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ABSTRACT
Dynamic topic models (DTMs) are very effective in discover-
ing topics and capturing their evolution trends in time series
data. To do posterior inference of DTMs, existing methods
are all batch algorithms that scan the full dataset before
each update of the model and make inexact variational ap-
proximations with mean-field assumptions. Due to a lack of
a more scalable inference algorithm, despite the usefulness,
DTMs have not captured large topic dynamics.

This paper fills this research void, and presents a fast
and parallelizable inference algorithm using Gibbs Sampling
with Stochastic Gradient Langevin Dynamics that does not
make any unwarranted assumptions. We also present a
Metropolis-Hastings based O(1) sampler for topic assign-
ments for each word token. In a distributed environment,
our algorithm requires very little communication between
workers during sampling (almost embarrassingly parallel)
and scales up to large-scale applications. We are able to
learn the largest Dynamic Topic Model to our knowledge,
and learned the dynamics of 1,000 topics from 2.6 million
documents in less than half an hour, and our empirical re-
sults show that our algorithm is not only orders of magnitude
faster than the baselines but also achieves lower perplexity.

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Surrounded by data, statistical topic models have become

some of the most useful machine learning tools to automat-
ically analyze large sets of categorical data, including both
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text documents and images under some bag-of-words rep-
resentations. Topic models can capture thematic structure
that exists within a data corpus and finds a low dimensional
representation of the documents. Such topical representa-
tions can be used for subsequent analysis tasks, such as
clustering (29), classification (33; 34), and data visualiza-
tion (16). One of the most popular topic models, Latent
Dirichlet Allocation (LDA) (5), has seen large amounts of
application in both industry (25) and academia. Since exact
posterior inference of LDA is intractable, recent research has
focused on speeding up the approximate inference methods
for LDA from various directions, including stochastic/online
inference (19), fast sampling algorithms (31; 7), and scalable
systems (1).

While LDA is extremely useful, it has many simplistic
assumptions that fail to capture some complicated struc-
tures underlying a large data corpus, such as the corre-
lationship between multiple topics and the temporal evo-
lution of topics in data streams. Correlated Topic Model
(CTM) (3) is one such extension to LDA that introduces
non-conjugate Logistic-Normal parameters to capture the
correlation among topics. Though flexible in model capac-
ity, the non-conjugacy makes approximating the posterior
and scaling up a lot more difficult. Variational approxima-
tion was often adopted (3) under some unwarranted mean-
field assumptions. The standard variational methods can-
not deal with large datasets either. Recently, Chen et al.
(8) scaled up the CTM using a novel (distributed) Gibbs
Sampler with Data Augmentation, which does not make un-
necessary mean-field assumptions; thereby leading to better
performance in terms of both time efficiency and testing
likelihood/perpelexity.

Dynamic Topic Model (DTM) (4) is another extension
to LDA that discovers topics and their evolution trends in
time series data by chaining the time-specific topic-term dis-
tributions via a Markov process under a Logistic-Normal pa-
rameterization as in CTM. The non-conjugacy in the DTM
model makes its large-scale posterior inference even more
difficult and it remains a challenge in machine learning re-
search. Existing inference algorithms of DTM have been fo-
cused on mean-field variational approximations, Laplace ap-
proximations or delta methods (23), which potentially lead
to inaccurate results due to improper assumptions, require
model specific derivations, and can only deal with small
data corpora and learn a small number of topics. There
has been a lot of recent research done to scale up variational
inference (14; 6) to large data corpora but using variational
methods, inferring the variational distribution over topics
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for a word in topic modeling is typically of O(K) complex-
ity, where K is the number of topics, while recent sampling
algorithms of LDA utilize the sparsity in the model (30) or
use Metropolis-Hastings sampling with dedicated data struc-
tures (e.g., Alias tables (31; 15)) to incrementally bring the
sampling complexity down to an amortized O(1) per token.
Our recent work (7) presents an even more efficient O(1)
sampler by optimizing the CPU cache access.

As shown by Wang et. al. (26) capturing a large number
of topic trends in topic modeling is extremely important as
it improves tasks such as advertisement and recommenda-
tions. Using variational approaches, it is difficult to support
a large number of topics, while there also exist many ma-
chine learning applications where algorithms need to be fast
while processing small scale data (17). To address these two
different limitations, we present a novel scalable solution to
do posterior inference using Gibbs Sampling which avoids
any restricting assumptions and can be easily scaled up to
capture thousands of topics from millions of documents in a
parallel environment, while also being faster on single ma-
chines. To deal with the non-conjugacy in the model, within
the Gibbs Sampling framework, we use recent developments
in Stochastic MCMC and use Stochastic Gradient Langevin
Dynamics (SGLD) (28) to sample the logistic normal param-
eters by observing only a mini-batch of the document set.
Stochastic methods have shown to converge faster than their
batch counterparts (19), and are particularly applicable to
large-scale problems.

We use ideas from these state-of-the-art methods to derive
a fast algorithm to capture topic trends of a large number
of topics. We first derive the update equations for all the
parameters, then show the algorithm’s efficiency on a single
multithreaded machine and further present a parallel algo-
rithm to learn large Dynamic Topic Models on multiple ma-
chines. Our algorithm is very close to being “embarrassingly
parallel”1 and scales up extremely well with the number of
time slices. We learn a large dynamic topic model from a 9
GB dataset consisting of 2.6 million documents in less than
an hour. This is not only the biggest DTM but also the
fastest inference algorithm to our knowledge.

In the rest of the paper, we first introduce some related
work that inspires our research including LDA and its fast
sampling algorithms, and the DTM model in Section 2. In
Section 3, we introduce our proposed algorithm, and provide
implementation details for multithreaded and distributed
machines in Section 4. Experiments for both single ma-
chines and distributed machines are discussed in Section 5
and we conclude our paper in Section 6.

2. RELATED WORK
In this section, we briefly review some related work on the

vanilla LDA and dynamic topic models.

2.1 Latent Dirichlet Allocation
Latent Dirichlet Allocation (LDA) is a probabilistic gen-

erative model of documents. It represents documents as an
admixture of a set of K topics to be learned from data.
LDA uses conjugate Dirichlet-Multinomial parameters for
both document-topic and topic-term distributions. Let D =

1At the start of each iteration, there is a small synchroniza-
tion step, but for the intensive computation part, there is
no communication needed.

Figure 1: Generative Process of Latent Dirichlet Al-
location

{Wd}Dd=1 be a set of D documents, where each document

Wd = {Wd,n}Nd
n=1 is a set of Nd words Wd,n. The generating

process, as shown in Figure 1, of LDA is

1. For each topic k ∈ [K], draw Φk ∼ Dir(Φk|β);

2. For each document d ∈ [D], draw the topic mixing
proportion: θd ∼ Dir(θd|α);

(a) For each word n ∈ [Nd], draw the topic assign-
ment Zd,n and the word itself:

Zd,n ∼ Mult(Zd,n|θd)

Wd,n ∼ Mult(Wd,n|ΦZd,n),

where α and β are the Dirichlet parameters, Φk is the term
distribution of the topic k of size V , θd is the K-dimensional
topic mixing distribution of document d, Dir(·) is the Dirich-
let distribution, and Mult(·) is the Multinomial distribution.

Having conjugacy in the model allows the document-topic
proportion Θ := {θd} and the topic-term proportion Φ :=
{Φk} to be integrated out analytically, yielding with a col-
lapsed posterior distribution p(Z|D,α,β), where Z := {zd}
denotes the set of all topic assignments. Extensive research
has been done to optimize the posterior inference of the col-
lapsed model using both variational approximation (20) and
sampling.

Recently, sampling based posterior inference algorithms
have been paid close attention to because of their simplicity
and the fact that they have shown to provide sparser results
that can be further optimized. Once the conjugate parame-
ters are integrated out from the joint distribution, a simple
Gibbs Sampler can draw topic indices Zd,n by the following
conditional probability:

p(Zd,n|rest) ∝
(C

d,¬(d,n)
k + αk)(C

w,¬(d,n)
k + βw)

C
¬(d,n)
k + β̄

. (1)
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Here, Cdk stands for the number of times that topic k has
been observed in document d, Cwk denotes the number of
times a word w has been observed as a topic k in the cor-
pus, Ck stands for the number of times topic k has been
assigned to a word in the corpus, and rest denotes all other
variables except Zd,n. The superscript ¬(d, n) specifies the
count ignoring the topic index for the word in (d, n) position;
and β̄ is the sum of all the βws.

Eq. (1) is the original Collapsed Gibbs Sampler condi-
tional proposed by Griffiths et al. (12) that requires an
O(K) time complexity to sample each token in the data.
Yao et al. (30) rewrite Eq. (1) into a different form to take
advantage of sparsity that exists within the model2 to lower
the time complexity of sampling each token down to O(Kd+
Kw), where Kd denotes the number of topics that exist in
a document d and Kw stands for the number of different
topics a word w has been observed by. For models with a
large K, we often have Kd � K and Kw � K.

AliasLDA (15) factorizes the same conditional in Eq. (1)
into two components, a sparse component and a dense com-
ponent. The sparse component (document-component) is
sampled in a method analogous to SparseLDA (30) inO(Kd),
and for sampling the dense component, an Alias table (21) is
created to generateK stale samples and Metropolis-Hastings
tests (18; 13) are used to accept parameter updates in amor-
tized O(1) time complexity.

LightLDA(31) builds on that by removing the sparse com-
ponent altogether, and uses an Alias table to generate two
proposals that are factors of the true conditional. LightLDA
alternatively samples from the two high probable proposal
distributions, and brings the amortized sampling complexity
down by another magnitude to O(1). WarpLDA (7) further
improves the efficiency of LightLDA by optimizing the ac-
cess of CPU cache, making the O(1) algorithm more efficient
in practice.

This research builds on their insights to create a fast sam-
pler of topic indices for DTM.

2.2 Dynamic Topic Models
Dynamic Topic Model (DTM) (4) is a topic model that is

used to model time series data. Since a Dirichlet distribu-
tion is not suitable to model state changes, DTM adopts a
logistic-normal parameterization as in CTM (3), chains the
parameters together in a Markovian structure, and allows
evolution of parameters with a Gaussian noise. The Gaus-
sian variables are mapped to the simplex from where the
Multinomial variables are drawn.

Given a set of data D = {Dt}Tt=1, where Dt denotes the
dataset at time slice t and T is the total number of time
slices. For each time slice t, DTM first samples the evolved
parameters from linear dynamic systems, namely,

αt ∼ N (αt|αt−1, σ
2I)

∀k ∈ [K] : Φk,t ∼ N (Φk,t|Φk,t−1, β
2I),

where σ and β are variance parameters. Then, for a docu-
ment d at time t, the words are generated as follows:

ηd,t ∼ N (ηd,t|αt, ψ
2I),

2Assuming that a document d only contains a subset of top-
ics, and a word w is only assigned to a subset of topics
while sampling. Following this assumption, (1) could be
multiplied for a sparser expression. The second part of this
assumption does not necessarily hold in large data corpora.

Figure 2: Generative Process of DTM

∀n ∈ [Nd,t]: Zd,n,t ∼ Mult(Zd,n,t|π(ηd,t)),

∀n ∈ [Nd,t]: Wd,n,t ∼ Mult(Wd,n,t|π(ΦZd,n,t,t)),

where π(α) = γ with each element being γk = exp(αk)∑
j exp(αj)

under a soft-max transformation, and ψ is another variance
parameter.

After observing the data D, the posterior distribution con-
ditioned on the hyper-parameters is given by:

p(α, η,Φ,Z|D, σ, β, ψ) ∝
T∏
t=1

N (αt|αt−1, σ
2I)×

K∏
k=1

N (Φk,t|Φk,t−1, β
2I)

Dt∏
d=1

N (ηd,t|αt, ψ
2I)×

Nd,t∏
n=1

Mult(Zd,n,t|π(ηd,t))Mult(Wd,n,t|π(ΦZd,n,t,t)).

The non-conjugacy of Gaussian and multinomial variables
makes exact inference of the model intractable. Unlike LDA,
the topic-term proportion parameters Φt and the document-
topic proportion parameters ηt cannot be analytically in-
tegrated out, which makes the task of approximating the
posterior more complicated.

Blei & Lafferty (4) propose a variational Kalman filter-
ing approach to infer the posterior distribution by mak-
ing an unwarranted mean-field approximation, which is not
scalable to large datasets. Other fast variational methods
(14; 6) could be generalized to do posterior inference but
as discussed earlier, variational methods are not amenable
to support a large number of topics due to the inability to
explore model sparsity. In the following section, we present
an even faster Gibbs Sampler that is efficient in capturing
large dynamic topic models with many topics.

3. GIBBS SAMPLER FOR DTM
We now present our blockwise Gibbs Sampler for the pos-

terior inference of DTM. Unlike LDA or CTM, we cannot
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integrate any of the parameters out because of the non-
conjugacy from both directions, therefore we sample each
parameter separately. The parameters that we need to in-
fer are αt, ηd,t, Φk,t and Zd,n,t. The following subsections
show the derivation and the sampler update equations of
each parameter conditioned on all the other parameters.

3.1 Sampling αt
It is easy to see from Figure 2 that αt has a Markovian

structure and conditioned on its Markov Blanket (MB), we
get:

p(αt|MB(αt)) ∝ N (αt|αt−1, σ
2I)N

(
αt+1|αt, σ2I

)
Dt∏
d=1

N
(
ηd,t|αt, ψ

2I
)
.

(2)

With three Gaussian terms, we simply use the “completing
the square” trick and get:

αt ∼ N
(
αt|µ̂, Λ̂

−1
)
, (3)

where the mean and covaraiance matrix are evaluated as:

µ̂ = αt + ηd,t −Λ−1

(
2

σ2
ηd,t +

Dt
ψ2
αt

)
(4)

ηd,t =
1

Dt

Dt∑
d=1

ηd,t, αt =
αt+1 +αt−1

2
,

Λ̂ =

(
2

σ2
+
Dt
ψ2

)
I.

(5)

The key thing to note here is that evaluating the mean µ̂ is
an O(K) operation as long as we keep record of ηd,t because

Λ̂ is a diagonal matrix. Also note that Λ̂ is constant for all
documents in the time slice t.

3.2 Sampling ηd,t
Conditioned on αt and Zd,t, the posterior conditional for

ηd,t is:

p(ηd,t|αt,Zd,t) ∝ N (ηd,t|αt, ψ
2I)

×
Nd,t∏
n=1

Mult(Zd,n,t|π(ηd,t))
(6)

This is a multivariate Bayesian Logistic Regression model
with a Gaussian prior and Multinomial observations Zd,n,t.
To infer the posterior, we use a novel method developed by
Welling & Teh called Stochastic Gradient Langevin Dynam-
ics (SGLD) (28).

SGLD is an iterative learning algorithm that uses mini-
batches to perform updates, which is suitable for large datasets.
It builds on the well-known optimization algorithm, Stochas-
tic Gradient Descent, and adds some Gaussian noise to each
update so that it can generate samples from the true poste-
rior and not just collapse to the MAP/MLE solution. Let
p(θ|{xn}) ∝ p(θ)

∏
n p(xn|θ) be an arbitrary generative model

with prior p(θ) and likelihood p(x|θ). The SGLD parameter
update for θ at the ith iteration is:

∆θi =
εi
2

(
∇ log p(θ) +

N

M

M∑
n=1

∇ log p(xin|θ)

)
+ ξi, (7)

ξi ∼ N (ξi|0, εi), (8)

where N is the number of data points in the dataset, and M
is a mini-batch created from those N data points. Welling
& Teh show that a Metropolis-Hastings test is unnecessary
if we update εi in a way such that as i increases, εi → 0
and the discretization error of Langevin Dynamics becomes
negligible bringing the MH rejection probability close to 0.
In our research, we use εi = a × (b + i)−c as our heuristic,
and it satisfies the aforementioned condition.

Taking the gradient of the natural logarithm of the pos-
terior conditional of ηd,t in (6), we get:

∇ηk
d,t

log p(ηd,t|αt, Zd,t) = − 1

ψ2
(ηkd,t − αkt )

+

Nd,t∑
n=1

(
δ(Zd,n,t = k)− π(ηd,t)k

)
,

(9)
where δ(Zd,n,t = k) is the Kronecker delta function. On
closer attention to the gradient, it is easy to see that the
first term in the gradient of the likelihood term is simply the
number of times the topic k has been observed in document
d in time slice t, and hence, the summation in (9) can be
replaced, and (9) can be simply rewritten as:

∇ηk
d,t

log p(ηd,t|αt ,Zd,t) = − 1

ψ2
(ηkd,t − α

k
t )

+ Ckd,t − (Nd,t × π(ηd,t)k),

(10)

where Nd,t is the number of words in document d of time
slice t and Ckd,t stands for the number of times the topic k has
been observed in document d in time slice t. This equation
can be directly put into the SGLD update equation, and
the count matrix can be updated while storing topic indices.
Updating the topic proportion of each document takes O(K)
time, if we store the softmax normalization constant during
the first evaluation.

3.3 Sampling Φk,t

Φks are linked together as a Markov chain similar to αts
and the posterior conditioned on its Markov Blanket is:

p(Φk,t|MB(Φk,t)) ∝ N (Φk,t|Φk,t−1, β
2I)

×N (Φk,t+1|Φk,t, β
2I)

×
Dt∏
d=1

Nd,t∏
n=1

Mult(Wd,n,t|π(Φk,t)).

(11)

Since the first two terms are Gaussians with the same vari-
ance, they can be multiplied together to get a new Gaussian,
and we can treat it as the prior. Using the “completing the
square” trick again, Eq. (11) can be rewritten as:

p(Φk,t|MB(Φk,t)) = N (Φk,t|Φk,t,
β2

2
I)×

Dt∏
d=1

Nd,t∏
n=1

Mult(Wd,n,t|π(Φk,t)),

(12)

where

Φk,t =
Φk,t+1 + Φk,t−1

2
(13)

Combining Eq. (11) with Eq. (12), we, again, have a Bayesian
Logistic Regression model with a Gaussian prior and Wd,n,t

as multinomial observations. If we take the gradient of
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the natural logarithm of this Bayesian Logistic Regression
model, we get:

∇Φw
k,t

log p(Φk,t| MB(Φk,t)) =

Φwk,t+1 + Φwk,t−1 − 2Φwk,t
β2

+ Cwk,t − (Ck,t × π(Φk,t)w),

(14)

where Cwk,t =
∑Dt
d=1

∑Nd,t

n=1 (δ(Wd,n,t = w,Zd,n,t = k) and

Ck,t =
∑Dt
d=1

∑Nd,t

n=1 (δ(Zd,n,t = k)).
Using cached matrices, only the first and the third terms

need to be evaluated, and Φt can be sampled in O(V K)
time using SGLD. Since we use a small batch of documents
to sample Φt, we clear Cwk,t and Ck,t at the start of each
iteration.

3.4 Sampling Zd,n,t

From the generative process of DTM, as shown earlier in
Figure 2, it can be found that given η and Φ, Z is condition-
ally independent of the rest of the parameters in the model.
Therefore, sampling the topic indices for DTM conditioned
on the topic-term proportions and the topic-document pro-
portions can be collapsed to:

p(Zd,n,t = k|ηkd,t,Φwk,t) ∝ exp(ηkd,t)︸ ︷︷ ︸
doc

exp(Φwk,t)︸ ︷︷ ︸
word

(15)

However, since sampling a token requires evaluating the
normalization constant, the naive method requires O(K)
time to sample each token, and for fast inference, it is abso-
lutely vital to have a fast sampler for Z since it is the most
expensive parameter to sample in DTM. We take ideas from
recent advances in the inference of Latent Dirichlet Allo-
cation to optimize the sampling, where authors use Alias
Tables (as mentioned in Section 2) to generate K samples
in O(K) time that are accepted using a Metropolis-Hastings
(MH) Test, thus bringing the amortized sampling complex-
ity to O(1)(31; 15).

Alias sampling (21) takes advantage of the fact that while
generating one sample from a K dimensional vector is of
O(K) complexity, but subsequent samples only require an
O(1) time. It transforms the multinomial sampling problem
into an easy uniform sampling one, which requires a simple
lookup on the “Alias tables”, as shown in Figure 3.

But since Eq. (15) is not a static distribution, a Metropolis-
Hastings (MH) Test is done to check whether the new sam-
ple should be accepted or rejected. While in theory, an O(1)
complexity is great, but in practice, we desire high accep-
tance of the stale samples from the MH Test.

The key to high acceptance rates in MH tests is to gener-
ate good proposals, and similar to Yuan et al. (31), we break
Eq. (15) into two products exp(ηkd,t) and exp(Φwk,t), and use
one of them alternatively to generate proposals. We call pro-
posals generated from the topic-term parameter the word-
proposal and proposals generated from the topic-document
parameter the doc-proposal.

To generate both proposals, we generate Alias tables, and
generate K samples, and use them until we run out of gener-
ated samples. When we do not have any more samples, we
build a new Alias table, and generate new samples again.
The doc-proposal pd(k) and its acceptance probability Ad
for topic k are given by:

pd(k) ∝ exp(ηkd,t) (16)

Parameter Sampling Complexity
α O(K)
η O(DmK)
Φ O(V K)
Z O(DmNd)

Table 1: Sampling complexities of each parameter
in DTM each iteration. Dm: Size of the mini-batch,
Nd: Number of words in a sample document d.

Ad = min

(
1,

exp(ηkd,t + Φwk,t + ηsd,t)

exp(ηsd,t + Φws,t + ηkd,t)

)

= min

(
1,

exp(Φwk,t)

exp(Φws,t)

)
.

(17)

Analogous to the word proposal, the word-proposal pw(k)
and its acceptance probability Aw for topic k are given by:

pw(k) ∝ exp(Φwk,t) (18)

Aw = min

(
1,

exp(ηkd,t + Φwk,t + Φws,t)

exp(ηks,t + Φws,t + Φwk,t)

)

= min

(
1,

exp(ηkd,t)

exp(ηsd,t)

)
.

(19)

It is easy to see that Aw is high when the proposed topic
k is commonly seen in document d and Ad is high when the
word w is morse often observed as a topic k.

The sampling complexities of each parameter have been
summarized in Table 1, and in a multicore environment,
all of the parameters could be sampled completely indepen-
dently after updating the count matrices at the start of each
iteration.

4. MULTITHREADED AND DISTRIBUTED
IMPLEMENTATION

In this section we present a distributed implementation
of our algorithm, which utilizes two levels of parallelism:
multi-machines and multi-threads.

DTM, itself, has an “embarrassingly parallel” structure
and can be exploited by assigning each time slice to a sepa-
rate worker. The data of different time slices can be stored
in different machines without ever needing to move them
around. We implement DTM in parallel using Message-
Passing Interface (MPI) and pass the required data to neigh-
bouring workers at the start of each iteration. The Marko-
vian structure in the model requires αt and Φt to be passed
to adjacent nodes, and after that no further communication
is required among these nodes.

Within each worker process, there is an additional level of
multi-thread parallelism, implemented using C++11
std::thread in our system. We create three threads to
sample η,Z,Φ respectively for the time slice assigned to a
worker. We relax the original blockwise Gibbs sampling by
adopting a Jacobi style iteration. Instead of using the most
recent value, we sample η conditioned on Z and Φ from
the previous iteration and likewise for Z and Φ. We can
therefore sample η,Z and Φ independently. Better imple-
mentation with no Jacobi relaxations and better parallelism
can be designed, which sample η,Z and Φ sequentially and
partition computational tasks by d for Z,η and by k for Φ.
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Figure 3: An example of how alias table (21) is constructed for a four dimensional non-uniform vector. The
figure shows how a non-uniform vector of different probabilities can be compactly stored in a table with
the constraint that each column indexes a maximum of two elements in the vector. Using an alias table,
generating samples samples only requires two uniform samples; first to pick the column, and then doing a
weighted coin-toss to sample an element. Constructing Alias Tables takes O(K) time, where K is the number
of dimensions in the vector.

We adopt the aforementioned 3-thread approach purely for
ease of implementation.

While using distributed computing, we often come across
huge datasets (Bing News, in Section 5), where after trim-
ming of vocabulary, the number of documents is much larger
than the size of the vocabulary. In this case, one option is to
use a mini-batch size (Dm) such that Dm ×Navg ≈ V ×K
for load balancing between threads, where Navg denotes the
average length of documents. Another option is to divide
the sampling of Z and η into more cores than for Φ.

5. EXPERIMENTS
We now present our algorithm in two experiment plat-

forms, the first being a single machine in a multithreaded
environment, and the second being a 6-node cluster consist-
ing of 72 cores in total. Our results demonstrate that our
algorithm (GS-SGLD) is substantially faster than the ex-
isting baseline (VKF) on both single machine and parallel
environments. We also capture the largest Dynamic Topic
Model to our knowledge.

5.1 Datasets and Setups
There are two datasets used for the experiments. The first

consists of NIPS full papers from the year 1987 to 19993,
where we pick the most frequent 8,000 words as vocabulary
with stop words removed. We divide the dataset into thir-
teen time slices by year. We also use a large dataset that
consists of all the news containing the word “Obama” from

3Available here: http://www.cs.nyu.edu/~roweis/data.
html

Bing News during the years from 2012 to 2015. This second
dataset consists of more than 2.6 million documents, and
are divided into 29 time slices, according to months. The
vocabulary is trimmed down to 15,000 words after removing
stop words, and looking at the most frequent words.

We partition each time slice of both datasets to contain
a training set and a testing set with observed and held-out
parts to evaluate perplexity. We use the partially observed
document method (22).

For the NIPS dataset, we run our GS-SGLD sampler on a
single machine, and Figure 4 shows the evolution of one of
the 50 topics captured. The figure shows different methods
and algorithms used in Computer Vision over the years, and
the increase in the problem complexity as algorithms got
better (Face Recognition, Object Recognition).

In the Bing News dataset, we capture many political trends,
and Figure 6 shows one such evolution of the topic regarding
the possibility of Syria possessing mass-destruction weapons.
This trend shows an increasing involvement of Russia and
the United States on the issue, and words such as “agree-
ment” are captured in September 2014, when agreements
were announced to eliminate chemical weapon stockpiles.
The trend captured is in complete accordance with the Wiki-
pedia article on the issue.4

5.2 Single Machine Experiments
In this section, we compare our inference algorithm to the

existing variational Kalman filtering (VKF) method (4) for
estimating DTM’s model parameters.

4Wikipedia link on the issue: http://en.wikipedia.org/
wiki/Syria_and_weapons_of_mass_destruction
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Figure 4: Evolution of Image Processing in NIPS from 1987-1999.

We run our GS-SGLD algorithm and the VKF algorithm
on the NIPS dataset containing a total of 1,740 documents
divided in 13 time slices. We set our SGLD learning rate
to εi = 0.5 × (100 + i)−0.8 and use a mini-batch size of
60 documents. Figure 5 shows our results compared to the
baseline when we capture 50 topics in the dataset, and in
Figure 7, we further show that the perplexity of each time
slice decreases at approximately the same rate, which is also
a desirable property for our algorithm. For clarity, we only
plot the first five time slices and the average perplexity of
13 time slices.

We find that our algorithm (GS-SGLD) is significantly
faster than the variational Kalman filtering (VKF) approach
because of using a stochastic algorithm and the amortized
O(1) sampler for the topics for each token. In addition, GS-
SGLD also achieves a slightly lower perplexity, compared to
VKF, even after running the algorithm until both algorithms
converge due to not making any unwarranted mean-field as-
sumptions.

5.3 Parallel Experiments
In this section, we show the scalability of our algorithm by

inferring 1, 000 topics from the Bing News dataset described
earlier. The dataset consists of news of 29 time slices, and
we use 58 cores for our experiment, to infer a large Dynamic
Topic Model. We use a mini-batch size of 8,000 and set our
SGLD learning rate εi to 0.5× (1000 + i)−0.75. We also run

Figure 5: Perplexity comparison of GS-SGLD with
VKF over time in seconds.

Dataset Docs Time Slices Topics Run. Time
NIPS 1740 13 50 118.72
Bing news 2.6M 29 1000 1694.83

Table 2: Running time comparison (in seconds) of
two datasets in a parallel environment.

our code on the NIPS dataset with the same parameters
as the ones described in the Single Machine Experiments
section. The results are summarized in Table 2.

We further show that our algorithm scales up well with an
increasing amount of time slices due to its embarrassingly
parallel nature. Assuming we have more cores to work with
than time slices, there is a little communication overhead
added to the running time, but the sampling complexity
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Figure 6: Evolution of Syrian possible threat of possessing mass-destruction weapons.

Figure 7: Perplexity comparison of different time
slices.

Figure 8: Running Time comparison of single ma-
chine and parallel GS-SGLD inference.

remains constant. The experiment in Table 3 uses the same
dataset but we trim each time slice’s documents to 50K so
that we can efficiently run the algorithm on a single machine
as well. During this experiment, we choose our mini-batch
size to be 2000 and we iterate until convergence (around 60
iterations). The scalability is graphed in Figure 8.

6. DISCUSSIONS AND FUTURE WORK
It is also worth mentioning that there are other dynamic

topic models that can also capture topic trends over time
such as Dynamic Mixture Model (DMM) (27) and Topics

Num. of Time Slices S-M GS-SGLD P GS-SGLD
5 712.81 (2) 208.74 (10)
8 1106.25 (2) 227.38 (16)
11 1577.83 (2) 296.51 (22)
15 2200.01 (2) 302.97 (30)
20 N/A* (2) 357.11 (40)
29 N/A* (2) 398.32 (58)

Table 3: Running time comparison of GS-SGLD in-
ference in single machine and parallel settings in sec-
onds. *not finished in one hour. (number) specifies
the number of cores.

over Time (ToT) (24) but the Dynamic Topic Model pro-
posed by Blei et. al has the distinct advantage of being able
to naturally capture the correlation among topics over time
by allowing the covariance of η to be non-diagonal matrices.
Relaxing this condition only requires a small update in the
η and α samplers, and hence DTM is especially appealing
to us. Furthermore, DMM and ToT can be parallelized us-
ing the existing parallel frameworks of LDA(25; 1; 32), while
our algorithm can be generalized to scale up non-conjugate
Logistic Normal topic models.

We, next, plan to test out our inference algorithm for
DTM in an even bigger scale with thousands of machines and
terabytes of data. We intend to further extend this research
and learn dynamic correlation graphs of topics over mul-
tiple time slices (Dynamic Correlated Topic Models), and
improve the visualization of the learned evolution of topics
from DTM, which has been hard to show graphically.

At the moment, we use Stochastic Gradient Langevin Dy-
namics on each node separately, but recent developments in
Distributed Stochastic MCMC (2) can also parallellize the
sampling of Φt and η making the algorithm even more effi-
cient.

Using SGLD requires tuning the step-size parameters, and
the parameters can differ from dataset to dataset. Hence,
we intend to try a more adaptive approach such as AdaGrad
(11), or use more recent and sophisticated Stochastic Gradi-
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ent Monte Carlo methods such as SGHMC (9) and SGNHT
(10) for inference.

7. CONCLUSIONS
We propose a scalable and efficient inference method of

Dynamic Topic Models. Our algorithm is a novel combina-
tion of Stochastic Gradient Langevin Dynamics and Metropolis-
Hastings sampler using Alias tables in a blockwise Gibbs
Sampling framework. This combination makes our algo-
rithm naturally parallelizable and allows it to scale up ex-
tremely well with the number of time slices and topics, as
we have shown in our experiments.

Our algorithm is significantly faster than the baselines in
both single machine and distributed environments. Mak-
ing fewer restricting assumptions, our algorithm also per-
forms slightly better in terms of perplexity than the existing
variational methods. DTMs can capture very exciting topic
trends over time but the existing inference methods use vari-
ational approximations and have not been able to learn large
DTMs from big datasets.

Our algorithm has made it possible to do posterior infer-
ence of DTM at an industrial scale, and we prove this claim
by learning the biggest existing DTM. Our work is appli-
cable for both researchers and industries as a large scale
Dynamic Topic Model can capture very interesting trends.
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