
REVIEW National Science Review
4: 627–651, 2017

doi: 10.1093/nsr/nwx044
Advance access publication 4 May 2017

INFORMATION SCIENCE

Big Learning with Bayesian methods
Jun Zhu∗, Jianfei Chen, Wenbo Hu and Bo Zhang

TNList Lab, State Key
Lab for Intelligent
Technology and
Systems, CBICR
Center, Department of
Computer Science and
Technology, Tsinghua
University, Beijing
100084, China

∗Corresponding
author. E-mail: dc-
szj@mail.tsinghua.edu.cn

Received 27
November 2016;
Revised 24 March
2017; Accepted 24
March 2017

ABSTRACT
The explosive growth in data volume and the availability of cheap computing resources have sparked
increasing interest in Big learning, an emerging subfield that studies scalable machine learning algorithms,
systems and applications with Big Data. Bayesian methods represent one important class of statistical
methods for machine learning, with substantial recent developments on adaptive, flexible and scalable
Bayesian learning.This article provides a survey of the recent advances in Big learning with Bayesian
methods, termed Big Bayesian Learning, including non-parametric Bayesian methods for adaptively
inferring model complexity, regularized Bayesian inference for improving the flexibility via posterior
regularization, and scalable algorithms and systems based on stochastic subsampling and distributed
computing for dealing with large-scale applications. We also provide various new perspectives on the
large-scale Bayesian modeling and inference.

Keywords: Big Bayesian Learning, Bayesian non-parametrics, regularized Bayesian inference, scalable
algorithms

INTRODUCTION
We live in an era of Big Data, where science, engi-
neering and technology are producing massive data
streams, with petabyte and exabyte scales becom-
ing increasingly common [1–3]. Besides the ex-
plosive growth in volume, Big Data also has high
velocity, high variety and high uncertainty. These
complex data streams require ever-increasing pro-
cessing speeds, economical storage and timely re-
sponse for decision making in highly uncertain
environments, and have raised various challenges to
conventional data analysis [4].

With the primary goal of building intelligent sys-
tems that automatically improve from experiences,
machine learning (ML) is becoming an increasingly
important field to tackle the BigData challenges [5],
with an emerging field of ‘Big Learning’, which cov-
ers theories, algorithms and systems on addressing
Big Data problems.

Big Learning challenges
InBigData era,MLneeds to dealwith the challenges
of learning from complex situations with ‘large’ N,
‘large’ P, ‘large’ L and ‘large’M, where N is the data
size, P is the feature dimension, L is the number of

tasks andM is the model size. Given that N is obvi-
ous, we explain the other factors below.

Large P: with the development of Internet, data
sets with ultrahigh dimensionality have emerged,
such as the spam filtering data with trillion fea-
tures [6] and the even higher dimensional feature
space via explicit kernel mapping [7]. Note that
whether a learning problem is high-dimensional de-
pends on the ratio between P and N. Many scien-
tific problems with P � N impose great challenges
on learning, calling for effective regularization tech-
niques to avoid overfitting and select salient fea-
tures [4].

Large L: many tasks involve classifying text or
images into tens of thousands or millions of cate-
gories. For example, the ImageNet [8] database con-
sists of more than 14millions of web images from 21
thousands of concepts, while with the goal of pro-
viding on average 1000 images for each of 100+
thousands of concepts (or synsets) inWordNet; and
the LSHTC text classification challenge 2014 aims
to classify Wikipedia documents into one of 325
056 categories [9]. Often, these categories are or-
ganized in a graph, e.g. the tree structure in Ima-
geNet and the DAG (directed acyclic graph) struc-
ture in LSHTC, which can be explored for better
learning [10,11].

C©TheAuthor(s) 2017. Published by Oxford University Press on behalf of China Science Publishing &Media Ltd. All rights reserved. For permissions, please e-mail:
journals.permissions@oup.com

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

mailto:dcszj@mail.tsinghua.edu.cn
mailto:dcszj@mail.tsinghua.edu.cn
mailto:journals.permissions@oup.com

628 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

Large M: with the availability of massive data,
models with millions or billions of parameters are
becoming common. Significant progress has been
made on learning deep models, which have multi-
ple layers of non-linearities allowing them to extract
multigrained representations of data, with success-
ful applications in computer vision, speech recogni-
tion and natural language processing. Such models
include neural networks [12], autoencoders [13,14]
and probabilistic generative models [15,16].

Big Bayesian learning
Though Bayesian methods have been widely used in
ML and many other areas, skepticism often arises
when we talking about Bayesian methods for Big
Data [17]. Practitioners also criticize that Bayesian
methods are often too slow for even small-scaled
problems, owning to many factors such as the non-
conjugacy models with intractable integrals. Never-
theless, Bayesian methods have several advantages
on dealing with the following.

(i) Uncertainty: our world is an uncertain place
because of physical randomness, incomplete
knowledge, ambiguities and contradictions.
Bayesian methods provide a principled theory
for combining prior knowledge and uncertain
evidence to make sophisticated inference of
hidden factors and predictions.

(ii) Flexibility: Bayesian methods are conceptually
simple andflexible.Hierarchical Bayesianmod-
eling offers a flexible tool for characterizing
uncertainty, missing values, latent structures
and more. Moreover, regularized Bayesian in-
ference (RegBayes) [18] further augments the
flexibility by introducing an extra dimension
(i.e. a posterior regularization term) to in-
corporate domain knowledge or to optimize
a learning objective. Finally, there exist very
flexible algorithms (e.g. Markov Chain Monte
Carlo (MCMC)) to perform posterior infer-
ence.

(iii) Adaptivity: the dynamics and uncertainty of
Big Data require that our models should be
adaptive when the learning scenarios change.
Non-parametric Bayesian (NPB) methods
provide elegant tools to deal with situations in
which phenomena continue to emerge as data
are collected [19]. Moreover, the Bayesian
updating rule and its variants are sequential in
nature and suitable for dealing with Big Data
streams.

(iv) Overfitting: although the data volume grows
exponentially, the predictive information
grows slower than the amount of Shannon

information [20], while ourmodels are becom-
ing increasingly large by leveraging powerful
computers, such as the deep networks with
billions of parameters. It implies that our
models are increasing their capacity faster
than the amount of information that we need
to fill them with, therefore causing serious
overfitting problems that call for effective
regularization [21].

Therefore, Bayesian methods are becoming in-
creasingly relevant in the Big Data era [22] to pro-
tect high-capacity models against overfitting, and
to allow models adaptively updating their capacity.
However, the application of Bayesian methods to
Big Data problems runs into a computational bot-
tleneck that needs to be addressed with new (ap-
proximate) inference methods. This article aims to
provide a literature survey of the recent advances
in Big Learning with Bayesian methods, including
the basic concepts of Bayesian inference,NPBmeth-
ods, RegBayes, scalable inference algorithms and
systems based on stochastic subsampling and dis-
tributed computing. It is useful to note that our re-
view is no way exhaustive. We select the materials
to make it self-contained and technically rigorous.
As data analysis is becoming an essential function
in many scientific and engineering areas, this article
should be of broad interest to the audiences who are
dealing with data, especially those who are using sta-
tistical tools.

BASICS OF BAYESIAN METHODS
The general blueprint of Bayesian data analysis [23]
is that a Bayesian model expresses a generative pro-
cess of the data that includes hidden variables, un-
der some statistical assumptions. The process speci-
fies a joint probability distribution of the hidden and
observed random variables. Given a set of observed
data, data analysis is performed by ‘posterior infer-
ence’, which computes the conditional distribution
of the hidden variables given the observed data.This
section reviews the basic concepts and algorithms of
Bayesian inference.

Bayes’ theorem
At the core of Bayesian methods is Bayes’ theorem
(a.k.a Bayes’ rule). Let � be the model parameters
andD be the given data set. The Bayesian posterior
distribution is

p(�|D) = p0(�)p(D|�)
p(D)

, (1)

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 629

where p0(·) is a prior distribution, chosen before
seeing any data; p(D|�) is the assumed likeli-
hood model; and p(D) = ∫

p0(�)p(D|�)d� is
the marginal likelihood (or evidence), often involv-
ing an intractable integration problem that requires
approximate inference as detailed below. The year
2013marks the 250th anniversary ofThomas Bayes’
essay onhowhumans can sequentially learn fromex-
perience, steadily updating their beliefs as more data
become available [24].

A useful variational formulation of Bayes’ rule is

min
q(�)∈P

KL(q(�)‖p0(�)) − Eq [log p(D|�)],

(2)

where P is the space of all distributions that make
the objective well-defined. It can be shown that
the optimum solution to (2) is identical to the
Bayesian posterior. In fact, if we add the constant
term log p(D), the problem is equivalent to min-
imizing the KL-divergence between q(�) and the
Bayesian posterior p(�|D), which is non-negative
and takes 0 if and only if q equals to p(�|D). The
variational interpretation is significant in two as-
pects: (i) it provides a basis for variational Bayes
methods; and (ii) it provides a starting point tomake
Bayesian methods more flexible by incorporating a
rich set of posterior constraints. We will make these
clear soon later.

It is noteworthy thatq(�) represents the density
of a general post-data posterior in the sense of [25,
pp.15] not necessarily corresponding to a Bayesian
posterior induced by Bayes’ rule. As we shall see in
SectionRegularizedBayesian inference, whenwe in-
troduce additional constraints, the post-data poste-
rior q(�) is different from the Bayesian posterior
p(�|D), and moreover, it could even not be ob-
tainable by the conventional Bayesian inference via
Bayes’ rule. In the sequel, in order to distinguish
q(·) from the Bayesian posterior, we will call it post-
data posterior. The optimization formulation in (ii)
implies that Bayes’ rule is an information projection
procedure that projects a prior density to a post-data
posterior by taking account of the observed data. In
general, Bayes’s rule is a special case of the principle
of minimum information [25,26].

Bayesian methods in ML
Bayesian statistics has been applied to almost ev-
ery ML task ranging from the single-variate re-
gression/classification to the structured output pre-
dictions and to the unsupervised/semi-supervised
learning scenarios [27]. In essence however, there
are several basic tasks that we briefly review below.

Prediction: after training, Bayesian models make
predictions using the distribution:

p(x|D) =
∫

p(x,�|D)d�

=
∫

p(x|�,D)p(�|D)d�, (3)

where p(x|�,D) is often simplified as p(x|�) due
to the i.i.d assumption of the data when the model is
given. Since the integral is taken over the posterior
distribution, the training data are considered.

Model selection: model selection is a fundamen-
tal problem in statistics andML[28]. LetMbe a fam-
ily of models where eachmodel is indexed by a set of
parameters �. Then, the marginal likelihood of the
model family (or model evidence) is

p(D|M) =
∫

p(D|�)p(�|M)d�, (4)

where p(�|M) is often assumed to be uniform if no
strong prior exists.

For two different model familiesM1 andM2, the
ratio ofmodel evidences κ = p(D|M1)

p(D|M2)
is calledBayes

factor [29].The advantage of using Bayes factors for
model selection is that it automatically and naturally
includes a penalty for including too much model
structure [27, chap 3]. Thus it guards against over-
fitting. For models where an explicit version of the
likelihood is not available or too costly to evaluate
approximate Bayesian computation can be used for
model selection in a Bayesian framework [30,31]
while with the caveat that approximate-Bayesian es-
timates of Bayes factors are often biased [32].

Approximate Bayesian inference
Though conceptually simple Bayesian inference has
computational difficulties, which arise from the in-
tractability of high-dimensional integrals as involved
in the posterior and in Eqs (3, 4). These are typi-
cally not only analytically intractable but also diffi-
cult to obtain numerically. Commonpractice resorts
to approximate methods, which can be grouped
into two categories (Both maximum likelihood es-
timation (MLE), �̂MLE = argmax� p(D|�), and
maximum a posterior estimation (MAP), �̂MAP =
argmax� p0(�)p(D|�), can be seen as the third
type of approximationmethods to doBayesian infer-
ence.We omit them since they examine only a single
point, and so can neglect the potentially large distri-
butions in the integrals.)—variational methods and
MCmethods.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

630 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

Variational Bayesian methods
Variational methods have a long history in physics,
statistics, control theory and economics. InML, vari-
ational formulations appear naturally in regulariza-
tion theory, maximum entropy estimates and ap-
proximate inference in graphical models. We refer
the readers to the seminal book [33] and the nice
short overview [34] for more details. A variational
method basically consists of two parts:

(i) cast the problems as some optimization prob-
lems;

(ii) find an approximate solution when the exact so-
lution is not feasible.

For Bayes’ rule we have provided a variational for-
mulation in (2) which is equivalent to minimizing
the KL-divergence between the variational distribu-
tionq(�) and the target posterior p(�|D).We can
also show that the negative of the objective in (2) is
a lower bound of the evidence (i.e. log-likelihood):

log p(D) ≥ Eq [log p(�,D)] − Eq [log q(�)].

(5)

Then, variational Bayesian methods maximize the
evidence lower bound (ELBO):

max
q∈P

Eq [log p(�,D)] − Eq [log q(�)], (6)

whose solution is the target posterior if no assump-
tions are made.

However, in many cases it is intractable to calcu-
late the target posterior. Therefore, to simplify the
optimization, the variational distribution is often as-
sumed to be in some parametric family, e.g. qφ(�),
and has some mean-field representation:

qφ(�) =
M∏
i=1

qφi (�i), (7)

where the set {�i }Mi=1 represents a partition of �.
Then, the problem transforms to find the best pa-
rameters φ̂ that maximize the ELBO, which can be
solved with numerical optimization methods. For
example, with the factorization assumption, coordi-
nate descent is often used to iteratively solve for φ i
until reaching some local optimum. Once a varia-
tional approximation q∗ is found, the Bayesian inte-
grals can be approximated by replacing p(�|D) by
q∗. In many cases, the model � consists of parame-
ters θ and hidden variables h. Then, if we make the
(structured) mean-field assumption that q(θ , h) =
q(θ)q(h), the variational problem can be solved by
a variational Bayesian EM algorithm [35] which al-
ternately updates q(h) at the variational Bayesian

E-step and updates q(θ) at the variational Bayesian
M-step.

MC methods
MCmethods represent a diverse class of algorithms
that rely on repeated random sampling to compute
the solution to problemswhose solution space is too
large to explore systematically or whose systemic be-
havior is too complex to model. The basic idea of
MCmethods is to draw a set of i.i.d samples {�i }Ni=1
from a target distribution p(�) and use the em-
pirical distribution p̂(·) = 1

N

∑N
i=1 δ�i (·), to ap-

proximate the target distribution, where δ�i (·) is
the delta-Dirac mass located at �i . Consider the
commonoperation on calculating the expectation of
some functionφ with respect to a given distribution.
Let p(�) = p̄(�)/Z be the density of a proba-
bility distribution, where p̄(�) is the unnormalized
version that can be computed pointwise up to a nor-
malizing constant Z. The expectation of interest is

I =
∫

φ(�)p(�)d�. (8)

Replacing p(·) by p̂(·), we get the unbiased MC es-
timate of this quantity:

ÎMC = 1
N

N∑
i=1

φ(�i). (9)

Asymptotically, whenN→ ∞, the estimate ÎMC
will almost surely converge to I by the strong law of
largenumbers. In practice, however,weoften cannot
sample frompdirectly.Manymethodshavebeende-
veloped, such as rejection sampling and importance
sampling, which however often suffer from severe
limitations in high dimensional spaces. We refer the
readers to the book [36] and the review article [37]
for details. Below we introduce MCMC a very gen-
eral and powerful framework that allows sampling
from a broad family of distributions and scales well
with the dimensionality of the sample space. More
importantlymany advances have beenmade on scal-
ableMCMCmethods forBigData,whichwill bedis-
cussed later.

An MCMC method constructs an ergodic p-
stationary Markov chain sequentially. Once the
chain has converged (i.e. finishing the burn-in
phase), we can use the samples to estimate I. The
Metropolis-Hastings algorithm [38,39] constructs
such a chain by using the following rule to transit
from the current state�t to the next state�t+1:

(i) draw a candidate state �′ from a proposal dis-
tribution q(�|�t);

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 631

(ii) compute the acceptance probability:

A(�′,�t) � min
(
1,

p̄(�′)q(�t |�′)
p̄(�t)q(�′|�t)

)
;

(10)

(iii) draw γ ∼ Uniform[0, 1]. If γ < A(�′,�t)
set�t+1 ← �′, otherwise set�t+1 ← �t .

Note that for Bayesianmodels, eachMCMCstep in-
volves an evaluation of the full likelihood to get the
(unnormalized) posterior p̄(�), which can be pro-
hibitive for Big Learning with massive data sets. We
will revisit this problem later.

One special type ofMCMCmethods is theGibbs
sampling [40] which iteratively draws samples from
local conditionals. Let�be aM-dimensional vector.
The standard Gibbs sampler performs the following
steps to get a new sample�(t+1):

(i) draw a sample θ
(t+1)
1 ∼ p(θ1|θ (t)

2 , · · · , θ (t)
M);

(ii) for j= 2:M− 1, draw a sample

θ
(t+1)
j ∼ p(θ j |θ (t+1)

1 , · · · , θ (t+1)
j−1 , θ t

j+1 · · · , θ t
M);

(iii) draw a sample θ
(t+1)
M ∼ p(θM |θ (t+1)

1 ,

· · · , θ (t+1)
M−1).

One issue with MCMC methods is that the
convergence rate can be prohibitively slow even for
conventional applications. Extensive efforts have
been spent to improve the convergence rates. For ex-
ample, hybrid MC methods explore gradient infor-
mation to improve the mixing rates when the model
parameters are continuous, with representative
examples of Langevin dynamics and Hamiltonian
dynamics [41]. Other improvements include
population-based MCMC methods [42] and
annealing methods [43] that can sometimes handle
distributions with multiple modes. Another useful
technique to develop simpler or more efficient
MCMC methods is data augmentation [44–46]
which introduces auxiliary variables to transform
marginal dependency into a set of conditional
independencies (CI). For Gibbs samplers block-
wise Gibbs sampling and partially collapsed Gibbs
(PCG) sampling [47] often improve the conver-
gence. A PCG sampler is as simple as an ordinary
Gibbs sampler but often improves the convergence
by replacing some of the conditional distributions
of an ordinary Gibbs sampler with conditional
distributions of some marginal distributions.

FAQ
Commonquestions regardingBayesianmethods are
as follows.

Q:Why should I use Bayesian methods?
A:There aremany reasons for choosing Bayesian

methods, as discussed in the Introduction. A formal
theoretical argument is provided by the classic de
Finitti theorem, which states that: If (x1, x2, . . .) are
infinitely exchangeable, then for anyN

p(x1, . . . , xN) =
∫ (

N∏
i=1

p(xi |θ)
)
dP (θ)

(11)

for some random variable θ and probabilitymeasure
P. The infinite exchangeability is an often satisfied
property. For example, any i.i.d data are infinitely
exchangeable. Moreover, the data whose ordering
information is not informative is also infinitely ex-
changeable, e.g. the commonly used bag-of-words
representation of documents [48] and images [49].

Q: How should I choose the prior?
A: There are two schools of thought namely

objective Bayes and subjective Bayes. For objec-
tive Bayes, an improper non-informative prior (e.g.
the Jeffreys prior [50] and the maximum-entropy
prior [51]) is used to capture ignorance which ad-
mits good frequentist properties. In contrast subjec-
tive Bayesian methods embrace the influence of pri-
ors. A prior may have some parameters λ. Since it is
often difficult to elicit an honest prior, e.g. setting the
true value ofλ, two practicalmethods are often used.
One is hierarchical Bayesianmethods,which assume
a hyper-prior on λ and define the prior as a marginal
distribution:

p0(�) =
∫

p0(�|λ)p(λ)dλ. (12)

Thoughp(λ)mayhavehyper-parameters aswell, it is
commonly believed that these parameters will have
a weak influence as long as they are far from the like-
lihood model, thus can be fixed at some convenient
values or put another layer of hyper-prior.

Another method is ‘empirical’ Bayes, which
adopts a data-driven estimate λ̂ and uses p0(�|λ̂)
as the prior. Empirical Bayes can be seen as an
approximation to the hierarchical approach, where
p(λ) is approximated by a delta-Dirac mass δλ̂(λ).
One common choice is maximum marginal likeli-
hood estimate, that is, λ̂ = argmaxλ p(D|λ). Em-
pirical Bayes has been applied in many problems,
including variable section [52] and non-parametric
Bayesian methods [53]. Recent progress has been
made on characterizing the conditions when empir-
ical Bayes merges with the Bayesian inference [54]
as well as the convergence rates of empirical Bayes
methods [55].

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

632 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

N

Wij

Zij

θi

α

φk
K

β

N

Wij

Zij

ηi

μ,Σ

φk
K

β

N

Wij

Zij

θi

α

φk
K

β

Yi

η

γ

Li Li Li

(a) (b) (c)

Figure 1. Graphical models of (a) LDA [48], (b) logistic-
normal topic model [56], and (c) supervised LDA.

In practice another important consideration is
the tradeoff between model capacity and computa-
tional cost. If a prior is conjugate to the likelihood the
posterior inferencewill be relatively simpler in terms
of computation andmemory demands, as the poste-
rior belongs to the same family as the prior.

Example 1. Dirichlet-Multinomial Conjugate
Pair. Let x ∈ {0, 1}V be a one-hot represen-
tation of a discrete variable with V possible
values. It is easy to verify that for the multi-
nomial likelihood, p(x|θ) = ∏V

k=1 θ
xk
k , the

conjugate prior is a Dirichlet distribution,
p0(θ |α) = Dir(α) = 1

Z

∏V
k=1 θ

αk−1
k , where α

is the hyper-parameter and Z is the normaliza-
tion factor. In fact, the posterior distribution is
Dir(α + x).

A popular Bayesian model that explores such
conjugacy is latent Dirichlet allocation (LDA) [48]
as illustrated in Fig. 1a (All the figures are drawn
by the authors with full copyright.). LDA posits that
each document wi is an admixture of a set of K top-
ics, of which each topicψk is a unigram distribution
over a given vocabulary.The generative process is as
follows:

(i) draw K topicsψk ∼ Dir(β),
(ii) for each document i ∈ [N]:
(a) draw a topic mixing vector θ i ∼ Dir(α),
(b) for each word j ∈ [Li] in document i:
(1) draw a topic assignment zi j ∼ Multi(θ i),
(2) draw a wordwi j ∼ Multi(ψ zi j).

LDA has been popular in many applications. How-
ever, a conjugate prior can be restrictive. For ex-
ample, the Dirichlet distribution does not impose
correlation between different parameters, except the
normalization constraint. In order to obtain more
flexible models, a non-conjugate prior can be cho-
sen.

Example 2. Logistic-normal prior. A logistic-
normal distribution [57] provides one way to

impose correlation structure among the multiple di-
mensions of θ . It is defined as follows:

η ∼ N (μ), θk = e ηk∑
j e η j

. (13)

This prior has been used to develop correlated
topicmodels (or logistic-normal topicmodels) [56]
which can infer the correlation structure among top-
ics. However, the flexibility pays cost on computa-
tion, needing scalable algorithms to learn large topic
graphs [58].

BIG BAYESIAN LEARNING
Though much more emphasis in big Bayesian learn-
ing has been put on scalable algorithms and systems
substantial advances have been made on ‘adaptive’
and ‘flexible’ Bayesianmethods.This section reviews
NPB methods for adaptively inferring model com-
plexity andRegBayes for improving the flexibility via
posterior regularization, while leaving the large part
of scalable algorithms and systems to next sections.

NPB methods
For parametric Bayesian models, the parameter
space is pre-specified. No matter how the data
changes, the number of parameters is fixed. This re-
striction may cause limitations on model capacity,
especially for Big Data applications, where it may be
difficult or even counterproductive to fix the num-
ber of parameters a priori. For example, a Gaussian
mixture model with a fixed number of clusters may
fit the given data set well; however, it may be sub-
optimal to use the same number of clusters if more
data comes under a slightly changed distribution. It
would be ideal if the clusteringmodels can figure out
the unknownnumber of clusters automatically. Sim-
ilar requirements on automaticalmodel selection ex-
ist in feature representation learning [59] or factor
analysis where we would like the models to auto-
matically figure out the dimension of latent features
(or factors) andmaybe also the topological structure
among features (or factors) at different abstraction
levels [60].

NPB methods provide an elegant solution to
such needs on automatic adaptation of model ca-
pacity when learning a single model. Such adaptivity
is obtained by defining stochastic processes on rich
measure spaces.Classical examples includeDirichlet
process (DP) Indian buffet process (IBP) andGaus-
sian process (GP). Below we briefly review DP and
IBP. We refer the readers to the articles [61–63] for
a nice overview and the textbook [19] for a compre-
hensive treatment.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 633

Figure 2. The stick-breaking process for: (a) DP; (b) IBP.

Dirichlet process
A DP defines the distribution of random measures.
It was first developed in [64]. Specifically a DP is pa-
rameterized by a concentration parameterα >0 and
abase distributionG0 over ameasure space�. A ran-
dom variable drawn from aDPG ∼ DP(α,G 0), is
itself a distributionover�. Itwas shown that the ran-
dom distributions drawn from a DP are discrete al-
most surely, that is, they place the probability mass
on a countably infinite collection of atoms, i.e.

G =
∞∑
k=1

πkδθk , (14)

where θ k is the value (or location) of the kth atom
independently drawn from the base distribution G0
and π k is the probability assigned to the kth atom.
Sethuraman [65] provided a constructive definition
ofπ k based on a stick-breaking process as illustrated
inFig. 2a.Consider a stickwithunit length.Webreak
the stick into an infinite number of segments π k by
the following process with νk ∼ Beta(1, α):

π1=ν1, πk =νk

k−1∏
j=1

(1 − ν j), k = 2, 3, . . . ,∞.

(15)

That is, we first choose a beta variable ν1 and break
ν1 of the stick. Then, for the remaining segment, we
drawanother beta variable andbreakoff that propor-
tion of the remainder of the stick. Such a represen-
tation of DP provides insights for developing varia-
tional approximate inference algorithms [66].

DP is closely related to the Chinese restaurant
process (CRP) [67] which defines a distribution
over infinite partitions of integers. CRP derives its
name from a metaphor: Image a restaurant with an
infinite number of tables and a sequence of cus-
tomers entering the restaurant and sitting down.The
first customer sits at the first table. For each of the
subsequent customers she sits at each of the occu-
pied tables with a probability proportional to the
number of previous customers sitting there, and at
the next unoccupied table with a probability propor-
tional to α. In this process, the assignment of cus-
tomers to tables defines a random partition. In fact,

if we repeatedly draw a set of samples fromG, that is,
θ i ∼ G, i ∈ [N], then it was shown that the joint
distribution of θ 1:N

p(θ 1, . . . , θ N |α,G 0) =
∫ (

N∏
i=1

p(θ i |G)

)

× dP (G |α,G 0)

exists a clustering property, that is, the θ i s will share
repeated values with a non-zero probability. These
shared values define a partition of the integers from
1 toN, and the distribution of this partition is a CRP
with parameter α. Therefore, DP is the de Finetti
mixing distribution of CRP.

Antoniak [68] first developed DP mixture mod-
els by adding a data generating step that is, xi ∼
p(x|θ i), i ∈ [N].Again,marginalizing out the ran-
dom distribution G, the DP mixture reduces to a
CRP mixture, which enjoys nice Gibbs sampling al-
gorithms [69]. For DPmixtures a slice sampler [46]
has been developed [70] which transforms the infi-
nite sum inEq. (14) into a finite sum conditioned on
some uniformly distributed auxiliary variable.

Indian Buffet process
A mixture model assumes that each data is as-
signed to one single component. Latent factor mod-
els weaken this assumption by associating each data
with some or all of the components. When the num-
ber of components is smaller than the feature dimen-
sion latent factor models provide dimensionality re-
duction. Popular examples include factor analysis,
principal component analysis and independent com-
ponent analysis. The general assumption of a latent
factormodel is that the observed data x ∈ R

P is gen-
erated by a noisyweighted combinationof latent fac-
tors, that is,

xi = Wzi + εi , (16)

whereW is a P × K factor loading matrix, with ele-
mentWmk expressing how latent factor k influences
the observation dimension m; zi is a K-dimensional
vector expressing the activity of each factor; and ε i
is a vector of independent noise terms (usually Gas-
sian noise). In the above models, the number of fac-
tors K is assumed to be known. IBP [71] provides a
NPB variant of latent factor models and it allows the
number of factors to grow asmore data are observed.

Consider binary factors for simplicity (Real-
valued factors can be easily considered by defining
hi = zi
 μi where the binary zi are 0/1 masks to
indicate whether a factor is active or not, andμi are
the values of the factors.). Putting the latent factors
ofN data points in a matrix Z, of which the ith row is

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

634 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

zi . IBP defines a process over the space of binaryma-
trixes with an unbounded number of columns. IBP
derives its name from a similar metaphor as CRP.
Image a buffet with an infinite number of dishes
(factors) arranged in a line and a sequence of cus-
tomers choosing the dishes. Let zik denote whether
customer i chooses dish k. Then, the first customer
choosesK1 dishes, whereK1 ∼ Poisson(α); and the
subsequent customer n (>1) chooses:

(i) each of the previously sampled dishes with
probability mk/n, where mk is the number of
customers who have chosen dish k;

(ii) Ki additional dishes, whereKi ∼ Poisson(α/n).

IBP plays the same role for latent factor models
that CRP plays for mixture models, allowing an un-
bounded number of latent factors. Analogous to the
role that DP is the de Finetti mixing distribution of
CRP, the de Finetti mixing distribution underlying
IBP is a Beta process [72]. IBP also admits a stick-
breaking representation [73] as shown in Fig. 2b
where the stick lengths are defined as:

νk ∼ Beta(α, 1), πk =
k∏
j=1

ν j , k = 1, 2, . . . ,∞.

(17)

Note that unlike the stick-breaking representation
of DP, where the stick lengths sum to 1, the stick
lengths here need not sum to 1. Such a represen-
tation has lead to the developments of MC [73]
as well as variational approximation inference algo-
rithms [74].

Gaussian process
Kernel machines (e.g. support vector ma-
chines) [75] represent an important class of
methods in ML and has received extensive atten-
tion. GPs provide a principled practical probabilistic
approach to learning in kernel machines. A GP is
defined on the space of continuous functions [76].
InML the prime use of GPs is to learn the unknown
mapping function from inputs to outputs for
supervised learning.

Take the simple linear regressionmodel as an ex-
ample. Let x ∈ R

M be an inputdatapoint and y ∈ R

be the output. A linear regression model is

f (x) = θ�φ(x), y = f (x) + ε,

where φ(x) is a vector of features extracted from
x, and ε is an independent noise. For the Gaus-
sian noise, e.g. ε ∼ N (0, σ 2 I), the likelihood of
y conditioned on x is also a Gaussian, that is,
p(y |x, θ) = N (f (x), σ 2 I). Consider a Bayesian
approach, wherewe put a zero-meanGaussian prior,

θ ∼ N (0,). Given a set of training observations
D = {(xi , yi)}Ni=1. Let X be theM × N design ma-
trix, and y be the vector of the targets. By Bayes’ the-
orem, we can easily derive that the posterior is also a
Gaussian distribution (see [76] for more details)

p(θ |Xy) = N
(

1
σ 2 A

−1�y, A−1
)

, (18)

where A−1 = σ−2��� + 	−1 and� = φ(X). For
a test example x∗, we can also derive that the distri-
bution of the predictive value f∗ � f (x∗) is also a
Gaussian:

p(f∗|x∗, X, y)=N
(

1
σ 2 φ�

∗ A−1�y, φ�
∗ A−1φ∗

)
,

(19)

where φ∗ � φ(x∗). In some equivalent form, the
Gaussian mean and covariance only involve the in-
ner products in input space. Therefore, the kernel
trick can be explored in such models, which avoids
the explicit evaluation of the feature vectors.

The above Bayesian linear regression model
is a very simple example of GPs. In the most
general form, GPs define a stochastic process
over functions f (x). A GP is characterized by a
mean function m(x) and a covariance function
κ(x, x′), denoted by f (x) ∼ GP(m(x), κ(x, x′).
Given any finite set of observations x1, . . . , xn ,
the function values (The function values are
random variables due to the randomness of f.)
(f (x1), . . . , f (xn)) follow a multivariate Gaussian
distribution with mean (m(x1), . . . ,m(xn)) and
covariance K : K (i, j) = κ(xi , x j). The above
definition with any finite collection of function
values guarantee to define a stochastic process (i.e.
GP), by examining the consistency requirement of
the Kolmogorov extension theorem.

GPs have also been used in classification tasks,
where the likelihood is often non-conjugate to the
GP prior, therefore requiring approximate infer-
ence algorithms, including both variational andMC
methods. Other research has considered GP LVM
(GP-LVM) [77].

Extensions
To meet the flexibility and adaptivity requirements
of Big Learning many recent advances have been
made on developing sophisticatedNPBmethods for
modeling various types of data, including grouped
data, spatial data, time series and networks.

Hierarchical models are natural tools to de-
scribe grouped data, e.g. documents from differ-
ent source domains. Hierarchical Dirichlet process
(HDP) [78] andhierarchical Beta process [72] have

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 635

been developed allowing an infinite number of la-
tent components to be shared by multiple domains.
The work [60] presents a cascading IBP (CIBP) to
learn the topological structure of multiple layers of
latent features including the number of layers the
number of hidden units at each layer, the connec-
tion structure between units at neighboring layers
and the activation function of hidden units. The re-
cent work [79] presents an extended CIBP process
to generate connections between non-consecutive
layers.

Another dimension of the extensions concerns
modeling the dependencies betweenobservations in
a time series. For example DP has been used to de-
velop the infinite hiddenMarkovmodels [80]which
posit the same sequential structure as in the hidden
Markov models, but allowing an infinite number of
latent classes. In [78] it was shown that iHMM is a
special case of HDP.The recent work [81] presents
a max-margin training of iHMMs under the regular-
ized Bayesian framework as will be reviewed shortly.

Finally, for spatial data, modeling dependency
between nearby data points is important. Recent ex-
tensions of Bayesian non-parametric methods in-
clude the dependent DP [82] spatial DP [83]
distance-dependent CRP [84] dependent IBP [85]
and distance-dependent IBP [86]. For network data
analysis (e.g. social networks biological networks
and citation networks) recent extensions include
the NPB relational latent feature models for link
prediction [87,88] which adopt IBP to allow for
an unbounded number of latent features and the
non-parametric mixedmembership stochastic block
models for community discovery [89,90], which use
HDP to allow mixed membership in an unbounded
number of latent communities.

Regularized Bayesian inference
RegBayes [18] represents one recent advance that
extends the scope of Bayesian methods on incor-
porating rich side information. Recall that the clas-
sic Bayes’ theorem is equivalent to a variational op-
timization problem as in (2). RegBayes builds on
this formulation and defines the generic optimiza-
tion problem:

min
q(�)∈P

KL(q(�)‖p(�|D)) + c · �(q(�);D)

(20)

where �(q(�);D) is the ‘posterior regularization’
term; c is a non-negative regularization parameter;
and p(�|D) is the ordinary Bayesian posterior.
Figure 3 provides a high-level comparison between

RegBayes and Bayes’ rule. Several questions need to
be answered in order to solve practical problems.

Q: How to define the posterior regularization?
A: In general, posterior regularization can be any

informative constraints that are expected to regular-
ize the properties of the posterior distribution. It can
be defined as the large-margin constraints to enforce
a good prediction accuracy [91] or the logic con-
straints to incorporate expert knowledge [92] or the
sparsity constraints [93].The very recent work [94]
presents an extension of RegBayes to reproducing
kernel Hilbert space (RKHS) which provides a flex-
ible framework to put regularization at the distribu-
tion level.

Example 3. Max-margin LDA. Following the
paradigmofordinaryBayes a supervised topicmodel
is oftendefinedby augmenting the likelihoodmodel.
For example, the supervised LDA (sLDA) [95] has
a similar structure as LDA (see Fig. 1c) but with an
additional likelihood p(yd |zd , η) to describe labels.
Such a design can lead to an imbalanced combina-
tion of the word likelihood p(wd |zd ,ψ) and the la-
bel likelihood because a document often has tens
or hundreds of words while only one label. The im-
balance problemcauses unsatisfactory prediction re-
sults [96].

To improve the discriminative power of super-
vised topic models the max-margin MedLDA has
been developed, under the RegBayes framework.
Consider binary classification for simplicity. In this
case, we have � = {θ i , zi ,ψk}. Let f (η, zi) =
η�z̄i be the discriminant function(We ignore the
offset for simplicity.), where z̄i is the average topic
assignments, with z̄ki = 1

Li

∑
j I(zi j = k).Thepos-

terior regularization can be defined in two ways:
Averaging classifier. An averaging classifier

makes predictions using the expected discriminant
function, that is, ŷ(q) = sign(Eq [f (η, z)]). Let
(x)+ = max (0, x). Then, the posterior regulariza-
tion

�Avg(q(�);D) =
N∑
i=1

(1 − yiEq [f (η, zi)])+

is an upper bound of the training error, therefore
a good surrogate loss for learning. This strategy has
been adopted inMedLDA [91].

Gibbs classifier. A Gibbs classifier (or stochas-
tic classifier) randomly draws a sample (ηzd) from
the target posterior q(�) and makes predictions
using the latent prediction rule, that is, ŷ(η, zi) =
sign f (η, zi). Then, the posterior regularization is
defined as:

�Gibbs(q(�);D)=Eq

[
N∑
i=1

(1 − yi f (η, zi))+

]
.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

636 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

Prior
distribution

Likelihood
model

Posterior
distribution

Prior
distribution

Likelihood
model

Posterior
distribution

Posterior
regularization

Bayes’ Rule Optimization

(a) (b)

Figure 3. (a) Bayesian inference with the Bayes’ rule; (b) RegBayes which solves an optimization problem with a posterior
regularization term to incorporate rich side information.

This strategy has been adopted to develop Gibbs
MedLDA [97].

The two strategies are closely related e.g. we
can show that �Gibbs(q(�)) is an upper bound of
�Avg(q(�)). The formulation with a Gibbs classi-
fier can lead to a scalableGibbs sampler byusingdata
augmentation techniques [98]. If a logistic log-loss is
adopted to define the posterior regularization an im-
proved sLDAmodel can bedeveloped to address the
imbalance issue and lead to significantly more accu-
rate predictions [96].

Q: What is the relationship between prior likeli-
hood and posterior regularization?

A:Though the three parts are closely connected,
there are some key differences. First, prior is cho-
sen before seeing data, while both likelihood and
posterior regularization depend on the data. Sec-
ond, different from the likelihood,which is restricted
to be a normalized distribution, no constraints are
imposed on the posterior regularization. Therefore,
posterior regularization is much more flexible than
prior or likelihood. In fact, it can be shown that
(i) putting constraints on priors is a special case
of posterior regularization, where the regulariza-
tion term does not depend on data; and (ii) Reg-
Bayes can be more flexible than standard Bayes’
rule, that is, there exists some RegBayes posterior
distributions that are not achievable by the Bayes’
rule [18].

Q: How to solve the optimization problem?
A: The posterior regularization term affects

the difficulty of solving problem (20). When
the regularization term is a convex functional of
q(�) which is common in many applications
such as the above max-margin formulations, the
optimal solution can be characterized in a general
from via convex duality theory [18]. When the
regularization term is non-convex a generalized
representation theorem can also be derived,
but requires more effects on dealing with the
non-convexity [93].

SCALABLE ALGORITHMS
To deal with Big Data the posterior inference
algorithms should be scalable. Significant advances
have been made in two aspects: (i) using random
sampling to do stochastic or online Bayesian infer-
ence; and (ii) using multi-core and multimachine
architectures to do parallel and distributed Bayesian
inference.

Stochastic algorithms
In Big Learning, the intriguing results of [99] sug-
gest that an algorithm as simple as stochastic gra-
dient descent (SGD) can be optimally efficient in
terms of ‘number of bits learned per unit of compu-
tation’. For Bayesian models both stochastic varia-
tional and stochastic MCmethods have been devel-
oped to explore the redundancy of data relative to a
model by subsampling data examples for every up-
date and reasoning about the uncertainty created in
this process [22]. We overview each type in turn.

Stochastic variational methods
As we have stated in Section Variational Bayesian
methods variational methods solve an optimization
problem to find the best approximate distribution to
the target posterior. When the variational distribu-
tion is characterized in some parametric form, this
problem can be solved with SGDmethods [100] or
the adaptive SGD [101]. A SGD method randomly
draws a subset Bt and updates the variational param-
eters using the estimated gradients that is

φt+1 ← φt + εt
(∇φKL(q‖p0(θ))

−∇φEq [log p(D|θ)]),
where the full data gradient is approximated as

∇φEq [log p(D|θ)]≈ N
|Bt |

∑
i∈Bt

∇φEq [log p(xi |θ)],

(21)

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 637

and εt is a learning rate. If the noisy gradient is an
unbiasedestimateof the truegradient, theprocedure
is guaranteed to approach the optimal solutionwhen
the learning rate is appropriately set [102].

For Bayesian LVM we need to infer the la-
tent variables when performing the updates. In
general, we can group the latent variables into
two categories—global variables and local variables.
Global variables correspond to the model param-
eters θ (e.g. the topics ψ in LDA), while lo-
cal variables represent some hidden structures of
the data (e.g. the topic assignments z in an LDA
with the topic mixing proportions collapsed out).
Figure 4 provides an illustration of such models and
the stochastic variational inference, which consists
of three steps:

(i) randomly draw amini-batchBt of data samples;
(ii) infer the local latent variables for each data in

Bt;
(iii) update the global variables.

However, the standard gradients over the param-
eters φ may not be the most informative direction
(i.e. the steepest direction) to search for the dis-
tribution q. A better way is to use natural gradi-
ent [103] which is the steepest search direction in a
Riemannian manifold space of probability distribu-
tions [104]. To reduce the efforts on hand-tuning
the learning rate which often influences the perfor-
mance much, the work [105] presents an adaptive
learning rate while [106] adopts Bayesian optimiza-
tion to search for good learning rates both leading
to faster convergence. By borrowing the gradient
averaging ideas from stochastic optimization [107]
proposes to use smoothed gradients in stochastic
variational inference to reduce the variance (by
trading-off the bias). Stochastic variational inference
methods have been studied formany Bayesianmod-
els such as LDA and HDP [104].

In many cases the ELBO and its gradient may
be intractable to compute due to the intractabil-
ity of the expectation over variational distributions.
Two types of methods are commonly used to ad-
dress this problem. First, another layer of variational
bound is derived by introducing additional varia-
tional parameters.This has been used inmany exam-
ples, such as the logistic-normal topic models [56]
and sLDA [95]. For such methods it is important
to develop tight variational bounds for specificmod-
els [108] which is still an active area. Another type
of methods is to use MC estimates of the varia-
tional bound as well as its gradients. Recent work
includes the stochastic approximation scheme with
variance reduction [105,109] and the auto-encoding
variational Bayes (AEVB) [110] that learns a neural
network (a.k.a recognition model) to represent the

variational distribution for continuous latent vari-
ables.

Consider themodel with one layer of continuous
latent variables hi in Fig. 4a. Assume the variational
distribution qφ(�) = qφ(θ)

∏N
i=1 qφ(hi |xi).

Let Gφ(xhθ) = log p(h|θ) + log p(x|hθ) −
log qφ(h|x).The ELBO in Eq. (2) can be written as

L(φ;D) = Eq

[
log p0(θ) +

∑
i

Gφ(xi , hi , θ)

− log qφ(θ)
]
.

By using the equality ∇φqφ(�) =
qφ(�)∇φ log qφ(�), it can be shown that the
gradient is

∇φL = Eq

[
(log p(�,D) − log qφ(�))

×∇φ log qφ(�)
]
.

A naive MC estimate of the gradient is

∇φL ≈ 1
L

L∑
l=1

[
(log p(�l ,D) − log qφ(�l))

×∇φ log qφ(�l)
]
,

where�l ∼ qφ(�).Note that the sampling and the
gradient ∇φ log qφ(�l) only depend on the varia-
tional distribution, not the underlying model. How-
ever, the varianceof such anestimate canbe too large
to be useful. In practice, effective variance reduction
techniques are needed [105,109].

For continuous h, a re-parameterization of the
samples h ∼ qφ(h|x) can be derived using a differ-
entiable transformation gφ(ε, x) of a noise variable
ε:

h = gφ(ε, x), where ε ∼ p(ε). (22)

This is known as ‘non-centered parameterization’
(NCP) in statistics [111] while the original repre-
sentation is known as ‘centered parameterization’
(CP). A similar NCP reparameterization exists for
the continuous θ :

θ = fφ(ζ), where ζ ∼ p(ζ). (23)

Given a minibatch of data points Bt, we define
Fφ({xi , hi }i∈Bt , θ) = N

|Bt |
∑

i∈Bt
Gφ(xi , hi , θ) +

log p0(θ) − log qφ(θ). Then, the MC estimate of
the variational lower bound is

L(φ;D)≈ 1
L

L∑
l=1

Fφ

({xi , gφ(εl , xi)}i∈Bt , fφ(ζ l)
)
,

(24)

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

638 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

hi xi

Global variables

Local variables
Sampling Analysis Model update

qt +1 (θ)Bt q* (H)

draw a mini-
batch

infer the hidden
structure

update distribution of
global variables

(a) (b)
t

Figure 4. (a) The general structure of Bayesian LVM, where hi denotes the local latent variables for each data i ; (b) the
process of stochastic variational inference, where the red arrows denote that in practice we may need multiple iterations
between ‘analysis’ and ‘model update’ to have fast convergence.

whereεl ∼ p(ε) andζ l ∼ p(ζ).This stochastic es-
timate can be maximized via gradient ascent meth-
ods.

It has been analyzed that CP and NCP possess
complimentary strengths [111] in the sense that
NCP is likely to work when CP does not and con-
versely. An accompany paper [112] to AEVB an-
alyzes the conditions for gradient-based samplers
(e.g. HMC) whether NCP can be effective or in-
effective in reducing posterior dependencies; and
it suggests to use the interleaving strategy between
centered and NCP as previously studied in [113].
AEVB has been extended to learn deep generative
models [16] using the similar reparameterization
trick on continuous latent variables.However AEVB
cannot be directly applied to deal with discrete vari-
ables. In contrast the work [114] presents a sophis-
ticated method to reduce the variance of the naive
MC estimate for deep autoregressivemodels; thus it
is applicable to both continuous and discrete latent
variables.

Stochastic MC Methods
The existing stochastic MC methods can be gener-
ally grouped into three categories namely, stochas-
tic gradient-based methods, the methods using
approximate MH test with randomly sampled mini-
batches, and data augmentation.

Stochastic Gradient. The idea of using gradient
information to improve the mixing rates has been
systematically studied in various MC methods, in-
cluding Langevin dynamics and Hamiltanian dy-
namics [41]. For example the Langevin dynamics
is an MCMC method that produces samples from
the posterior by means of gradient updates plus
Gaussian noise, resulting in a proposal distribution
p(θ t+1|θ t) by the following equation:

θ t+1 = θ t + εt

2
(∇θ log p0(θ)

+∇θ log p(D|θ)) + ζt , (25)

where ζt ∼ N (0, εt I) is an isotropic Gaussian
noise and log p(D|θ) = ∑

i log p(xi |θ) is the log-
likelihood of the full data set. The mean of the pro-
posal distribution is in the direction of increasing
log posterior due to the gradient, while the Gaus-
sian noise will prevent the samples from collapsing
to a singlemaximum.AMetropolis-Hastings correc-
tion step is required to correct for discretization er-
ror [115].

The stochastic ideas have been successfully
explored in these methods to develop efficient
stochastic MC methods including stochastic
gradient Langevin dynamics (SGLD) [116]
and stochastic gradient Hamiltonian dynamics
(SGHD) [117]. For example SGLD replaces the
calculation of the gradient over the full data set with
a stochastic approximation based on a subset of
data. Let Bt be the subset of data points uniformly
sampled from the full data set at iteration t.Then the
gradient is approximated as:

∇θ log p(D|θ) ≈ N
|Bt |

∑
i∈Bt

∇θ log p(xi |θ).

(26)

Note that SGLD does not use an MH correction
step, as calculating the acceptance probability re-
quires use of the full data set. Convergence to the
posterior is still guaranteed if the step sizes are an-
nealed to zero at a certain rate, as rigorously justified
in [118,119].

To further improve themixing rates, the stochas-
tic gradient Fisher scoring method [120] was de-
veloped which represents an extension of the Fisher
scoring method based on stochastic gradients [121]
by incorporating randomness in a subsampling pro-
cess. Similarly exploring themanifold structure leads
to the development of stochastic gradient MCMC
methods on Riemann manifolds, such as stochastic
gradient Riemannian Langevin dynamics [122] on
the probability simplex space and stochastic gradi-
ent geodesic Monte Carlo [123] on manifolds with

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 639

known geodesic flow which can be framed under a
general framework [124].

Approximate MH Test. Another category of
stochastic MC methods rely on approximate MH
test using randomly sampled subset of data points
since an exact calculation of theMH test in Eq. (10)
scales linearly to the data size which is prohibitive
for large-scale data sets. For example, thework [125]
presents an approximate MH rule via sequential hy-
pothesis testing which allows us to accept or reject
samples with high confidence using only a fraction
of the data required for the exact MH rule. The sys-
tematic bias and its tradeoffwith variancewere theo-
retically analyzed. Specifically, it is based on the ob-
servation that the MH test rule in Eq. (10) can be
equivalently written as follows.

(i) Draw γ ∼Uniform[0, 1] and compute:

μ0 = 1
N

log
[
γ
p0(�t)q(�′|�t)
p0(�′)q(�t |�′)

]

μ = 1
N

N∑
i=1

�i , where �i = log
p(xi |�′)
p(xi |�t)

;

(ii) Ifμ>μ0 set�t+1 ← �′; otherwise�t+1 ←
�t .

Note thatμ0 is independent of the data set, thus can
be easily calculated. This reformulation of the MH
test makes it very easy to frame it as a statistical hy-
pothesis test, that is, given μ0 and a set of samples
{�t1 , . . . , �tn } drawn without replacement from the
population {�1, . . . , �N}, can we decide whether
the population mean μ is greater than or less than
the threshold μ0? Such a test can be done by in-
creasing the cardinality of the subset until a pre-
scribed confidence level is reached. The MH test
with approximate confidence intervals can be com-
bined with the above stochastic gradient methods
(e.g. SGLD) to correct their bias. The similar se-
quential testing ideas can be applied to Gibbs sam-
pling, as discussed in [125].

Under the similar setting of approximateMHtest
with subsets of data the work [126] derives a new
stopping rule based on some concentration bounds
(e.g. the empirical Bernstein bound [127]) which
leads to an adaptive sampling strategy with theoreti-
cal guarantees on the total variational norm between
the approximate MH kernel and the target distribu-
tion of MH applied to the full data set.

Data Augmentation. The work [128] presents
a Firefly Monte Carlo (FlyMC) method which is
guaranteed to converge to the true target posterior.
FlyMC relies on a novel data augmentation formula-
tion [45]. Specifically let zi be a binary variable indi-
cating whether data i is active or not and Bi (�) be

a strictly positive lower bound of the ith likelihood:
0 < Bi (�) < Li (�) � p(xi |�). Then, the tar-
get posterior p(�|D) is the marginal of the com-
plete posterior with the augmented variables Z =
{zi }Ni=1:

p(�,Z|D) ∝ p0(�)
N∏
i=1

p(xi |�)p(zi |xi ,�),

(27)

where p(zi |xi ,�) = (1 − γi)zi γ
(1−zi)
i and γi =

Bi (�)/Li (�). Then, we can construct a Markov
chain for the complete posterior by alternating be-
tween updates of� conditioned on Z, which can be
done with any conventional MCMC algorithm, and
updates of Z conditioned on�, which can also been
efficiently done as we only need to re-calculate the
likelihoods of the data points with active z variables,
thus effectively using a random subset of data points
in each iteration of the MCmethods.

Streaming algorithms
We can see that both (21) and (26) need to know
the data size N, which renders them unsuitable for
learning with streaming data, where data comes in
small batches without an explicit bound on the to-
tal number as times goes along, e.g. tracking an air-
craft using radar measurements. This conflicts with
the sequential nature of the Bayesian updating pro-
cedure. Specifically, let Bt be the small batch at
time t. Given the posterior at time t, pt(�): =
p(�|B1, . . . , Bt), theposterior distribution at time
t+ 1 is

pt+1(�): = p(�|B1, . . . , Bt+1)

= pt(�)p(Bt+1|�)
p(B1, . . . , Bt+1)

. (28)

Inotherwords, theposterior at time t is actually play-
ing the role of a prior for the data at time t + 1 for
the Bayesian updating. Under the variational formu-
lation of Bayes’ rule, streaming RegBayes [129] can
naturally be defined as solving:

min
q(�)∈P

KL(q(�)‖pt(�)) + c · �(q(�); Bt+1)

(29)

whose streaming update rule can be derived via con-
vex analysis under a quite general setting.

The sequential updating procedure is perfectly
suitable for online learning with data streams,
where a revisit to each data point is not allowed.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

640 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

However, one challenge remains on evaluating the
posteriors. If the prior is conjugate to the likelihood
model (e.g. a linear Gaussian state-space model)
or the state space is discrete (e.g. hidden Markov
models [130,131]), then the sequential updating
rule can be done analytically, for example, Kalman
filters [132]. In contrast many complex Bayesian
models (e.g. the models involving non-Gaussianity,
non-linearity and high dimensionality) do not have
closed-form expression of the posteriors. Therefore,
it is computationally intractable to do the sequential
update.

Streaming variational methods
Various effects have been made to develop stream-
ing variational Bayesian methods [133]. Specifically
let A be a variational algorithm that calculates the
approximate posterior q: q(�) = A(p(�); B).
Then, setting q0(�) = p0(�), one way to
recursively compute an approximation to the
posterior is

p(�|B1, . . . , Bt+1) ≈ qt+1(�)

= A(qt(�), Bt+1). (30)

Under the exponential family assumption of q, the
streaming update rule has some analytical form.The
streaming RegBayes [129] provides a Bayesian gen-
eralization of online passive-aggressive (PA) learn-
ing [134] when the posterior regularization term is
defined via the max-margin principle. The resulting
onlineBayesian passive-aggressive (BayesPA) learn-
ing adopts a similar streaming variational update to
learnmax-margin classifiers (e.g. SVMs) in the pres-
ence of latent structures (e.g. latent topic represen-
tations). Compared to the ordinary PA BayesPA is
more flexible on modeling complex data. For exam-
ple BayesPA can discover latent structures via a hi-
erarchical Bayesian treatment as well as allowing for
NPB inference to resolve the complexity of latent
components (e.g. using a HDP topic model to re-
solve the unknown number of topics).

Streaming MC methods
Sequential Monte Carlo (SMC) methods [135–
137] provide simulation-based methods to approxi-
mate the posteriors for online Bayesian inference.
SMC methods rely on resampling and propagating
samples over time with a large number of particles.
A standard SMC method would require the full
data to be stored for expensive particle rejuvenation
to protect particles against degeneracy leading to
an increased storage and processing bottleneck
as more data are accrued. For simple conjugate
models, such as linear Gaussian state-space models,

efficient updating equations can be derived using
methods like Kalman filters. For a broader class of
models, assumed density filtering (ADF) [138,139]
was developed to extend the computational
tractability. Basically, ADF approximates the pos-
terior distribution with a simple conjugate family,
leading to approximate online posterior tracking.
Recent improvements on SMCmethods include the
conditional density filtering (C-DF) method [140]
which extends Gibbs sampling to streaming data.
C-DF sequentially draws samples from an ap-
proximate posterior distribution conditioned on
surrogate conditional sufficient statistics, which are
approximations to the conditional sufficient statis-
tics using sequential samples or point estimates for
parameters along with the data. C-DF requires only
data at the current time and produces a provably
good approximation to the target posterior.

Distributed algorithms
Recent progress has been made on both distributed
variational and distributedMCmethods.

Distributed variational methods
If the variational distribution is in some para-
metric family (e.g. the exponential family), the
variational problem can be solved with generic opti-
mizationmethods.Therefore, thebroad literatureon
distributed optimization [141] provides rich tools
for distributed variational inference. However the
disadvantage of a generic solver is that it may fail to
explore the structure of Bayesian inference.

First, many Bayesian models have a nature hi-
erarchy, which encodes rich CI structures that can
be explored for efficient algorithms, e.g. the dis-
tributed variational algorithm for LDA [142]. Sec-
ond the inference procedure with Bayes’ rule is in-
trinsically parallelizable. Suppose the dataD is split
into non-overlapping batches (often called shards),
B1, . . . , BM. Then, the Bayes posterior p(�|D) =
p0(�)

∏M
i=1 p(Bi |�)
p(D) can be expressed as

p(�|D) = 1
C

M∏
i=1

p0(�)
1
M p(Bi |�)
p(Bi)

= 1
C

M∏
i=1

p(�|Bi), (31)

where C = p(D)∏M
i=1 p(Bi)

. Now, the question is how
to calculate the local posteriors (or subset poste-
riors) p(�|Bi) as well as the normalization fac-
tor. The work [133] explores this idea and presents
a distributed variational Bayesian method which

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 641

approximates the local posterior with an algorithm
A that is, p(�|Bi) ≈ A (

p0(�)1/M , Bi
)
. Under

the exponential family assumption of the prior and
the approximate local posteriors, the global poste-
rior can be (approximately) calculated via density
product. However, the parametric assumptions may
not be reasonable, and the mean-field assumptions
can get the marginal distributions right but not the
joint distribution.

Distributed MC methods
ForMCmethods, if independent samples can be di-
rectly drawn from the posterior or some proposals
(e.g. using importance sampling), it will be straight-
forward to parallelize, e.g. by running multiple inde-
pendent samplers on separatemachines and then ag-
gregating the samples [143]. We consider the more
challenging cases where directly sampling from the
posterior is intractable and MCMC methods are
among the natural choices. There are two groups
of methods. One is to run multiple MCMC chains
in parallel, and the other is to parallelize a single
MCMCchain.The ‘multiple-chain’ parallelism is rel-
atively straightforward if each single chain can be ef-
ficiently carried out and an appropriate combination
strategy is adopted [143,144]. However, in Big data
applications a singleMarkov chain itself is often pro-
hibitively slow to converge, due to the massive data
sizes or extremely high-dimensional sample spaces.
Below,we focuson themethods that parallelize a sin-
gle Markov chain, under three major categories.

Blocking. Methods in this category let each com-
puting unit (e.g. a CPU processor or a graphics
processing unit (GPU) core) to perform a part of
the computation at each iteration. For example,
they independently evaluate the likelihood for each
shard across multiple units and combine the local
likelihoods with the prior on a master unit to get
estimates of the global posterior [145]. Another ex-
ample is that each computing unit is responsible
for updating a part of the state space [146]. These
methods involve extensive communications and be-
ing problem specific.

In these methods several computing units col-
laborate to obtain a draw from the posterior. In or-
der to effectively split the likelihood evaluation or
the state spaceupdateovermultiple computingunits
it is important to explore the CI structure of the
model.Many hierarchical Bayesianmodels naturally
have theCI structure (e.g. topicmodels),while some
other models need some transformation to intro-
duce CI structures that are appropriate for paral-
lelization [147].

Divide-and-Conquer: Methods in this category
avoid extensive communication amongmachines by

Figure 5. The possible outcomes in two iterations of a
Metropolis-Hastings sampler.

running independent MCMC chains on each shard
and aggregating samples drawn from local posteriors
via a single communication. Aggregating the local
samples is the key step with a lot of recent progress.
For example, the consensusMC [148] directly com-
bines local samples by a weighted average which is
valid under an implicit Gaussian assumption while
lacking of guarantees for non-Gaussian cases; [149]
approximates each local posterior with either an ex-
plicit Gaussian or a Gaussian-kernel KDE so that
combination follows an explicit density product;
[150] builds upon the KDE idea one step further
by representing the discrete KDE as a continuous
Weierstrass transform; and [151] proposes to calcu-
late the geometric median of local posteriors (or M-
posterior) which is provably robust to the presence
of outliers. TheM-posterior is approximately solved
by the Weiszfeld’s algorithm [152] by embedding
the local posteriors in a RKHS.

The potential drawback of these embarrassingly
parallel MCMC sampling is that if the local pos-
teriors differ significantly perhaps due to noise or
non-randompartitioning of the dataset across nodes
the final combination stage can result in inaccurate
global posterior. The recent work [153] presents a
context aware distributed Bayesian posterior sam-
pling method to improve inference quality. By al-
lowing nodes to effectively and efficiently share in-
formation with each other each node will eventu-
ally draw samples from a more accurate approxi-
mate full posterior, and therefore no long needs any
combination.

Pre-fetching: The idea of pre-fetching is to make
use of parallel processing to calculate multiple like-
lihoods ahead of time, and only use the ones
which are needed. Consider a generic random-walk
metropolis-Hastings algorithm at time t. The sub-
sequent steps can be represented by a binary tree,
where at each iteration a single new proposal is
drawn from a proposal distribution and stochasti-
cally accepted or rejected. So, at time t+ n the chain
has 2n possible future states, as illustrated in Fig. 5.
The vanilla version of pre-fetching speculatively

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

642 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

evaluates all paths in this binary tree [154]. Since
only onepathof thesewill be takenwithM cores, this
approach achieves a speedup of log2 M with respect
to single core execution, ignoring communication
overheads. More efficient pre-fetching approaches
have been proposed in [155] and [156] by better
guessing the probabilities of exploration of both the
acceptance and the rejection branches at each node.
The recent work [157] presents a delayed accep-
tance strategy for MH testing which can be used to
improve the efficiency of pre-fetching.

As a special type of MCMC Gibbs sampling
methods naturally follow a blocking scheme by iter-
ating over some partition of the variables. The early
asynchronous Gibbs sampler [40] is highly parallel
by sampling all variables simultaneously on separate
processors. However the extreme parallelism comes
at a cost, e.g. the sampler may not converge to the
correct stationary distribution in some cases [158].
The work [158] develops various variable partition-
ing strategies to achieve fast parallelization while
maintaining the convergence to the target poste-
rior and the work [159] analyzes the convergence
and correctness of the asynchronous Gibbs sampler
(a.k.a the Hogwild parallel Gibbs sampler) for sam-
pling fromGaussiandistributions.Manyother paral-
lel Gibbs sampling algorithms have been developed
for specific models. For example various distributed
Gibbs samplers [160–164] have been developed for
the vanilla LDA, [58] develops a distributed Gibbs
sampler via data augmentation to learn large-scale
topic graphs with a logistic-normal topic model and
parallel algorithms forDPmixtures have been devel-
opedby introducing auxiliary variables for additional
CI structures [147] while with the potential risk of
causing extremely imbalanced partitions [165].

Note that the stochasticmethods and distributed
computing are not exclusive. Combing both often
leads to more efficient solutions. For example for
optimization methods parallel SGD methods have
been extensively studied [166,167]. In particular,
[167] presents a parallel SGD algorithm without
locks calledHogwild!, wheremultiple processors are
allowed equal access to the shared memory and are
able to update individual components of memory
at will. Such a scheme is particularly suitable for
sparse learningproblems. ForBayesianmethods, the
distributed stochastic gradient Langevin dynamics
method has been developed in [168] and further im-
proved for topic models in [169].

TOOLS SOFTWARE AND SYSTEMS
Though stochastic algorithms are easy to implement
distributed methods often need a careful design of

the system architectures and programming libraries.
For system architectures, we may have a shared
memory computer with many cores, a cluster with
many machines interconnected by network (either
commodity or high speed), or accelerating hardware
like GPUs and field-programmable gate arrays (FP-
GAs). We now review the distributed programming
frameworks suitable for various system architectures
and existing tools for Bayesian inference.

System primitives
Every architecturehas its low-level libraries, inwhich
the parallel computing units (e.g. threads, machines
or GPU cores) are explicitly visible to the program-
mer.

Shared memory computer. A shared memory
computer passes data fromoneCPUcore to another
by simply storing it into the main memory. There-
fore, the communication latency is low. It is also easy
to program and acquire.Meanwhile it is prevalent—
it is the basic component of large distributed clusters
and host of GPUs or other accelerating hardware.
Due to these reasons, writing amultithread program
is usually the first step towards large-scale learning.
However, its drawbacks include limitedmemory/IO
capacity and bandwidth, and restricted scalability,
which can be addressed by distributed clusters.

Programmers work with threads in a shared
memory setting. A threading library supports: (i)
spawning a thread and wait it to complete; (ii)
synchronization: method to prevent conflict ac-
cess of resources, such as locks; (iii) atomic: op-
erations, such as increment that can be executed
in parallel safely. Besides threads and locks, there
are alternative programming frameworks. For ex-
ample, Scala uses ‘actor’, which responds to a mes-
sage that it receives; Go uses ‘channel’, which is
a multiprovider, multiconsumer queue. There are
also libraries automating specific parallel pattern, e.g.
OpenMP [170] supports parallel patterns like paral-
lel for or reduction and synchronization patterns like
barrier; TBB [171] has pipeline lightweight green
threads and concurrent data structures. Choosing
right programming models sometimes can simplify
the implementation.

Accelerating hardware. GPUs are self-contained
parallel computational devices that can be housed
in desktop or laptop computers. A single GPU can
provide floating operations per second performance
as good as a small cluster. Yet compared to conven-
tional multi-core processors, GPUs are cheap, eas-
ily accessible, easy to maintain, easy to code, and
dedicated local devices with low power consump-
tion. GPUs follow a single instruction multiple data

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 643

(SIMD) pattern, i.e. a single program will be exe-
cuted on all cores given different data.This pattern is
suitable for manyML applications. However, GPUs
may be limited due to: (i) small memory capacity;
(ii) restricted SIMD programming model; and (iii)
high CPU–GPU or GPU–GPU communication la-
tency.

Many Bayesian inference methods have been ac-
celerated with GPUs. For example, [145] adopts
GPUs to parallelize the likelihood evaluation in
MCMC; [172] provides GPU parallelization for
population-based MCMC methods [42] as well as
SMC samplers [173]; and [174] uses GPU com-
puting to develop fast Hamiltonian MC methods.
For variational Bayesian methods [175] demon-
strates an example of using GPUs to accelerate
the collapsed variational Bayesian algorithm for
LDA. More recently SaberLDA [176] implements
a sparsity-aware sampling algorithm on GPU which
scales sub-linearly with the number of topics. BID-
Mach [177] is a distributedGPU framework forML
In particular BIDMach LDA with a single GPU is
able to learn faster than the state-of-the-art CPU
based LDA implementation [162] which use 100
CPUs.

Finally accelerationwithotherhardware (e.g. FP-
GAs) has also been investigated [178].

Distributed cluster. For distributed clusters a
low-level framework should allow users to do:
(i) ‘Communication’: sending and receiving data
from/to another machine or a group of machines;
(ii) ‘Synchronization’: synchronize the processes;
(iii) ‘Fault handling’: decide what to do if a pro-
cess/machine breaks down. For example, MPI pro-
vides a set of primitives including ‘send’, ‘receive’,
‘broadcast’ and ‘reduce’ for communication. MPI
also provides synchronization operations, such as
‘barrier’. MPI handles fault by simply terminating all
processes.MPIworks on various network infrastruc-
tures, such as ethernet or Infiniband. Besides MPI,
there are other frameworks that support communi-
cation, synchronization and fault handling, such as
(i)message queues, where processes can put and get
messages from globally shared message queues; (ii)
remote procedural calls, where a process can invoke
a procedure in another process, passing its own data
to that remote procedure, and finally get execution
results. MrBayes [179,180] provides a MPI-based
parallel algorithm for Metropolis-coupled MCMC
for Bayesian phylogenetic inference.

Programming with system primitive libraries are
most flexible and lightweight. However for sophisti-
cated applications, whichmay require asynchronous
execution, need to modify the global parameters
while running, or need many parallel execution
blocks, it would be painful and error prone to write

the parallel code using the low-level system primi-
tives. Below, we review some high-level distributed
computing frameworks, which automatically exe-
cute the user declared tasks on desired architectures.
We refer the readers to [181] for more details on
GPUs MapReduce and some other examples (e.g.
parallel online learning).

MapReduce and Spark
MapReduce [182] is a distributed computing frame-
work for key-value stores. It reads key-value stores
from disk performs some transformations to these
key-value stores in parallel, and writes the final re-
sults to disk. A typical MapReduce cycle involves
the steps: (i) Spawn some workers on all machines;
(ii) Workers read input key-value pairs in parallel
from a distributed file system; (iii) ‘Map’: pass each
key-value pair to a user defined function, which will
generate some intermediate key-value pairs; (iv)Ac-
cording to the key, hash the intermediate key-value
pairs to allmachines, thenmerge key-value pairs that
have the same key, result with (key, list of values)
pairs; (5) ‘Reduce’: In parallel, pass each (key, list of
values) pairs to a user defined function, which will
generate some output key-value pairs; and (6)Write
output key-value pairs to the file system.

There are two user defined functions, ‘mapper’
and ‘reducer’. For ML, a key-value store is often
data samples, mapper is often used for computing la-
tent variables, likelihoods or gradients for each data
sample, and reducer is often used to aggregate the
information from each data sample, where the in-
formation can be used for estimating parameters
or checking convergence. [183] discusses a num-
ber of ML algorithms on MapReduce including lin-
ear regression, naive Bayes, neural networks, PCA,
SVM, etc.Mahout [184] is aML package built upon
Hadoop an open source implementation ofMapRe-
duce. Mahout provides collaborative filtering, clas-
sification, clustering, dimensionality reduction and
topic modeling algorithms. [142] is a MapReduce
based LDA. However a major drawback of MapRe-
duce is that it needs to read the data from disk at ‘ev-
ery iteration’.The overhead of reading data becomes
dominant for many iterative ML algorithms as well
as interactive data analysis tools [185].

Spark [185] is another framework for distributed
ML methods that involve iterative jobs. The core
of Spark is resilient data sets (RDDs) which is es-
sentially a dataset distributed acrossmachines. RDD
can be stored either in memory or disk: Spark de-
cides it automatically and users can provide hints to
Spark which to store in memory. This avoids read-
ing the dataset at every iteration. Users can perform

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

644 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

Master

Slave

Map Reduce

Server

Client

(a) (b) (c)

Figure 6. Various architectures: (a) MapReduce/Spark; (b) Pregel/GraphLab; (c) Param-
eter servers.

‘parallel operations’ to RDDs, which will transform
a RDD to another. Available parallel operations are
like ‘foreach’ and ‘reduce’. We can use foreach to do
the computation for each data, and use reduce to ag-
gregate information from data. Because parallel op-
erations are just a parallel version of the correspond-
ing serial operations, a Spark program looks almost
identical to its serial counterpart. Spark can outper-
form Hadoop for iterative ML jobs by 10x, and is
able to interactively query a 39 GB dataset in 1 sec-
ond [185].

Iterative graph computing
BothMapReduce and Spark have a star architecture
as in Fig. 6a where only master-slave communica-
tion is permitted; they do not allow one key-value
pair to interact with another, e.g. reading or modi-
fying the value of another key-value pair. The inter-
action is necessary for applications like PageRank,
Gibbs sampling, and variational Bayes optimized by
coordinate descent, all of which require variables to
get their own values based on other related variables.
Hence there comes graph computing, where the
computational task is defined by a sparse graph that
specifies the data dependency, as shown in Fig. 6b.

Pregel [186] is a bulk synchronousparallel (BSP)
graph computing engine.The computation model is
a sparse graphwith data on vertices and edges where
each vertex receives all messages sent to it in the last
iteration; updates data on the vertex based on the
messages; and sends out messages along adjacent
edges. For example,Gibbs sampling canbedone eas-
ily by sending the vertex statistics to adjacent vertices
and then the conditional probability can be com-
puted. GPS [187] is an open source implementa-
tion of Pregel with new features (e.g. dynamic graph
repartition).

GraphLab [188] is a more sophisticated graph
computing engine that allows asynchronous execu-
tion and flexible scheduling. A GraphLab iteration
picks up a vertex v in the task queue; and passes the
vertex to a user defined function which may modify
the data on the vertex its adjacent edges and vertices,

and finally may add its adjacent vertices to the task
queue. Note that several nodes can be evaluated in
parallel as long as they do not violate the consistency
guarantee which ensures that GraphLab is equiva-
lent with some serial algorithm. It has been used to
parallelize a number of ML tasks, including matrix
factorization, Gibbs sampling and Lasso [188]. [96]
presents a distributed Gibbs sampler on GraphLab
for an improved sLDA model using RegBayes. Sev-
eral other graph computing engines have beendevel-
oped. For example GraphX [189] is an extension of
Spark for graph computing; and GraphChi [190] is
a disk based version of GraphLab.

Parameter servers
All the above frameworks restrict the communica-
tion betweenworkers. For exampleMapReduce and
Spark don’t allow communication between work-
ers while Pregel and GraphLab only allow vertices
to communicate with adjacent nodes. On the other
side, many ML methods follow a pattern that: (1)
Data are partitioned on many workers; (2) There
are some shared global parameters (e.g. the model
weights in a gradient descent method or the topic-
word count matrix in the collapsed Gibbs sampler
for LDA [191]); and (3)Workers fetch data and up-
date (parts of) global parameters basedon their local
data (e.g. using the local gradients or local sufficient
statistics).Though it is straightforward to implement
on shared memory computers it is rather difficult in
a distributed setting. The goal of parameter servers
is to provide a distributed data structure for parame-
ters.

A parameter server is a key-value store (like a
hash map), accessible for all workers. It supports
for get and set (or update) for each entry. In
a distributed setting, both server and client consist
of many nodes (see Fig. 6 (c)). Memcached [192]
is an in memory key-value store that provides get
and set for arbitrary data. However it doesn’t have
a mechanism to resolve conflicts raised by concur-
rent access e.g. concurrent writes for a single entry.
Applications like [161] require to lock the global en-
try while updating which leads to suboptimal perfor-
mance. Piccolo [193] addresses this by introducing
user-defined accumulations which correctly address
concurrent updates to the same key. Piccolo has
a set of built-in user defined accumulations such as
summation, multiplication, and min/max.

One important tradeoff made by parameter
servers is that they sacrifice consistency for less
latency—getmay not return themost recent value,
so that it can return immediately without waiting
for most recent updates to reach the server. While
this improves the performance significantly, it can

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 645

potentially slow down convergence due to outdated
parameters. [194] proposed Stale Synchronous Par-
allel (SSP) where the staleness of parameters is
‘bounded’ and the fastest worker can be ahead of
the slowest one by no more than τ iterations, where
τ can be tuned to get a fast convergence as well
as low waiting time. Petuum [195] is a SSP based
parameter server. [196] proposed communication-
reducing improvements including key caching mes-
sage compression and message filtering, and it also
supports elastically adding and removingboth server
and worker nodes.

Parameter servers havebeendeployed in learning
very large-scale logistic regression [196] deep net-
works [197]LDA[162,198] andLasso [195]. [196]
learns a 2000-topic LDA with 5 billion documents
and 5 million unique tokens on 6000 machines in
20 h. Yahoo! LDA [162] has a parameter server de-
signed specifically for Bayesian LVM and it is the
fastest available LDA software. There are a bunch of
distributed topic modeling softwares based on Ya-
hoo! LDA including [98] for MedLDA and [58] for
correlated topic models.

Model parallel inference
MapReduce Spark and Parameter servers take the
‘data-parallelism’ approach where ‘data’ are parti-
tioned across machines and computations are per-
formed on each node given a copy of the globally
shared ‘model’. However, as the model size rapidly
grows (i.e. the largeM challenge), themodels cannot
fit in a single computer’smemory.Model-parallelism
addresses this challenge by partitioning the ‘model’
and storing a part of the model on each node. Then,
partial updates (i.e. the updates of model parts)
are carried out on each node. Benefits of model-
parallelism include largemodel sizes, flexibility to fo-
cus workers on fastest-converging parameters, and
more accurate convergence because no delayed up-
date is involved.

STRADS [199] provides primitives for model-
parallelism and it handles the distributed storage
of model and data automatically. STRADS requires
that a partial update could be computed using just
the model part together with data. Users writes
‘schedule’ that assigns model sets to workers ‘push’
that computes the partial updates for model ‘pop’
that applies updates to model. An automatic ‘sync’
primitive will ensure that users always get the lat-
est model. As a concrete example [200] demon-
strates a model parallel LDA in which both data
and model are partitioned by vocabulary. In each
iteration, a worker only samples latent variables
and updates the model related to the vocabulary
part assigned to it. The model then rotates between

workers, until a full cycle is completed. Unlike data
parallel LDA[160–162], the sampler always uses the
latest models and no read-write lock is needed on
models, thereby leading to faster convergence than
data-parallel LDAs.

Note thatmodel-parallelism is not a replacement
but a complement of data-parallelism. For example,
[201] showed a two layer LDA system where layer
1 is model-parallelism and layer 2 consists of several
local model-parallelism clusters performing asyn-
chronous updates on an globally distributed model.

CONCLUSIONS AND PERSPECTIVES
Wepresent a surveyof recent advancesonBigLearn-
ing with Bayesian methods, including Bayesian
non-parametrics, RegBayes, and scalable inference
algorithms and the systems based-on stochastic sub-
sampling or distributed computing. It is helpful
to note that our review is not exhaustive. In fact,
Big Learning has attracted intense interest with ac-
tive research spanning diverse fields, including ML,
databases, parallel and distributed systems, and pro-
gramming languages.

As reviewed above, Big Learning with Bayesian
methods has achieved substantial progress. How-
ever, considerable challenges still remain.We briefly
discuss several directions that are of promise for fu-
ture investigation. First, Bayesian methods have the
advantage to incorporate prior knowledge for ef-
ficient learning, especially for the scenarios where
a large number of training data is lacking, and
characterize uncertainty. For instance, the recent
work [202] demonstrates an example for the chal-
lenging task of one-shot learning which achieves
human-level performance by encoding the domain
knowledge as a hierarchical Bayesian model. In con-
trast, deep learningmethods [203] stand at the other
end of the spectrum—they are often learned in an
end-to-end manner by feeding a large set of train-
ing data and they often do not represent the uncer-
tainty in the structure or parameters of the neural
networks. A natural and important question that re-
mains under-addressed is how to conjoin the flexi-
bility of deep learning and the learning efficiency of
Bayesian methods for robust learning. Another re-
lated important question is how to effectively col-
lect domain knowledge and incorporate it into the
modeling and inference process. The work [92] has
demonstrated an example that selectively incorpo-
rates the noisy knowledge collected from crowds for
robustBayesian inferencebutmuchmore are leftun-
explored.

Second, one of the lessons we learn from Big
Learning is that the best predictive performance is

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

646 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

often obtained by building a highly flexible model
(e.g. deep neural networks [203]). Although NPB
techniques are powerful in theory to represent flexi-
ble models and automatically infer their complexity
from an unbounded space there is still a large gap in
practice, with very few real applications. Most of the
evaluations are proof-of-concepts by being hindered
on small-scale problems or those with relatively sim-
ple structures. For example, although some attempts
have demonstrated that a cascade IBP can be ap-
plied to infer the structure of a sparse deep belief net-
work [60] these results are preliminary and can only
learn toy network structures. It needs further study
on how to learn the structure of a sophisticated net-
work with state-of-the-art performance. In order to
fill up thepractical gapof non-parametricmodels,we
need to develop the algorithms that are accurate and
scalable as well as the theory of defining flexible non-
parametric processes that can properly consider the
rich structures in various domains.

Third, a more powerful way of composing
Bayesian models is offered by probabilistic pro-
gramming (http://probabilistic-programming.org),
which uses general-purpose computer programs
to represent probabilistic models and automates
the inference procedure by building a universal
engine. Several probabilistic programming lan-
guages have been developed, including BUGS
(http://www.mrc-bsu.cam.ac.uk/software/bugs/),
Stan (http://mc-stan.org/), BLOG (https://baye
sianlogic.github.io/), Church (https://projects.cs
ail.mit.edu/church/wiki/Church) and Infer.Net
(http://research.microsoft.com/en-us/um/cambri
dge/projects/infernet/). However, scalable in-
ference is still a considerable challenge for these
languages. The existing platforms for Bayesian
inference do not well support the advanced deep
models and the recent scalable algorithms in
distributed/stochastic settings. They do not well
support the accelerating hardware (e.g. GPUs and
FPGAs) either. In fact, the existence of user-friendly
platforms (e.g. Tensorflow [204] Theano [205]
and Caffe [206]) has significantly boosted the
applications of deep learning in industry. It will
be very useful to fill up this gap for Bayesian
methods which can allow for rapid prototyping
and testing of different models therefore mo-
tivating wider adoption of Bayesian methods.
Edward (http://edwardlib.org/) is a recent system
that builds on Tensorflow for scalable Bayesian
inference, but much work needs to be done.

Finally, the current ML methods in general still
require considerable human expertise in devising ap-
propriate features, priors, models and algorithms.
Much work has to be done in order to make
ML more widely used and eventually become a

common part of our day to day tools in data sci-
ences. Along this line, several promising projects
have been started. Google prediction API is one of
the earliest efforts that try to make ML accessible
for beginners by providing easy-to-use service. Mi-
crosoft AzureML takes a similar approach by pro-
viding a visual interface to help design experiments.
SystemML [207] provides an R-like declarative lan-
guage to specify ML tasks based on MapReduce
andMLBase [208] further improves it by providing
learning-specific optimizer that transforms a declar-
ative task into a sophisticated learning plan. Finally,
Automated Statistician (AutoStat) [209] aims to au-
tomate the process of statistical modeling, by using
Bayesian model selection strategies to automatically
choose good models/features and to interpret the
results in easy-to-understand ways, in terms of au-
tomatically generated reports. Though still at a very
early stage, such efforts would have a tremendous
impact on the fields that currently rely on expert
statisticians, ML researchers and data scientists.

FUNDING
Thework was supported by theNational Basic Research Program
of China (2013CB329403), the National Natural Science Foun-
dation of China (61620106010, 61621136008 and 61332007)
and the Youth Top-notch Talent Support Program.

Conflict of interest statement.None declared.

REFERENCES
1. Brumfiel G. High-energy physics: down the petabyte highway.
Nature 2011; 469: 282–3.

2. Doctorow C. Big data: Welcome to the petacentre. Nature
2008; 455: 16–21.

3. Reichman OJ, Jones MB and Schildhauer MP. Challenges and
Opportunities of Open Data in ecology. Science 2011; 331:
703–5.

4. Fan J, Han F and Liu H. Challenges of Big Data analysis. Nat
Sci Rev 2013; 1: 293–314.

5. Mitchell T. Machine Learning. NY, USA: McGraw-Hill Educa-
tion, 1997.

6. Weinberger K, Dasgupta A and Langford J et al. Feature hash-
ing for large scale multitask learning. In: International Confer-
ence on Machine Learning. Montreal, Canada, 2009, 1113–20.

7. Tan M, Tsang I and Wang L. Towards ultrahigh dimensional
feature selection for big data. JMLR 2014; 15: 1371–429.

8. http://www.image-net.org/about-overview (23 April 2017,
date last accessed).

9. http://lshtc.iit.demokritos.gr/ (23 April 2017, date last ac-
cessed).

10. Bengio S, Weston J and Grangier D. Label embedding trees
for large multi-class tasks. In: Advances in Neural Information
Processing Systems 2010, 163–71.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

http://probabilistic-programming.org
http://www.mrc-bsu.cam.ac.uk/software/bugs/
http://mc-stan.org/
https://bayesianlogic.github.io/
https://bayesianlogic.github.io/
https://projects.csail.mit.edu/church/wiki/Church
https://projects.csail.mit.edu/church/wiki/Church
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
http://research.microsoft.com/en-us/um/cambridge/projects/infernet/
http://edwardlib.org/
http://www.image-net.org/about-overview
http://lshtc.iit.demokritos.gr/

REVIEW Zhu et al. 647

11. Deng J, Satheesh S and Berg A et al. Fast and balanced: efficient label tree
learning for large scale object recognition. In: Advances in Neural Information
Processing Systems. Granada, Spain, 2011, 567–75.

12. Hinton G, Deng L and Yu D et al. Deep neural networks for acoustic modeling
in speech recognition. IEEE Signal Process Mag 2012; 29: 82–97.

13. Vincent P, Larochelle H and Bengio Y et al. Extracting and composing robust
features with denoising autoencoders. In: International Conference on Ma-
chine Learning. Helsinki, Finland, 2008, 1096–103.

14. Le and Quoc V. Building high-level features using large scale unsupervised
learning. IEEE International Conference on Speech and Signal Processing,
2013, 8595–8.

15. Salakhutdinov R. Learning deep generative models. Ph.D. Thesis. University
of Toronto, Department of Computer Science, 2009.

16. Rezende DJ,Mohamed S andWierstra D. Stochastic backpropagation and ap-
proximate inference in deep generative models. In: International Conference
on Machine Learning. Beijing, China, 2014, 1278–86.

17. Jordan MI. The era of Big Data. ISBA Bulletin 2011; 18: 1–3.
18. Zhu J, Chen N and Xing EP. Bayesian inference with posterior regularization

and applications to infinite latent SVMs. JMLR 2014; 15: 1799–1847.
19. Hjort N, Holmes C and Muller P et al. Bayesian Nonparametrics: Principles

and Practice. Cambridge, UK: Cambridge University Press, 2010.
20. Bialek W, Nemenman I and Tishby N. Predictability, complexity and learning.

Neural Comput 2001; 13: 2409–63.
21. Srivastava N, Hinton G and Krizhevsky A et al. Dropout: a simple way to

prevent neural networks from overfitting. JMLR 2014; 15: 1929–58.
22. Welling M. Exploiting the statistics of learning and inference. In:Neural Infor-

mation Processing Systems workshop on ‘Probabilistic Models for Big Data’.
Lake Tahoe, USA, 2013.

23. Gelman A, Carlin J and Stern H et al. Bayesian Data Analysis. 3rd edn. Chap-
man & Hall/CRC Texts in Statistical Science, Florida, USA: CRC Press, 2013.

24. Efron B. Bayes’ Theorem in the 21st Century. Science 2013; 340: 1177–8.
25. Ghosh JK and Ramamoorthi RV. Bayesian Nonparametrics. New York, NY:

Springer, 2003.
26. Williams PM. Bayesian Conditionalisation and the Principle of Minimum In-

formation. Br J Philos Sci 1980; 31.
27. Bishop CM. Pattern Recognition and Machine Learning. New York: Springer,

2006, 152–64, 217–20, 359–418.
28. Kadane JB and Lazar NA. Methods and criteria for model selection. JASA

2004; 99: 279–90.
29. Kass RE, Raftery AE and Bayes Factors. JASA 1995; 90: 773: 95.
30. Grelaud A, Robert CP and Marin JM et al. Likelihood-free methods for model

choice in Gibbs random fields. Bayesian Anal 2009; 4: 317–36.
31. Turnera BM and Zandtb TV. A tutorial on approximate Bayesian computation.

J Math Psychol 2012; 56: 69–85.
32. Robert CP, Cornuet JM and Marin JM et al. Lack of confidence in approxi-

mate Bayesian computation model choice. Proc Natl Acad Sci USA 2011; 108:
15112–7.

33. Wainwright M and Jordan M. Graphical models, exponential families, and
variational inference. Found Trends Mach Learn 2008; 1: 1–305.

34. Jordan M, Ghahramani Z and Jaakkola T et al. An Introduction to variational
methods for graphical models.MLJ 1999; 37: 183–233.

35. Beal MJ. Variational Algorithms for approximate Bayesian inference. Ph.D.
Thesis. University of Cambridge. Gatsby Computational Neuroscience Unit,
University College London, 2003.

36. Robert C and Casella G.Monte Carlo Statistical Methods. New York: Springer,
2005.

37. Andrieu C, Freitas ND and Doucet A et al. An introduction to MCMC for ma-
chine learning.Mach Learn 2003; 50: 5–43.

38. Metropolis N, Rosenbluth A and Rosenbluth M et al. Equation of state calcu-
lations by fast computing machines. J Chem Phys 1953; 21: 1087.

39. Hastings W. Monte Carlo sampling methods using Markov chains and their
applications. Biometrika 1970; 57: 97–109.

40. Geman S and Geman D. Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images. IEEE Trans PAMI 1984; 6: 721–41.

41. Neal RM. MCMC using Hamiltonian Dynamics. In: Brooks S, Gelman A and
Jones G et al. (eds.). Handbook of Markov Chain Monte Carlo. Florida, USA:
Chapman & Hall/CRC Press, 2010.

42. Jasra A, Stephens DA and Holmes CC. On population-based simulation for
static inference. Stat Comput 2007; 17: 263–79.

43. Geyer CJ and Thompson EA. Annealing Markov Chain Monte Carlo with ap-
plications to ancestral inference. JASA 1995; 90: 909–20.

44. Tanner M andWongW. The calculation of posterior distributions by data aug-
mentation. JASA 1987; 82: 528–40.

45. Dyk DV and Meng X. The art of data augmentation. JCGS 2001; 10: 1–50.
46. Neal R. Slice sampling. Ann Statist 2003; 31: 705–67.
47. van Dyk D and Park T. Partially collapsed gibbs samplers: theory and methods.

JASA 2008; 103: 790–6.
48. Blei D, Ng A and Jordan MI. Latent Dirichlet allocation. JMLR 2003; 3: 993–

1022.
49. Li FF and Perona P. A Bayesian hierarchical model for learning natural scene

categories. In: Conference on Computer Vision and Pattern Recognition. 2005.
50. Jeffreys H. An invariant form for the prior probability in estimation problems.

In: Proceedings of the Royal Society of London Series A, Math Phys Sci 1945;
186: 453–61.

51. Jaynes ET. Prior probabilities. IEEE Trans Sys Sci Cybern 1968; 4: 227–41.
52. George EI and Foster DP. Calibration and empirical Bayes variable selection.

Biometrika 2000; 87: 731–47.
53. McAuliffe JD, Blei DM and JordanMI. Nonparametric empirical Bayes for the

Dirichlet process mixture model. Statist Comput 2006; 16: 5–14.
54. Petrone S, Rousseau J and Scricciolo C. Bayes and empirical Bayes: Do they

merge? Biometrika 2014; 101: 1–18.
55. Donnet S, Rivoirard V and Rousseau J et al. On convergence rates of empirical

Bayes Procedures. In: 47th ScientificMeeting of the Italian Statistical Society.
Cagliari, Italy, 2014.

56. Blei D and Lafferty J. Correlated topic models. In: Advances in Neural Infor-
mation Processing Systems. Vancouver, Canada, 2006.

57. Aitchison J and Shen SM. Logistic-normal distributions: some properties and
uses. Biometrika 1980; 67: 261–72.

58. Chen J, Zhu J and Wang Z et al. Scalable Inference for Logistic-Normal Topic
Models. In: Advances in Neural Information Processing Systems. Lake Tahoe,
USA, 2013, 2445–53.

59. Bengio Y, Courville A and Vincent P. Representation learning: a review and
new perspectives. IEEE Trans PAMI 2013; 35: 1798–828.

60. Adams R,Wallach H and Ghahramani Z. Learning the structure of deep sparse
graphical models. In: Artificial Intelligence and Statistics Conference. Sar-
dinia, Italy, 2010, 1–8.

61. Ghahramani Z. Bayesian nonparametrics and the probabilistic approach to
modelling. Phil Trans Royal Soc 2013; 371: 20110553.

62. Gershmana S and Blei D. A tutorial on Bayesian nonparametric models.
J Math Psychol 2012; 56: 1–12.

63. Muller P and Quintana FA. Nonparametric Bayesian Data Analysis. Stat Sci
2004; 19: 95–110.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

648 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

64. Ferguson TS. A Bayesian analysis of some nonparametric problems.Ann Stats
1973; 1: 209–30.

65. Sethuraman J. A Constructive definition of Dirichlet Priors. Statistica Sinica
1994; 4: 639–50.

66. Blei DM and Jordan MI. Variational inference for Dirichlet process mixtures.
Bayesian Anal 2006; 1: 121–44.

67. Pitman J. Combinatorial Stochastic Processes. Technical Report No. 621. De-
partment of Statistics, UC, Berkeley. 2002.

68. Antoniak CE. Mixture of Dirichlet Process with Applications to Bayesian Non-
parametric Problems. Ann Stats 1974; 273: 1152–74.

69. Neal R. Markov chain sampling methods for Dirichlet process mixture models.
JCGS 2000; 9: 249–65.

70. Walker SG. Sampling the Dirichlet mixture model with slices. Commun Stat
2007; 36: 45–54.

71. Griffiths TL and Ghahramani Z. Infinite latent feature models and the Indian
buffet process. In: Advances in Neural Information Processing Systems, 2005,
18: 475–82.

72. Thibaux R and Jordan MI. Hierarchical beta processes and the Indian buffet
process. In: Artificial Intelligence and Statistics Conference, 2007, 564–71.

73. Teh YW, Gorur D and Ghahramani Z. Stick-breaking construction for the
Indian buffet process. In: Artificial Intelligence and Statistics Conference,
2007, 556–63.

74. Doshi-Velez F, Miller K and Gael JV et al. Variational inference for the Indian
buffet process. In:Artificial Intelligence and Statistics Conference. Clearwater
Beach, Florida, USA, 2009.

75. Hofmann T, Scholkopf B and Smola AJ. Kernel methods in machine learning.
Ann Statist 2008; 36: 1171–220.

76. Rasmussen CE and Williams CKI. Gaussian Processes for Machine Learning.
Cambridge, Massachusetts, USA: The MIT Press, 2006.

77. Lawrence N. Probabilistic non-linear principal component analysis with gaus-
sian process latent variable models. JMLR 2005; 6: 1783–816.

78. Teh YW, JordanMI and Beal MJ et al. Hierarchical Dirichlet processes. JASA
2006; 101: 1566–81.

79. Dallaire P, Giguere P and Chaib-draa B. Learning the structure of proba-
bilistic graphical models with an extended cascading indian buffet process.
In: Association for the Advancement of Artificial Intelligence. Quebec,
Canada, 2014, 1774–80.

80. BealMJ, Ghahramani Z and Rasmussen CE. The infinite hiddenMarkovmodel.
In: Advances in Neural Information Processing Systems, 2002, 577–84.

81. Zhang A, Zhu J and Zhang B. Max-margin Infinite Hidden Markov Models. In:
International Conference on Machine Learning. Beijing, China, 2014, 315–23.

82. MacEachern S. Dependent nonparametric processes. In: ASA proceedings of
the section on Bayesian statistical science, 1999.

83. Duan J, GuindaniM and Gelfand A. Generalized spatial Dirichlet processmod-
els. Biometrika 2007; 94: 809–25.

84. Blei D and Frazier P. Distance dependent Chinese restaurant processes. In:
International Conference on Machine Learning. Haifa, Israel, 2010, 2461–88.

85. Williamson S, Orbanz P and Ghahramani Z. Dependent Indian buffet pro-
cesses. In: Artificial Intelligence and Statistics Conference. Sardinia, Italy,
2010, 924–31.

86. Gershman SJ, Frazier PI and Blei DM. Distance dependent infinite latent fea-
ture models. IEEE transactions on pattern analysis and machine intelligence
2015; 37: 334–45.

87. Miller K, Griffiths T and Jordan M. Nonparametric latent feature models for
link prediction. In: Advances in Neural Information Processing Systems, 2009,
1276–84.

88. Zhu J. Max-Margin Nonparametric latent feature models for link prediction.
In: International Conference onMachine Learning. Edinburgh, Scotland, 2012,
719–26.

89. Gopalan P and Blei D. Efficient discovery of overlapping communities in mas-
sive networks. Proc Natl Acad Sci USA 2013; 110: 14534–9.

90. Kim DI, Gopalan P and Blei DM et al. Efficient online inference for bayesian
nonparametric relational models. In: Advances in Neural Information Process-
ing Systems. Lake Tahoe, USA, 2013, 962–70.

91. Zhu J, Ahmed A and Xing EP. MedLDA: maximum margin supervised topic
models. JMLR 2012; 13: 2237–78.

92. Mei S, Zhu J and Zhu X. Robust RegBayes: selectively incorporating first-order
logic domain knowledge into Bayesian models. In: International Conference
on Machine Learning. Beijing, China, 2014, 253–61.

93. Koyejo O and Ghosh J. Constrained Bayesian inference for low rank multitask
learning. In: Conference on Uncertainty in Artificial Intelligence. Washington,
USA, 2013, 341–50.

94. Song Y, Zhu J and Ren Y. Kernel Bayesian Inference with posterior regular-
ization. In: Advances in Neural Information Processing Systems. Barcelona,
Spain, 2016, 4763–71.

95. Blei D and McAuliffe J. Supervised topic models. In: Advances in Neural In-
formation Processing Systems, 2007, 121–8.

96. Zhu J, Zheng X and Zhang B. Improved Bayesian logistic supervised topic
models with data augmentation. In: Association for Computational Linguis-
tics. Sofia, Bulgaria, 2013.

97. Zhu J, Chen N and Perkins H et al. Gibbs Max-margin topic models with data
augmentation. JMLR 2014; 15: 1073–110.

98. Zhu J, Zheng X and Zhou L et al. Scalable inference in max-margin topic mod-
els. In: Proceedings of the 19th ACM SIGKDD international conference on
Knowledge discovery and data mining. Chicago, USA: ACM, 2013, 964–72.

99. Bottou L and Bousquet O. The Tradeoffs of large scale learning. In: Advances
in Neural Information Processing Systems, 2008, 161–8.

100. Boyd S and Vandenberghe L. Convex Optimization. Cambridge, UK: Cambridge
University Press, 2004.

101. Duchi J, Hazan E and Singer Y. Adaptive subgradient methods for online learn-
ing and stochastic optimization. JMLR 2011; 12: 2121–59.

102. Bottou L. Online Algorithms and Stochastic Approximations. Online Learning
and Neural Networks. Cambridge, UK: Cambridge University Press, 1998.

103. Amari S. Natural gradient works efficiently in learning. Neural Comput 1998;
10: 251–76.

104. HoffmanMD, Blei D andWang C et al. Stochastic variational inference. JMLR
2013; 14: 1303–47.

105. Ranganath R, Wang C and Blei D et al. An adaptive learning rate for stochas-
tic variational inference. In: International Conference on Machine Learning.
Atlanta, USA, 2013, 298–306.

106. Snoek J, Larochelle H and Adams RP. Practical Bayesian optimization of ma-
chine learning algorithms. In: Advances in Neural Information Processing Sys-
tems. Lake Tahoe, USA, 2012, 2951–9.

107. Mandt S and Blei D. Smoothed gradients for stochastic variational inference.
In: Advances in Neural Information Processing Systems. Montreal, Canada,
2014, 2438–46.

108. Marlin B, Khan E and Murphy K. Piecewise bounds for estimating Bernoulli-
logistic latent Gaussian models. In: International Conference on Machine
Learning. Washington, USA, 2011, 633–40.

109. Paisley J, Blei DM and Jordan MI. Variational Bayesian inference with
stochastic search. In: International Conference on Machine Learning. Edin-
burgh, Scotland, 2012, 1367–74.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

REVIEW Zhu et al. 649

110. Kingma D and Welling M. Auto-encoding variational Bayes. In: International
Conference on Learning Representations. Banff, Canada, 2014.

111. Papaspiliopoulos O, Roberts GO and Skold M. A general framework
for the parametrization of hierarchical models. Stat Sci 2007; 22:
59–73.

112. Kingma D and Welling M. Efficient gradient-based inference through Trans-
formations between Bayes nets and neural nets. In: International Conference
on Machine Learning. Beijing, China, 2014, 1782–90.

113. Yu Y and Meng XL. To center or not to center: That is not the question–an
Ancillarity–Sufficiency Interweaving Strategy (ASIS) for boosting MCMC effi-
ciency. JCGS 2011; 20: 531–70.

114. Mnih A and Gregor K. Neural Variational Inference and Learning in Belief
Networks. In: International Conference on Machine Learning. Beijing, China,
2014, 1791–9.

115. Roberts G and Strame O. Langevin Diffusions and Metropolis-Hastings algo-
rithms.Methodol Comput Appl Probab 2002; 4: 337–57.

116. Welling M and Teh YW. Bayesian learning via Stochastic gradient langevin
dynamics. In: International Conference on Machine Learning, 2011.

117. Chen T, Fox EB and Guestrin C. Stochastic gradient Hamiltonian Monte Carlo.
In: International Conference onMachine Learning. Beijing, China, 2014, 1683–
91.

118. Pillai N and Smith A. Ergodicity of approximate MCMC Chains with applica-
tions to large data sets. arXiv:1405.0182. 2014.

119. Teh YW, Thiery AH and Vollmer SJ. Consistency and fluctuations for stochastic
gradient Langevin dynamics. J Mach Learn Res. 2016; 17: 1–33.

120. Ahn S, Korattikara A andWellingM. Bayesian posterior sampling via stochas-
tic gradient fisher scoring. In: International Conference on Machine Learning.
Edinburgh, Scotland, 2012, 1591–8.

121. Schraudolph N, Yu J and Gunter S. A Stochastic Quasi-Newton method for on-
line convex optimization. In: Artificial Intelligence and Statistics Conference,
2007, 436–43.

122. Patterson S and Teh YW. Stochastic Gradient Riemannian Langevin Dynam-
ics on the Probability Simplex. In: Advances in Neural Information Processing
Systems. Lake Tahoe, USA, 2013, 3102–10.

123. Liu C, Zhu J and Song Y. Stochastic Gradient Geodesic MCMC Methods. In:
Advances in Neural Information Processing Systems. Barcelona, Spain, 2016,
3009–17.

124. Ma Y, Chen T and Fox E. A complete recipe for stochastic gradient MCMC.
In: Advances in Neural Information Processing Systems. Montreal, Canada,
2015, 2917–25.

125. Korattikara A, Chen Y and Welling M. Austerity in MCMC Land: Cutting the
Metropolis-Hastings Budget. In: International Conference on Machine Learn-
ing. Beijing, China, 2014, 181–9.

126. Bardenet R, Doucet A and Holmes C. Towards scaling up Markov chain Monte
Carlo: an adaptive subsampling approach. In: International Conference onMa-
chine Learning. Beijing, China, 2014, 405–13.

127. Bardenet R and Maillard OA. Concentration inequalities for sampling without
replacement. Bernoulli. 2015; 21: 1361–85.

128. Maclaurin D and Adams RP. FireflyMonte Carlo: exact MCMCwith Subsets of
Data. In: Conference on Uncertainty in Artificial Intelligence. Quebec, Canada,
2014, 4289–95.

129. Shi T and Zhu J. Online Bayesian passive-aggressive learning. In: International
Conference on Machine Learning. Beijing, China, 2014, 378–86.

130. Rabiner LR. A tutorial on hidden Markov Models and selected applications in
speech recognition. Proc of the IEEE 1989; 77: 257–86.

131. Scott SL. BayesianMethods for HiddenMarkovModels. JASA 2002; 97: 337–
51.

132. Kalman RE. A New Approach to Linear Filtering and Prediction Problems.
J Fluids Eng 1960; 82: 35–45.

133. Broderick T, Boyd N and Wibisono A et al. Streaming Variational Bayes. In:
Advances in Neural Information Processing Systems, 2013.

134. Crammer K, Dekel O and Keshet J et al. Online Passive-Agressive Algorithms.
JMLR 2006; 551–85.

135. Andrieu C, Doucet A and Holenstein R. Particle Markov chain Monte Carlo
methods. J R Stat Soc Ser B 2010; 72: 269–342.

136. Liu JS and Chen R. Sequential Monte Carlo Methods for Dynamic Systems.
JASA 1998; 93: 1032–44.

137. Arulampalam M, Maskell S and Gordon N et al. A Tutorial on Particle Fil-
ters for Online Nonlinear/Non-Gaussian Bayesian Tracking. IEEE Trans Signal
Process 2002; 50: 174–88.

138. Lauritzen SL. Propagation of probabilities, means and variances in mixed
graphical association models. JASA 1992; 87: 1098–108.

139. Opper, OM. A Bayesian approach to on-line learning. On-Line Learning in Neu-
ral Networks. Cambridge University Press, 1999.

140. Guhaniyogi R, Qamar S and Dunson D. Bayesian Conditional Density Filtering
for Big Data. arXiv:1401.3632. 2014.

141. Boyd S, Parikh N and Chu E et al. Distributed Optimization and Statistical
Learning via the Alternating Direction Method of Multipliers. Found Trends
Mach Learn 2011; 3: 1–122.

142. Zhai K, Boyd-Graber J and Asadi N et al. Mr. LDA: a flexible large scale topic
modeling package using variational inference in MapReduce. In: International
World Wide Web Conference. Lyon, France, 2012, 879–88.

143. Wu XL, Sun C and Beissinger T et al. Parallel Markov chain Monte Carlo -
bridging the gap to high-performance Bayesian computation in animal breed-
ing and genetics. Genet Sel Evol 2012; 44: 29–46.

144. Gelman A and Rubin D. Inference from iterative simulation using multiple sim-
ulations. Stat Sci 1992; 7: 457–511.

145. Suchard MA, Wang Q and Chan C et al. Understanding GPU Programming
for Statistical Computation: Studies in Massively Parallel Massive Mixtures.
JCGS 2010; 19: 419–38.

146. Wilkinson DJ. Parallel bayesian computation. Statistics Textbooks andMono-
graphs, 2006; 184: 477.

147. Williamson SA, Dubey A and Xing EP. Parallel Markov Chain Monte Carlo
for Nonparametric Mixture Models. In: International Conference on Machine
Learning. Atlanta, USA, 2013, 98–106.

148. Scott SL, Blocker AW and Bonassi FV et al. Bayes and big data: the consensus
Monte Carlo algorithm. Int J Manage Sci Eng Manage 2016, 11: 78–88.

149. Neiswanger W, Wang C and Xing EP. Asymptotically Exact, Embarrassingly
Parallel MCMC. In: Conference on Uncertainty in Artificial Intelligence. Que-
bec, Canada, 2014, 623–32.

150. Wang X and Dunson DB. Parallelizing MCMC via Weierstrass Sampler.
arXiv:1312.4605. 2013.

151. Minsker S, Srivastava S and Lin L et al. Scalable and Robust Bayesian In-
ference via the Median Posterior. In: International Conference on Machine
Learning. Beijing, China, 2014, 1656–64.

152. Beck A and Sabach S. Weiszfelds method: old and new results. J Opt Theory
Appl 2015; 164, 1–40.

153. Xu M, Lakshminarayanan B and Teh YW et al. Distributed Bayesian Posterior
Sampling via Moment Sharing. In: Advances in Neural Information Processing
Systems, 2014, 3356–64.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

650 Natl Sci Rev, 2017, Vol. 4, No. 4 REVIEW

154. Brockwell AE. Parallel Markov chain Monte Carlo Simulation by Pre-Fetching.
JCGS 2006; 15: 246–61.

155. Angelino E, Kohler E and Waterland A et al. Accelerating MCMC via Parallel
Predictive Prefetching. arXiv:1403.7265. 2014.

156. Strid I. Efficient parallelisation of Metropolis-Hastings algorithms
using a prefetching approach. Comput Stat Data Anal 2010; 54:
2814–35.

157. Banterle M, Grazian C and Robert CP. Accelerating Metropolis-Hastings
algorithms: Delayed acceptance with prefetching. arXiv:1406.2660.
2014.

158. Gonzalez JE, LowY and Gretton A et al. Parallel Gibbs Sampling: FromColored
Fields to Thin Junction Trees. In: Artificial Intelligence and Statistics Confer-
ence. Florida, USA, 2011, 324–32.

159. JohnsonMJ, Saunderson J andWillsky AS. Analyzing Hogwild Parallel Gaus-
sian Gibbs Sampling. In: Advances in Neural Information Processing Systems,
2013.

160. Newman D, Asuncion A and Smyth P et al. Distributed Inference for latent
Dirichlet allocation. In: Advances in Neural Information Processing Systems,
2007, 1081–8.

161. Smola A and Narayanamurthy S. An architecture for parallel topic models. In:
Proceedings of the VLDB Endowment, 2010; 3: 703–10.

162. Ahmed A, Aly M and Gonzalez J et al. Scalable inference in latent variable
models. In: International Conference onWeb Search and Data Mining. Wash-
ington, USA, 2012, 123–32.

163. Liu Z, Zhang Y and Chang EY et al. PLDA+: Parallel latent Dirich-
let allocation with data placement and pipeline processing. TIST 2011;
2: 26.

164. Chen J, Li K and Zhu J et al. WarpLDA: a cache efficient O (1) algorithm for
latent dirichlet allocation. In: Proceedings of the VLDB Endowment, 2016; 9:
744–55.

165. Gal Y and Ghahramani Z. Pitfalls in the use of Parallel Inference for the Dirich-
let Process. In: International Conference on Machine Learning. Beijing, China,
2014, 208–16.

166. Zinkevich MA, Weimer M and Smola A et al. Parallelized StochasticGradient
Descent. In:Advances in Neural Information Processing Systems, 2010, 2595–
603.

167. Niu F, Recht B and Re C et al. Hogwild: A lock-free approach to parallelizing
stochastic gradient descent. In: Advances in Neural Information Processing
Systems, 2011, 693–701.

168. Ahn S, Shahbaba B and Welling M. Distributed Stochastic Gradient MCMC.
In: International Conference onMachine Learning. Beijing, China, 2014, 1044–
52.

169. Yang Y, Chen J and Zhu J. Distributing the Stochastic Gradient Sampler for
Large-Scale LDA. In: Proceedings of the 22nd ACMSIGKDD International Con-
ference on Knowledge Discovery and Data Mining. California, USA, 2016,
1975–84.

170. http://www.openmp.org (23 April 2017, date last accessed).
171. https://www.threadingbuildingblocks.org/ (23 April 2017, date last ac-

cessed).
172. Lee A, Yau C and Giles MB et al. On the utility of graphics cards to perform

massively parallel simulation of advanced Monte Carlo methods. JCGS 2010;
19: 769–89.

173. Moral PD, Doucet A and Jasra A. Sequential Monte Carlo samplers. J R Stat
Soc Ser B 2006; 68: 411–36.

174. Beam AL, Ghosh SK and Doyle J. Fast hamiltonian monte carlo using gpu
computing. J Comput Graph Stat, 2016; 25: 536–48.

175. Yan F, Xu N and Qi A. Parallel Inference for Latent Dirichlet Allocation on
Graphics Processing Units. In:Advances in Neural Information Processing Sys-
tems, 2009, 2134–42.

176. Li K, Chen J and Chen W et al. SaberLDA: Sparsity-Aware Learning of Topic
Models on GPUs. International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems 2017.

177. Canny J and Zhao H. BIDMach: Large-scale Learning with Zero Memory Allo-
cation. In: Advances in Neural Information Processing Systems. Big Learning
Workshop, 2013.

178. Chau T, Targett J and Wijeyasinghe M et al. Accelerating sequential Monte
Carlomethod for real-time air trafficmanagement. SIGARCHCompArchNews
2013; 41: 35–40.

179. Ronquist F and Huelsenbeck JP. MrBayes: Bayesian inference of phylogenetic
trees. Bioinformatics 2003; 19: 1572–4.

180. Altekar G, Dwarkadas S and Huelsenbeck JP et al. Parallel Metropolis cou-
pled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioin-
formatics 2004; 20: 407–15.

181. Bekkerman R, Bilenko M and Langford J. Scaling up machine learning: Paral-
lel and distributed approaches. Cambridge, UK: Cambridge University Press,
2011.

182. Dean J and Ghemawat S. MapReduce: simplified data processing on large
clusters. Communications of the ACM 2008; 51: 107–13.

183. Chu C, Kim SK and Lin YA et al. Map-reduce formachine learning onmulticore.
In: Advances in Neural Information Processing Systems, 2007, 281–8.

184. Apache Mahout: https://mahout.apache.org/.
185. Zaharia M, Chowdhury M and Franklin MJ et al. Spark: cluster computing

with working sets. In: Hot Topics in Cloud Computing, 2010.
186. Malewicz G, Austern MH and Bik AJ et al. Pregel: a system for large-scale

graph processing. In: Special Interest Group on Management of Data, 2010.
187. Salihoglu S and Widom J. GPS: A Graph Processing System. In: Conference

on Scientific and Statistical Database Management. Maryland, USA, 2013.
188. Low Y, Gonzalez J and Kyrola A et al. Graphlab: A new framework for paral-

lel machine learning. In: Conference on Uncertainty in Artificial Intelligence.
Washington, USA, 2013, 340–9.

189. Xin RS, Gonzalez JE and Franklin MJ et al. Graphx: A resilient distributed
graph system on spark. In:Workshop onGraphDataManagement Experiences
and Systems, 2013.

190. Kyrola A, Blelloch GE and Guestrin C. GraphChi: Large-Scale Graph Computa-
tion on Just a PC. In: Operating Systems Design and Implementation.

191. Griffiths T and Steyvers M. Finding scientific topics. Proc Natl Acad Sci USA
2004; 101.

192. http://memcached.org (23 April 2017, date last accessed).
193. Power R and Li J. Piccolo: Building Fast, Distributed Programs with Parti-

tioned Tables. In: Operating Systems Design and Implementation. Vancouver,
Canada, 2010, 1–14.

194. Ho Q, Cipar J and Cui H et al. More effective distributed ML via a stale syn-
chronous parallel parameter server. In: Advances in Neural Information Pro-
cessing Systems, 2013, 1223–31.

195. Dai W, Wei J and Zheng X et al. Petuum: A Framework for Iterative-
Convergent Distributed ML. arXiv:1312.7651; 2013.

196. Li M, Andersen D and Park JW et al. Scaling Distributed Machine Learning
with the Parameter Server. In:Operating SystemsDesign and Implementation.
Broomfield, USA, 2014, 583–98.

197. Dean J, Corrado G and Monga R et al. Large scale distributed deep
networks. In: Advances in Neural Information Processing Systems, 2012,
1223–31.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

http://www.openmp.org
https://www.threadingbuildingblocks.org/
https://mahout.apache.org/
http://memcached.org

REVIEW Zhu et al. 651

198. Li AQ, Ahmed A and Ravi S et al. Reducing the sampling complexity of topic
models. In: Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining. New York, USA, 2014, 891–900.

199. Lee S, Kim JK and Zheng X et al. Primitives for Dynamic BigModel Parallelism.
arXiv:1406.4580. 2014.

200. Zheng X, Kim JK and HoQ et al.Model-Parallel Inference for Big TopicModels.
arXiv:1411.2305. 2014.

201. Wang Y, Zhao X and Sun Z et al. Towards Topic Modeling for Big Data.
arXiv:1405.4402. 2014.

202. Lake B, Salakhutdinov R and Tenenbaum J. Human-level concept learning
through probabilistic program induction. Science 2015; 350: 1332–8.

203. LeCun Y, Bengio Y and Hinton G. Deep learning. Nature 2015; 521: 436–44.
204. Abadi M, Agarwal A and Barham P et al. TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems; 2015. Software available from tensor-
flow.org. http://tensorflow.org/ (23 April 2017, date last accessed).

205. Theano Development Team. Theano: A Python framework for fast computa-
tion of mathematical expressions. arXiv e-prints. 2016 May;abs/1605.02688.
http://arxiv.org/abs/1605.02688 (23 April 2017, date last accessed).

206. Jia Y, Shelhamer E and Donahue J et al. Caffe: Convolutional architecture
for fast feature embedding. In: Proceedings of the 22nd ACM international
conference on Multimedia. ACM. 2014, 675–8.

207. Ghoting A, Krishnamurthy R and Pednault E et al. SystemML: Declarative
machine learning on MapReduce. In: International Conference on Data Engi-
neering. Hannvor, Germany, 2011, 231–42.

208. Kraska T, Talwalkar A and Duchi J et al. MLbase: A Distributed Machine-
learning System. In: Conference on Innovative Data Systems Research, 2013.

209. Lloyd J, Duvenaud D and Grosse R et al. Automatic Construction and Natural
Language Description of Nonparametric Regression Models. In: Association
for the Advancement of Artificial Intelligence. Quebec, Canada, 2014, 1242–
50.

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/article/4/4/627/3796326 by guest on 03 D

ecem
ber 2020

http://tensorflow.org/
http://arxiv.org/abs/1605.02688

