)

f(t) = E[exp(Xt)] =
cosha(c/2)

cosha(
√
c2−2t
2 )

(6)

we have

E[X] = lim
t→0

f ′(t) (7)

=
a

2c
tanh(

c

2
) (8)

E[X2] = lim
t→0

f ′′(t) (9)

=
a(−(2 + a)c2 + ac2 cosh(c) + 2c sinh(c))

8c4 cosh( c2 )
2

(10)

and Var[X] = E[X2]− E[X]2. Denote this as gaussian.
We summarize the algorithms mentioned above in Table 1. To compare these

results, we draw 1,000,000 samples with different methods from P (λk
d|Z,W,η),

and use these samples to compute P (ηkd |ηd¬k,Z,W). We compared their mean,
variance and Kolmogorov-Smirnoff statistic, which is a measure of two empir-
ical distributions F1(x) and F2(x): KS(F1(x), F2(x)) = maxx |F1(x) − F2(x)|.
Table 3 shows the result. We found in term of KS(η), gaussian did good, and
truncated4 performs similar with pg11. gaussian is 4x faster than pg11, which
is 2x faster than truncated4.

Fig. 1 show the perplexity and time result on the real NIPS data set. We
have similar observations: truncatedK(K > 4) performs similar with pg11 and
gaussian, but the latter two are faster. For larger data sets like NYTimes and
1,000 topics, we observed performance of pg11 and gaussian are still similar, but
truncatedK suffer from numeral instablities: the sampled η is getting to infinity
and program crashes when K < 32. We think this instablities attributes to the
imprecise variance. Both the performance and running time of truncated32 are
much worse than pg11 and gaussian. (Table 2)

2 More Sensitivity Results

We redo sensitivity analysis on a NYTimes data set while keep other experiment
settings same as that in Section 5.3. We observed a plateau of the perplexity
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Table 2: Comparison for different PG samplers on NYTimes corpus (K =
1, 000).

method perplexity time/s
pg11 2913 5519

gaussian 2914 3984
truncated32 2984 16270

Table 3: Comparison for different PG samplers. Parameters are same as Fig. 1
in the paper.

method m samples/second Var[λ] KS(λ) E[η] KS(η)
precise - 1,602 6.65 - 1.0459 -
pg1 1 1,449,280 6.63 0.1146 1.0450 0.0146
pg1 2 757,576 6.66 0.0810 1.0467 0.0088
pg1 4 400,000 6.65 0.0562 1.0454 0.0080
pg1 8 215,517 6.67 0.0391 1.0463 0.0051
pg1 16 111,139 6.67 0.0259 1.0461 0.0041
pg1 32 56,721 6.66 0.0176 1.0450 0.0055
pg1 64 28,769 6.65 0.0123 1.0450 0.0049

truncated 1 3,846,150 15.49 0.1024 1.0241 0.0732
truncated 2 2,127,660 10.45 0.0558 1.0371 0.0350
truncated 4 1,111,110 8.37 0.0281 1.0415 0.0174
truncated 8 578,035 7.44 0.0140 1.0429 0.0087
truncated 16 313,480 7.04 0.0076 1.0441 0.0044
truncated 32 165,289 6.84 0.0039 1.0437 0.0043
truncated 64 84,962 6.76 0.0027 1.0449 0.0026
gaussian - 6,250,000 6.66 0.0036 1.0458 0.0024

1 2 4 8 16 32 64 128256512 a
1550

1555

1560

1565

1570

1575

1580

K

pe
rp

le
xi

ty

 

 
truncated
pg1
gaussian

(a)

1 2 4 8 16 32 64 128 256512 a
10

2

10
3

10
4

10
5

K

tim
e/

s

 

 
truncated

pg1

gaussian

(b)

Figure 1: Perplexity and training time with different number of samples m.
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Figure 3: Convergence speed for different number of subiterations S. (a)K =
200; (b)K = 1000.

when the number of pseudo-observations a ∈ [103, 105] (Fig. 2), which corre-
sponds to [0.0035, 0.3509] of the number of training documents D = 285, 000.
This again showed the performance of our algorithm is not sensitivity to a. Sen-
sitivity with respect to number of subiterations S is howed in Fig. 3, we found
the S = 8 sampler still converges fastest. This result is same as that on the
small NIPS corpus. In conclusion, hyper parameters are relatively insensitive
with respect to corpus size and number of topics, hyper parameters suggested
in the paper (a = 0.01D,S = 8) are safe enough to use without tuning.

3 Comparison to Other Data Augmentation Al-

gorithms

We compare our method with [2], who use a uniform distribution for data aug-
mentation on the NIPS data set. By training K = 100 topics on the NIPS
dataset, we found S = 16 leads to the fastest convergence for [2] (Fig. 4). Fig. 5
shows the perplexity and time consumption of our approach and [2], our ap-
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Figure 4: Sensitivity analysis with respect to different number of subiterations.
PG: our Polya-Gamma data augmentation approach. U: Uniform data augmen-
tation approach [2].

proach is both more accurate and faster.
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Figure 5: (a) Perplexity and (b) time for two algorithms on the NIPS corpus.
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