
Population Matching Discrepancy and

Applications in Deep Learning

Jianfei Chen, Chongxuan Li, Yizhong Ru, Jun Zhu∗

Dept. of Comp. Sci. & Tech., TNList Lab, State Key Lab for Intell. Tech. & Sys.
Tsinghua University, Beijing, 100084, China

{chenjian14,licx14,ruyz13}@mails.tsinghua.edu.cn, dcszj@tsinghua.edu.cn

Abstract

A differentiable estimation of the distance between two distributions based on
samples is important for many deep learning tasks. One such estimation is maxi-
mum mean discrepancy (MMD). However, MMD suffers from its sensitive kernel
bandwidth hyper-parameter, weak gradients, and large mini-batch size when used
as a training objective. In this paper, we propose population matching discrepancy
(PMD) for estimating the distribution distance based on samples, as well as an
algorithm to learn the parameters of the distributions using PMD as an objective.
PMD is defined as the minimum weight matching of sample populations from each
distribution, and we prove that PMD is a strongly consistent estimator of the first
Wasserstein metric. We apply PMD to two deep learning tasks, domain adaptation
and generative modeling. Empirical results demonstrate that PMD overcomes the
aforementioned drawbacks of MMD, and outperforms MMD on both tasks in terms
of the performance as well as the convergence speed.

1 Introduction

Recent advances on image classification [26], speech recognition [19] and machine translation [9]
suggest that properly building large models with a deep hierarchy can be effective to solve realistic
learning problems. Many deep learning tasks, such as generative modeling [16, 3], domain adapta-
tion [5, 47], model criticism [32] and metric learning [14], require estimating the statistical divergence
of two probability distributions. A challenge is that in many tasks, only the samples instead of the
closed-form distributions are available. Such distributions include implicit probability distributions
and intractable marginal distributions. Without making explicit assumption on the parametric form,
these distributions are richer and hence can lead to better estimates [35]. In these cases, the estimation
of the statistical divergence based on samples is important. Furthermore, as the distance can be used
as a training objective, it need to be differentiable with respect to the parameters of the distributions
to enable efficient gradient-based training.

One popular sample-based statistical divergence is the maximum mean discrepancy (MMD) [17],
which compares the kernel mean embedding of two distributions in RKHS. MMD has a closed-form
estimate of the statistical distance in quadratic time, and there are theoretical results on bounding the
approximation error. Due to its simplicity and theoretical guarantees, MMD have been widely adopted
in many tasks such as belief propagation [44], domain adaptation [47] and generative modeling [31].
However, MMD has several drawbacks. For instance, it has a kernel bandwidth parameter that needs
tuning [18], and the kernel can saturate so that the gradient vanishes [3] in a deep generative model.
Furthermore, in order to have a reliable estimate of the distance, the mini-batch size must be large,
e.g., 1000, which slows down the training by stochastic gradient descent [31].

∗Corresponding author.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

2 1 0 1 2 3
2

1

0

1

2

3

2 1 0 1 2 3
2

1

0

1

2

3

Require: Noise distributions qX , qY and transformations TX
θX

, TY
θY

.

Population size N , mini-batch size |B|.
for each iteration do

Draw ǫ ∼ qX(·), ξ ∼ qY (·)
Compute xi;θX = TX

θX
(ǫi) and yj;θY = TY

θY
(ξj)

M← MinimumWeightMatching(XθX ,YθY)
Align the matched pairs y1;θY , . . . , yN ;θY ←

yM1;θY , . . . , yMN ;θY
for each mini batch s ∈ [0, |B|, 2|B|, . . . , N] do

θ = SGD(θ, 1
|B|

∑s+|B|−1
i=s d(xi;θX , yi;θY))

end for
end for

Figure 1: Pseudocode of PMD for parameter learning with graphical illustration of an iteration. Top:
draw the populations and compute the matching; bottom: update the distribution parameters.

In this paper, we consider a sample-based estimation of the Wasserstein metric [49], which we refer
to as population matching discrepancy (PMD). PMD is the cost of the minimum weight matching
of the two sample populations from the distributions, and we show that it is a strongly consistent
estimator of the first Wasserstein metric. We propose an algorithm to use PMD as a training objective
to learn the parameters of the distribution, and reveal that PMD has some advantages over MMD:
PMD has no bandwidth hyper-parameter, has stronger gradient, and can use normal mini-batch size,
such as 100, during the learning. We compare PMD with MMD on two deep learning tasks, domain
adaptation and generative modeling. PMD outperforms MMD in terms of both the performance and
the speed of convergence.

2 Population Matching Discrepancy

In this section, we give the definition of the population matching discrepancy (PMD) and propose an
algorithm to learn with PMD.

2.1 Population Matching Discrepancy

Consider the general case where we have two distributions pX(x) and pY (y), whose PDFs are
unknown, but we are allowed to draw samples from them. Let X = {xi}

N
i=1 and Y = {yj}

N
j=1

denote the N i.i.d. samples from each distribution respectively. We define the N -PMD of the two
distributions as

DN (X,Y) = min
M

1

N

N∑
i=1

d(xi, yMi
), (1)

where d(·, ·) is any distance in the sample space (e.g., Euclidean distance) and M is a permutation
to derive a matching between the two sets of samples. The optimal M corresponds to the bipartite
minimum weight matching [27], where each element of the cost matrix is dij = d(xi, yj) with
i, j ∈ [N], where [N] = {1, · · · , N}. Intuitively, PMD is the average distance of the matched pairs
of samples, therefore it is non-negative and symmetric. Furthermore, as we shall see in Sec. 3.1, PMD
is a strongly consistent estimator of the first Wasserstein metric [49] between pX and pY , which is a
valid statistical distance, i.e., D∞(X,Y) = 0 iff the two distributions pX and pY are identical.

2.2 Parameter Learning

While the N -PMD in Eq. (1) itself can serve as a measure of the closeness of two distributions, we
are more interested in learning the parameter of the distributions using PMD as an objective. For
instance, in generative modeling [31], we have a parameterized generator distribution pX(x; θX)
and a data distribution pY (y), and we wish to minimize the distance of these two distributions. We

2

assume the samples are obtained by applying some parameterized transformations to a known and
fixed noise distribution, i.e.,

ǫi ∼ qX(ǫ), xi;θX = TX
θX

(ǫi); and ξj ∼ qY (ξ), yj;θY = TY
θY

(ξj).

For flexibility, the transformations can be implemented by deep neural networks. Without loss of
generality, we assume both pX and pY are parameterized distributions by θX and θY , respectively. If
pX is a fixed distribution, we can take qX = pX and TX

θX
to be a fixed identity mapping. Our goal for

parameter learning is to minimize the expected N -PMD over different populations

min
θX ,θY

Eǫ,ξDN (XθX ,YθY), (2)

where ǫ = {ǫi}
N
i=1, ξ = {ξj}

N
j=1, XθX = {xi;θX}

N
i=1 and YθY = {yj;θY }

N
j=1, and the expectation

is for preventing over-fitting the parameter with respect to particular populations. The parameters
can be optimized by stochastic gradient descent (SGD) [7]. At each iteration, we draw ǫ and ξ, and
compute an unbiased stochastic gradient

∇θDN (XθX ,YθY) = ∇θ min
M

1

N

N∑
i=1

d(xi;θX , yMi;θY) = ∇θ

1

N

N∑
i=1

d(xi;θX , yM∗

i
;θY), (3)

where M
∗ = argmin

M

∑N
i=1 d(xi;θX , yMi;θY) is the minimum weight matching for XθX and

YθY . The second equality in Eq. (3) holds because the discrete matching M
∗ should not change

for infinitesimal change of θ, as long as the transformations TX , TY , and the distance d(·, ·) are
continuous. In other words, the gradient does not propagate through the matching.

Furthermore, assuming that the matching M
∗ does not change much within a small number of

gradient updates, we can have an even cheaper stochastic gradient by subsampling the populations

∇θDN (XθX ,YθY) ≈ ∇θ

1

|B|

|B|∑
i=1

d(xBi;θX , yM∗

Bi
;θY), (4)

where a mini-batch of |B|, e.g., 100, samples is used to approximate the whole N -sample population.
To clarify, our population size N is known as the mini-batch size in some maximum mean discrepancy
(MMD) literature [31], and is around 1000. Fig. 1 is the pseudocode of parameter learning for PMD
along with a graphical illustration. In the outer loop, we generate populations and compute the
matching; and in the inner loop, we perform several SGD updates of the parameter θ, assuming the
matching M does not change much. In the graphical illustration, the distribution pY is fixed, and we
want to optimize the parameters of pX to minimize their PMD.

2.3 Solving the Matching Problem

The minimum weight matching can be solved exactly in O(N3) by the Hungarian algorithm [27].
When the problem is simple enough, so that small N , e.g., hundreds, is sufficient for reliable
distance estimation, O(N3) time complexity is acceptable comparing with the O(N × BackProp)
time complexity of computing the gradient with respect to the transformations TX

θX
and TY

θY
. When

N is larger, e.g., a few thousands, the Hungarian algorithm takes seconds to run. We resort to Drake
and Hougardy’s approximated matching algorithm [11] in O(N2) time. The running time and model
quality of PMD using both matching algorithms are reported in Sec. 5.3. In practice, we find PMD
with both the exact and approximate matching algorithms works well. This is not surprising because
training each sample towards its approximate matching sample is still reasonable. Finally, while we
only implement the serial CPU version of the matching algorithms, both algorithm can be parallelized
on GPU to further improve the running speed [10, 34].

3 Theoretical Analysis and Connections to Other Discrepancies

In this section, we establish the connection between PMD with the Wasserstein metric and the
maximum mean discrepancy (MMD). We show that PMD is a strongly consistent estimator of the
Wasserstein metric, and compare its advantages and disadvantages with MMD.

3

3.1 Relationship with the Wasserstein Metric

The Wasserstein metric [49] was initially studied in the optimal transport theory, and has been adopted
in computer vision [40], information retrival [50] and differential privacy [30]. The first Wasserstein
metric of two distributions pX(x) and pY (y) is defined as

inf
γ(x,y)

∫
d(x, y)γ(x, y)dxdy

s.t.

∫
γ(x, y)dx = pY (y), ∀y;

∫
γ(x, y)dy = pX(x), ∀x; γ(x, y) ≥ 0, ∀x, y. (5)

Intuitively, the Wasserstein metric is the optimal cost to move some mass distributed as pX to pY ,
where the transference plan γ(x, y) is the amount of mass to move from x to y. Problem (5) is not
tractable because the PDFs of pX and pY are unknown. We approximate them with empirical distribu-

tions p̂X(x) = 1
N

∑N
i=1 δxi

(x) and p̂Y (y) =
1
N

∑N
j=1 δyj

(y), where δx(·) is the Dirac delta function

at x. To satisfy the constraints, γ should have the form γ(x, y) =
∑N

i=1

∑N
j=1 γijδxi,yj

(x, y), where

γij ≥ 0. Letting pX = p̂X and pY = p̂Y , we can simplify problem (5) as follows

min
γ

N∑
i=1

N∑
j=1

d(xi, yj)γij s.t.

N∑
j=1

γij =
1

N
, i ∈ [N];

N∑
i=1

γij =
1

N
, j ∈ [N]; γij ≥ 0. (6)

The linear program (6) is equivalent to the minimum weight matching problem [27], i.e., there exists
a permutation M1, . . . ,MN , such that γ(xi, yMi

) = 1
N

is an optimal solution (see Proposition 5.4
in [6]). Plugging such γ back to problem (6), we obtain Eq. (1), the original definition of PMD.

Furthermore, we can show that the solution of problem (6), i.e., the N -PMD, is a strongly consistent
estimator of the first Wasserstein metric in problem (5).

Definition 1 (Weak Convergence of Measure [48]). A sequence of probability distributions pN , N =
1, 2, ... converges weakly to the probability distribution p, denoted as pn ⇒ p, if limN→∞ EpN

[f] =
Ep[f] for all bounded continuous functions f .

Proposition 3.1 (Varadarajan Theorem [48]). Let x1, ..., xN , ... be independent, identically dis-

tributed real random variables with the density function p(x), let pN (x) = 1
N

∑N
i=1 δxN

(x) where
δxN

(·) is the Dirac delta function. Then pN ⇒ p almost surely.

Proposition 3.2 (Stability of Optimal Transport [49]). Let X and Y be Polish spaces and let
d : X × Y → R be a continuous function s.t. inf d > −∞. Let {pXN}N∈N and {pYN}N∈N be

sequences of probability distributions on X and Y respectively. Assume that pXN ⇒ pX (resp.

pYN ⇒ pY). For each N , let γN be an optimal transference plan between pXN and pYN . If
lim infN∈N

∫
d(x, y)γN (x, y)dxdy < +∞, then γN ⇒ γ, where γ is an optimal transference

plan between pX and pY .

Proposition 3.2 is a special case of Theorem 5.20 in [49] with fixed function d. The following theorem
is the main result of this section.

Theorem 3.3 (Strong Consistency of PMD). Let x1, ..., xN , ... and y1, ..., yN , ... be independent,
identically distributed real random variables from pX and pY , respectively. We construct a se-

quence of PMD problems (6) between pXN (x) = 1
N

∑N
i=1 δxN

(x) and pYN (y) = 1
N

∑N
i=1 δyN

(y).
Let γN be the optimal transference plan of the N -th PMD problem. Then the sequence γN ⇒
γ almost surely, where γ is the optimal transference plan between pX and pY . Moreover,
limN→∞

∫
d(x, y)γN (x, y)dxdy =

∫
d(x, y)γ(x, y)dxdy almost surely.

The proof is straightforward by applying Proposition 3.1 and 3.2. We also perform an empirical study
of the approximation error with respect to the population size in Fig. 2(a).

While the Wasserstein metric has been widely adopted in various machine learning and data mining
tasks [40, 50, 30], it is usually used to measure the similarity between two discrete distributions,
e.g., histograms. In contrast, PMD is a stochastic approximation of the Wasserstein metric between
two continuous distributions. There is also work on estimating the Wasserstein metric of continuous
distributions based on samples [45]. Unlike PMD, which is approximating the primal problem,
they approximate the dual. Their approximation is not differentiable with respect to the distribution

4

(a) Relative approximation error w.r.t the population size (b) Distribution of normalized gradients

Figure 2: Some empirical analysis results. The detailed experiment setting is described in Sec. 5.4.

parameters because the parameters appear in the constraint instead of the objective. Recently,
Wasserstein GAN (WGAN) [3] proposes approximating the dual Wasserstein metric by using a neural
network “critic” in place of a 1-Lipschitz function. While WGAN has shown excellent performance
on generative modeling, it can only compute a relative value of the Wasserstein metric upon to an
unknown scale factor depending on the Lipschitz constant of the critic neural network. PMD also
differs from WGAN by not requiring a separate critic network with additional parameters. Instead,
PMD is parameter free and can be computed in polynomial time.

3.2 Relationship with MMD

Maximum mean discrepancy (MMD) [17] is a popular method for estimating the distance between
two distributions by samples, defined as follows

DMMD(X,Y) =
1

N2

N∑
i=1

N∑
j=1

k(xi, xj)−
2

NM

N∑
i=1

M∑
j=1

k(xi, yj) +
1

M2

M∑
i=1

M∑
j=1

k(yi, yj),

where k(·, ·) is a kernel, e.g., k(x, y) = exp(−‖x− y‖
2
/2σ2) is the RBF kernel with bandwidth σ.

Both MMD and the Wasserstein metric are integral probability metrics [17], with different function
classes. MMD has a closed-form objective, and can be evaluated in O(NMD) if x and y are D-
dimensional vectors. In contrast, PMD needs to solve a matching problem, and the time complexity
is O(N2D) for computing the distance matrix, O(N3) for exact Hungarian matching, and O(N2)
for approximated matching. However, as we argued in Sec. 2.3, the time complexity for computing
matching is still acceptable comparing with the cost of training neural networks.

Comparing with MMD, PMD has a number of advantages:

Fewer hyper-parameter PMD do not have the kernel bandwidth σ, which needs tuning.

Stronger gradient Using the RBF kernel, the gradient of MMD w.r.t a particular sample xi is

∇xi
DMMD(X,Y) = 1

N2

∑
j k(xi, xj)

xj−xi

σ2 − 2
NM

∑
j k(xi, yj)

yj−xi

σ2 . When minimizing MMD,

the first term is a repulsive term between the samples from pX , and the second term is an attractive
term between the samples from pX and pY . The L2 norm of the term between two samples x

and y is k(x, y)
‖x−y‖

2

σ2 , which is small if ‖x− y‖2 is either too small or too large. As a result, if
a sample xi is an outlier, i.e., it is not close to any samples from pY , all the k(xi, yj) terms are
small and xi will not receive strong gradients. On the other hand, if all the samples xi, i ∈ [N]
are close to each other, xj − xi is small, so that repulsive term of the gradient is weak. Both cases
slow down the training. In contrast, if d(x, y) = |x − y| is the L1 distance, the gradient of PMD
∇xi

DN (X,Y) = 1
N

sgn(xi − yMi
), where sgn(·) is the sign function, is always strong regardless

of the closeness between xi and yMi
. We compare the distribution of the relative magnitude of the

gradient of the parameters contributed by each sample in Fig. 2(b). The PMD gradients have similar
magnitude for each sample, while there are many samples have small gradients for MMD.

Smaller mini-batch size As we see in Sec 2.2, the SGD mini-batch size for PMD can be smaller
than the population size; while the mini-batch size for MMD must be equal with the population size.
This is because PMD only considers the distance between a sample and its matched sample, while

5

MMD considers the distance between all pairs of samples. As the result of smaller mini-batch size,
PMD can converge faster than MMD when used as a training objective.

4 Applications

4.1 Domain Adaptation

Now we consider a scenario where the labeled data is scarce in some domain of interest (target
domain) but that is abundant in some related domain (source domain). Assuming that the data
distribution pS(X, y) for the source domain and that of the target domain, i.e. pT (X, y) are similar
but not the same, unsupervised domain adaptation aims to train a model for the target domain, given

some labeled data {(XS
i , y

S
i)}

NS

i=1 from the source domain and some unlabeled data {XT
j }

NT

j=1 from
the target domain. According to the domain adaptation theory [5], the generalization error on the
target domain depends on the generalization error on the source domain as well as the difference
between the two domains. Therefore, one possible solution for domain adaptation is to learn a feature

extractor φ(X) shared by both domains, which defines feature distributions pφS and pφT for both
domains, and minimize some distance between the feature distributions [47] as a regularization. Since
the data distribution is inaccessible, we replace all distributions with their empirical distributions p̂S ,

p̂T , p̂φS and p̂φT , and the training objective is

EX,y∼p̂S
L(y, h(φ(X))) + λD(p̂φS , p̂

φ
T),

whereL(·, ·) is a loss function, h(·) is a classifier, λ is a hyper-parameter, and D(p̂φS , p̂
φ
T) is the domain

adaptation regularization. While the Wasserstein metric itself of two empirical distribution is tractable,
it can be too expensive to compute due to the large size of the dataset. Therefore, we still approximate

the distance with (expected) PMD, i.e., D(p̂φS , p̂
φ
T) ≈ EXS∼p̂S ,XT∼p̂T

DPMD(φ(XS), φ(XT)).

4.2 Deep Generative Modeling

Deep generative models (DGMs) aim at capturing the complex structures of the data by combining
hierarchical architectures and probabilistic modelling. They have been proven effective on image
generation [38] and semi-supervised learning [23] recently. There are many different DGMs, includ-
ing tractable auto-regressive models [37], latent variable models [24, 39], and implicit probabilistic
models [16, 31]. We focus on learning implicit probabilistic models, which define probability dis-
tributions on sample space flexibly without a closed-form. However, as described in Sec. 2.2, we
can draw samples X = TX

θX
(ǫ) efficiently from the models by transforming a random noise ǫ ∼ q(ǫ),

where q is a simple distribution (e.g. uniform), to X through a parameterized model (e.g. neural
network). The parameters in the models are trained to minimize some distance between the model
distribution pX(X) and the empirical data distribution p̂Y (Y). The distance can be defined based on
an parameterized adversary, i.e., another neural network [16, 3], or directly with the samples [31].
We choose the distance to be the first Wasserstein metric, and employ its finite-sample estimator
(i.e., the N -PMD defined in Eq. (2)) as training objective directly. Training this model with MMD is
known as generative moment matching networks [31, 12].

5 Experiments

We now study the empirical performance of PMD and compare it with MMD. In the experiments,
PMD always use the L1 distance, and MMD always use the RBF kernel. Our experiment is conducted
on a machine with Nvidia Titan X (Pascal) GPU and Intel E5-2683v3 CPU. We implement the models
in TensorFlow [1]. The matching algorithms are implemented in C++ with a single thread, and we
write a CUDA kernel for computing the all-pair L1 distance within a population. The CUDA program
is compiled with nvcc 8.0 and the C++ program is compiled with g++ 4.8.4, while -O3 flag is used
for both programs. We use the approximate matching for the generative modeling experiment and
exact Hungarian matching for all the other experiments.

5.1 Domain Adaptation

We compare the performance of PMD and MMD on the standard Office [41] object recognition
benchmark for domain adaptation. The dataset contains three domains: amazon, dslr and webcam, and

6

Table 1: All the 6 unsupervised domain adaptation accuracy on the Office dataset between the amazon
(a), dslr (d) and webcam (w) domains, in percentage. SVM and NN are trained only on the source
domain, where NN uses the same architecture of PMD and MMD, but set λ = 0.

Method a→ w d→ w w → d a→ d d→ a w → a avg.

DDC [47] 59.4± .8 92.5± .3 91.7± .8 - - - -
DANN [13] 73.0 96.4 99.2 - - - -
CMD [52] 77.0± .6 96.3± .4 99.2± .2 79.6± .6 63.8± .7 63.3± .6 79.9
JAN-xy [33] 78.1± .4 96.4± .2 99.3± .1 77.5± .2 68.4± .2 65.0± .4 80.8
SVM 65.0 96.1 99.4 70.7 56.4 55.1 73.8
NN 67.8± .5 96.3± .2 99.5± .2 73.9± .6 58.5± .3 58.1± .3 75.7
MMD 76.9± .8 96.2± .2 99.6± .2 78.4±1.0 64.9± .5 68.1± .6 80.7
PMD 86.2± .7 96.2± .3 99.5± .2 82.7± .8 64.3± .4 66.8± .4 82.6

0 500 1000 1500 2000 2500 3000 3500 4000
number of iterations

0.54

0.56

0.58

0.60

0.62

0.64

0.66

te
st

 a
cc

ur
ac

y

PMD
MMD

(a) Convergence speed

0.25 1 4 9 16 25 36 49 64 81 100
bandwidth

0.
03

0.
1

0.
3

1
3

10
30

10
0

30
0
10

00
30

00
re
gu

la
ri
za
tio

n

0.58 0.55 0.56 0.59 0.64 0.6 0.59 0.6 0.56 0.57 0.58

0.57 0.56 0.54 0.58 0.65 0.64 0.62 0.62 0.61 0.6 0.61

0.58 0.57 0.55 0.54 0.65 0.65 0.64 0.64 0.61 0.61 0.6

0.58 0.56 0.56 0.53 0.61 0.68 0.66 0.64 0.62 0.62 0.61

0.59 0.57 0.57 0.55 0.59 0.66 0.62 0.65 0.63 0.62 0.63

0.58 0.6 0.58 0.55 0.57 0.64 0.65 0.65 0.64 0.62 0.62

0.59 0.58 0.58 0.56 0.56 0.62 0.65 0.65 0.64 0.63 0.62

0.57 0.56 0.57 0.57 0.56 0.59 0.6 0.6 0.62 0.63 0.62

0.59 0.59 0.58 0.58 0.57 0.59 0.58 0.6 0.6 0.6 0.6

0.57 0.57 0.57 0.56 0.58 0.57 0.59 0.58 0.59 0.6 0.6

0.58 0.58 0.56 0.58 0.57 0.56 0.58 0.58 0.59 0.58 0.57

0.550

0.575

0.600

0.625

0.650

0.675

(b) MMD parameter sensitivity

10 4 10 3 10 2 10 1 1 101 102
regularization

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

te
st

 a
cc

ur
ac

y

(c) PMD parameter sensitivity

Figure 3: Convergence speed and parameter sensitivity on the Office d→ a task.

there are 31 classes. Following [52], we use the 4096-dimensional VGG-16 [43] feature pretrained
on ImageNet as the input. The classifier is a fully-connected neural network with a single hidden
layer of 256 ReLU [15] units, trained with AdaDelta [51]. The domain regularization term is put on
the hidden layer. We apply batch normalization [21] on the hidden layer, and the activations from
the source and the target domain are normalized separately. Following [8], we validate the domain
regularization strength λ and the MMD kernel bandwidth σ on a random 100-sample labeled dataset
on the target domain, but the model is trained without any labeled data from the target domain. The
experiment is then repeated for 10 times on the hyper-parameters with the best validation error. Since
we perform such validation for both PMD and MMD, the comparison between them is fair. The
result is reported in Table 1, and PMD outperforms MMD on the a→ w and a→ d tasks by a large
margin, and is comparable with MMD on the other 4 tasks.

Then, we compare the convergence speed of PMD and MMD on the d → a task. We choose this
task because PMD and MMD have similar performance on it. The result is shown in Fig. 3(a), where
PMD converges faster than MMD. We also show the parameter sensitivity of MMD and PMD as
Fig. 3(b) and Fig. 3(c), respectively. The performance of MMD is sensitive to both the regularization
parameter λ and the kernel bandwidth σ, so we need to tune both parameters. In contrast, PMD only
has one parameter to tune.

5.2 Generative Modeling

We compare PMD with MMD for image generation on the MNIST [28], SVHN [36] and LFW [20]
dataset. For SVHN, we train the models on the 73257-image training set. The LFW dataset is
converted to 32 × 32 gray-scale images [2], and there are 13233 images for training. The noise
ǫ follows a uniform distribution [−1, 1]40. We implemented three architectures, including a fully-
connected (fc) network as the transformation TX

θX
, a deconvolutional (conv) network, and a fully-

connected network for generating the auto-encoder codes (ae) [31], where the auto-encoder is a
convolutional one pre-trained on the dataset. For MMD, we use a mixture of kernels of different
bandwidths for the fc and conv architecture, and the bandwidth is fixed at 1 for the ae architecture,
following the settings in the generative moment matching networks (GMMN) paper. We set the
population size N = 2000 for both PMD and MMD, and the mini-batch size |B| = 100 for PMD.
We use the AdaM optimizer [22] with batch normalization [21], and train the model for 100 epoches
for PMD, and 500 epoches for MMD. The generated images on the SVHN and LFW dataset are

7

fc conv ae

MMD

PMD

MMD

PMD

Figure 4: Image generation results on SVHN (top two rows) and LFW (bottom two rows).

4000 2000 1000 500 250 100
Mini-batch size |B|

52

54

56

58

60

Fi
na

l P
M

D

N=500
N=1000
N=2000
N=4000
Exact N=500

(a) PMD sensitivity w.r.t. N and |B|

8000 6000 4000 2000 1000 500 250 100
Population size N

0.0120

0.0121

0.0122

0.0123

0.0124

0.0125

0.0126

Fi
na

l M
M

D

(b) sensitivity of MMD w.r.t. N

500 1000 2000 4000
Population size N

100

101

102

Ti
m

e
(s

ec
on

ds
)

Exact
Randomized
SGD

(c) split of the time per epoch

Figure 5: Convergence and timing results. The “Exact N = 500” curve in (a) uses the Hungarian
algorithm, and the rest uses the approximated matching algorithm.

presented in Fig. 4, and the images on the MNIST dataset can be found in the supplementary material.
We observe that the images generated by PMD are less noisy than that generated by MMD. While
MMD only performs well on the autoencoder code space (ae), PMD generates acceptable images on
pixel space. We also noticed the generated images of PMD on the SVHN and LFW datasets are blurry.
One reason for this is the pixel-level L1 distance is not good for natural images. Therefore, learning
the generative model on the code space helps. To verify that PMD does not trivially reproduce
the training dataset, we perform a circular interpolation in the representation space q(ǫ) between 5
random points, the result is available in the supplementary material.

5.3 Convergence Speed and Time Consumption

We study the impact of the population size N , the mini-batch size |B| and the choice of matching
algorithm to PMD. Fig. 5(a) shows the final PMD evaluated on N = 2000 samples on the MNIST
dataset, using the fc architecture, after 100 epoches. The results show that the solution is insensitive
to neither the population size N nor the choice of the matching algorithm, which implies that we
can use the cheap approximated matching and relatively small population size for speed. On the
other hand, decreasing the mini-batch size |B| improves the final PMD significantly, supporting our
claim in Sec. 3.2 that the ability of using small |B| is indeed an advantage for PMD. Unlike PMD,
there is a trade-off for selecting the population size N for MMD, as shown in Fig. 5(b). If N is too
large, the SGD optimization converges slowly; if N is too small, the MMD estimation is unreliable.
Fig. 5(c) shows the total time spent on exact matching, approximated matching and SGD respectively
for each epoch. The cost of approximated matching is comparable with the cost of SGD. Again, we
emphasize while we only have single thread implementations for the matching algorithms, both the
exact [10] and approximated matching [34] can be significantly accelerated with GPU.

5.4 Empirical Studies

We examine the approximation error of PMD on a toy dataset. We compute the distances between two
5-dimensional standard isotropic Gaussian distributions. One distribution is centered at the origin and
the other is at (10, 0, 0, 0, 0). The first Wasserstein metric between these two distributions is 10. We
vary the population size N and compute the relative approximation error = |DN (X,Y)− 10|/10
for 100 different populations (X,Y) for each N . The result is shown in Fig. 2(a). We perform a

8

linear regression between logN and the logarithm of expected approximation error, and find that the
error is roughly proportional to N−0.23.

We also validate the claim in Sec. 3.2 on the stronger gradients of PMD than that of MMD. We
calculate the magnitude (in L2 norm) of the gradient of the parameters contributed by each sample.
The gradients are computed on the converged model, and the model is the same as Sec. 5.3. Because
the scale of the gradients depend on the scale of the loss function, we normalize the magnitudes
by dividing them with the average magnitude of the gradients. We then show the distribution of
normalized magnitudes of gradients in Fig. 2(b). The PMD gradients contributed by each sample are
close with each other, while there are many samples contributing small gradients for MMD, which
may slow down the fitting of these samples.

6 Conclusions

We present population matching discrepancy (PMD) for estimating the distance between two prob-
ability distributions by samples. PMD is the minimum weight matching between two random
populations from the distributions, and we show that PMD is a strongly consistent estimator of the
first Wasserstein metric. We also propose a stochastic gradient descent algorithm to learn parameters
of the distributions using PMD. Comparing with the popular maximum mean discrepancy (MMD),
PMD has no kernel bandwidth hyper-parameter, stronger gradient and smaller mini-batch size for
gradient-based optimization. We apply PMD to domain adaptation and generative modeling tasks.
Empirical results show that PMD outperforms MMD in terms of performance and convergence speed
in both tasks. In the future, we plan to derive finite-sample error bounds for PMD, study its testing
power, and accelerate the computation of minimum weight matching with GPU.

Acknowledgments

This work is supported by the National NSF of China (Nos. 61620106010, 61621136008, 61332007),
the MIIT Grant of Int. Man. Comp. Stan (No. 2016ZXFB00001), the Youth Top-notch Talent
Support Program, Tsinghua Tiangong Institute for Intelligent Computing and the NVIDIA NVAIL
Program.

References

[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. Tensorflow: Large-scale machine learning on
heterogeneous distributed systems. arXiv preprint arXiv:1603.04467, 2016.

[2] Siddharth Agrawal. Generative Moment Matching Networks. https://github.com/
siddharth-agrawal/Generative-Moment-Matching-Networks.

[3] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

[4] Marc G Bellemare, Ivo Danihelka, Will Dabney, Shakir Mohamed, Balaji Lakshminarayanan, Stephan
Hoyer, and Rémi Munos. The cramer distance as a solution to biased wasserstein gradients. arXiv preprint
arXiv:1705.10743, 2017.

[5] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains. Machine learning, 79(1):151–175, 2010.

[6] Dimitri P Bertsekas. Network optimization: continuous and discrete models. Citeseer, 1998.

[7] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010.

[8] Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan.
Domain separation networks. In Advances in Neural Information Processing Systems, pages 343–351,
2016.

[9] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. Learning phrase representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, 2014.

9

https://github.com/siddharth-agrawal/Generative-Moment-Matching-Networks
https://github.com/siddharth-agrawal/Generative-Moment-Matching-Networks

[10] Ketan Date and Rakesh Nagi. Gpu-accelerated hungarian algorithms for the linear assignment problem.
Parallel Computing, 57:52–72, 2016.

[11] Doratha Drake and Stefan Hougardy. Improved linear time approximation algorithms for weighted
matchings. Approximation, Randomization, and Combinatorial Optimization.. Algorithms and Techniques,
pages 21–46, 2003.

[12] Gintare Karolina Dziugaite, Daniel M Roy, and Zoubin Ghahramani. Training generative neural networks
via maximum mean discrepancy optimization. In UAI, 2015.

[13] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette,
Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural networks. Journal of
Machine Learning Research, 17(59):1–35, 2016.

[14] Bo Geng, Dacheng Tao, and Chao Xu. Daml: Domain adaptation metric learning. IEEE Transactions on
Image Processing, 20(10):2980–2989, 2011.

[15] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In AISTATS,
volume 15, page 275, 2011.

[16] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pages 2672–2680, 2014.

[17] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf, and Alexander Smola. A
kernel two-sample test. Journal of Machine Learning Research, 13(Mar):723–773, 2012.

[18] Arthur Gretton, Dino Sejdinovic, Heiko Strathmann, Sivaraman Balakrishnan, Massimiliano Pontil, Kenji
Fukumizu, and Bharath K Sriperumbudur. Optimal kernel choice for large-scale two-sample tests. In
Advances in neural information processing systems, pages 1205–1213, 2012.

[19] Geoffrey Hinton, Li Deng, Dong Yu, George E Dahl, Abdel-rahman Mohamed, Navdeep Jaitly, Andrew
Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N Sainath, et al. Deep neural networks for acoustic
modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing
Magazine, 29(6):82–97, 2012.

[20] Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller. Labeled faces in the wild: A
database for studying face recognition in unconstrained environments. Technical Report 07-49, University
of Massachusetts, Amherst, October 2007.

[21] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing
internal covariate shift. In ICML, 2015.

[22] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. 2014.

[23] Diederik P Kingma, Shakir Mohamed, Danilo Jimenez Rezende, and Max Welling. Semi-supervised
learning with deep generative models. In Advances in Neural Information Processing Systems, pages
3581–3589, 2014.

[24] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[25] Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images. 2009.

[26] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[27] Harold W Kuhn. The hungarian method for the assignment problem. Naval research logistics quarterly,
2(1-2):83–97, 1955.

[28] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[29] Chun-Liang Li, Wei-Cheng Chang, Yu Cheng, Yiming Yang, and Barnabás Póczos. Mmd gan: Towards
deeper understanding of moment matching network. arXiv preprint arXiv:1705.08584, 2017.

[30] Ninghui Li, Tiancheng Li, and Suresh Venkatasubramanian. t-closeness: Privacy beyond k-anonymity
and l-diversity. In Data Engineering, 2007. ICDE 2007. IEEE 23rd International Conference on, pages
106–115. IEEE, 2007.

10

[31] Yujia Li, Kevin Swersky, and Richard S Zemel. Generative moment matching networks. In ICML, pages
1718–1727, 2015.

[32] James R Lloyd and Zoubin Ghahramani. Statistical model criticism using kernel two sample tests. In
Advances in Neural Information Processing Systems, pages 829–837, 2015.

[33] Mingsheng Long, Jianmin Wang, and Michael I Jordan. Deep transfer learning with joint adaptation
networks. In ICML, 2017.

[34] Fredrik Manne and Rob Bisseling. A parallel approximation algorithm for the weighted maximum matching
problem. Parallel Processing and Applied Mathematics, pages 708–717, 2008.

[35] Shakir Mohamed and Balaji Lakshminarayanan. Learning in implicit generative models. arXiv preprint
arXiv:1610.03483, 2016.

[36] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading digits in
natural images with unsupervised feature learning. In NIPS workshop on deep learning and unsupervised
feature learning, volume 2011, page 5, 2011.

[37] Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks. In
ICML, 2016.

[38] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[39] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and approxi-
mate inference in deep generative models. In ICML, 2014.

[40] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s distance as a metric for image
retrieval. International journal of computer vision, 40(2):99–121, 2000.

[41] Kate Saenko, Brian Kulis, Mario Fritz, and Trevor Darrell. Adapting visual category models to new
domains. Computer Vision–ECCV 2010, pages 213–226, 2010.

[42] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training gans. In Advances in Neural Information Processing Systems, pages 2234–2242,
2016.

[43] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image recogni-
tion. In ICLR, 2015.

[44] Le Song, Arthur Gretton, Danny Bickson, Yucheng Low, and Carlos Guestrin. Kernel belief propagation.
In International Conference on Artificial Intelligence and Statistics, pages 707–715, 2011.

[45] Bharath K Sriperumbudur, Kenji Fukumizu, Arthur Gretton, Bernhard Schölkopf, and Gert RG Lanckriet.
Non-parametric estimation of integral probability metrics. In Information Theory Proceedings (ISIT), 2010
IEEE International Symposium on, pages 1428–1432. IEEE, 2010.

[46] Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of
its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26–31, 2012.

[47] Eric Tzeng, Judy Hoffman, Ning Zhang, Kate Saenko, and Trevor Darrell. Deep domain confusion:
Maximizing for domain invariance. arXiv preprint arXiv:1412.3474, 2014.

[48] VS Varadarajan. Weak convergence of measures on separable metric spaces. Sankhyā: The Indian Journal
of Statistics (1933-1960), 19(1/2):15–22, 1958.

[49] Cédric Villani. Optimal transport: old and new, volume 338. Springer Science & Business Media, 2008.

[50] Xiaojun Wan. A novel document similarity measure based on earth mover’s distance. Information Sciences,
177(18):3718–3730, 2007.

[51] Matthew D Zeiler. Adadelta: an adaptive learning rate method. arXiv preprint arXiv:1212.5701, 2012.

[52] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and Susanne Saminger-Platz.
Central moment discrepancy (cmd) for domain-invariant representation learning. In ICLR, 2017.

11

