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Abstract
Thompson sampling has impressive empirical per-
formance for many multi-armed bandit problems.
But current algorithms for Thompson sampling
only work for the case of conjugate priors since
they require to perform online Bayesian posterior
inference, which is a difficult task when the prior
is not conjugate. In this paper, we propose a novel
algorithm for Thompson sampling which only re-
quires to draw samples from a tractable proposal
distribution. So our algorithm is efficient even
when the prior is non-conjugate. To do this, we
reformulate Thompson sampling as an optimiza-
tion proplem via the Gumbel-Max trick. After
that we construct a set of random variables and
our goal is to identify the one with highest mean
which is an instance of best arm identification
problems. Finally, we solve it with techniques in
best arm identification. Experiments show that
our algorithm works well in practice.

1. Introduction
In multi-armed bandit (MAB) problems (Lai & Robbins,
1985), an agent chooses an action (also called an arm in the
literature of MAB) from an action set repeatedly, and the
environment returns a reward as a response to the chosen
action. The agent’s goal is to maximize the cumulative re-
ward over a period of time. In MAB, a reward distribution
is associated with each arm to characterize the uncertainty
of the reward. One key issue for MAB and many on-line
learning problems (Bubeck et al., 2012) is to well-balance
the exploitation-exploration tradeoff, that is, the tradeoff be-
tween choosing the action that has already yielded greatest
rewards and the action that is relatively unexplored.
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As one of the most important problems in learning and
decision-making in unknown environments, MAB has been
studied in various settings since the seminal work (Lai &
Robbins, 1985) (see (Bubeck et al., 2012) for a nice review).
In this paper, we consider Bayesian bandits (Scott, 2010),
which is a well-studied variant of MAB. In a Bayesian ban-
dit, the agent has a prior distribution on the mean of the
reward distribution for each action. The agent makes deci-
sions adaptively according to the prior distributions and the
past observations of each action. The most popular algo-
rithm for Bayesian bandits is known as Thompson sampling
(TS), which has a long history tracing back to (Thompson,
1933). TS has proven to be powerful in practice (Chapelle
& Li, 2011) with theoretical guarantees (Agrawal & Goyal,
2012; 2017; Kaufmann et al., 2012).

Thompson sampling selects each arm randomly according
to its probability to be optimal given the previous obser-
vations. Existing implementations of TS require to infer
the posterior distribution (See Section 3 for details), which
can be computationally intractable in sophisticated mod-
els; thereby limiting the scope of Bayesian bandits to use
simple conjugate priors. However, a non-conjugate prior
is very important in MAB. On one hand, non-conjugacy
naturally arises because of using either a flexible prior or a
flexible observation model (i.e., likelihood) to characterize
the complex properties often appearing in real-world appli-
cations. For example, in the Web Advertising task (Gopalan
et al., 2014), it is natural to use a Bernoulli distribution to
model the binary event whether a user clicks or not, and
the prior distributions of different advertisements are not
independent because of the similarity between two adver-
tisements or other factors. In this case, it is likely to have
a conjugate prior that well incorporates such dependence.
Another example is in (Kawale et al., 2015), where TS is
used to do matrix-factorization recommendation in an on-
line manner and their observation model is a product of
two Gaussian random variables with zero mean. An inverse
gamma distribution is used as the prior on their variances,
which is non-conjugate with the observation model. On
the other hand, if we impose an improper prior for conve-
nience, it may lead to worse performance. For example,
in the well-known stochastic Bernoulli bandits problems
(Lai & Robbins, 1985), we have no prior knowledge on the
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mean of these arms. In this case, Kaufmann et al. (2012)
show that TS with a uniform prior achieves asymptotically
optimal performance that matches the lower bound proved
by Lai & Robbins (1985), while the best known theoret-
ical result by Agrawal & Goyal (2012) with a conjugate
Beta prior can lead to worse performance. Moreover, as we
shall see in Section 5, an incorrect prior indeed yields worse
performance in practice.

As inferring exact posteriors is often intractable in the non-
conjugate case, approximate posterior inference algorithms
are valuable. However, Thompson sampling requires poste-
rior inference in an online setting which makes most pop-
ular algorithms (for example, MCMC (Propp & Wilson,
1996)) inefficient. Under the above considerations, efforts
(Gopalan et al., 2014; Kawale et al., 2015; Ikonomovska
et al., 2015) have been made on approximate posterior infer-
ence for TS using sequential Monte Carlo (SMC) (Del Moral
& Doucet, 2014) which is relatively efficient under online
setting. SMC maintains a set of particles and resamples
sequentially according to the observations. However, to
the best of our knowledge, there is no standard method to
select the number of particles. Maintaining a large number
of particles will cause inefficient computation, while a small
number can be inaccurate. Overall, the above problems
restrict the applications of TS significantly.

Contributions: In this paper, we present a novel racing
algorithm to implement TS, which can apply to the general
cases with non-conjugate priors. The algorithm approxi-
mates Thompson sampling, and only requires to sample
from tractable distributions while avoiding posterior infer-
ence. Thus, the proposed algorithm is efficient. Though
we also need to draw a set of samples similar to SMC, our
algorithm has a simple yet powerful guideline to determine
the number of samples with theoretical guarantees. And our
algorithm works well in experiments.

Technically, our method is built on a novel reformulation of
TS as an optimization problem by exploring the Gumbel-
Max trick (Papandreou & Yuille, 2011). The goal of the
optimization problem is to find the variable with the maxi-
mum expectation among a set of variables. Such a problem
reduces to a best arm identification (BAI) problem (Kauf-
mann et al., 2015; Maron & Moore, 1997; Kalyanakrish-
nan et al., 2012; Jamieson & Nowak, 2014), which is a
well-studied variant of stochastic multi-armed bandits. To
compute the expectations involved in the BAI problem, we
can freely construct a tractable prior for easy and efficient
sampling, therefore avoiding the posterior inference with a
non-conjugate prior.

The rest of the paper is structured as follows. We discuss
related work in Section 2. Section 3 reviews some prelimi-
nary knowledge of TS. Then, we present our algorithm with
the new reformulation in Section 4. Empirical studies are

presented in Section 5. Finally, we conclude in Section 6.

2. Related work
Our work relates to Bayesian bandits, the Gumbel-Max trick
and the best arm identification.

Bayesian bandits: Bayesian bandits have a long history
dating back to (Thompson, 1933) when TS was introduced.
TS is a kind of so-called probability-matching algorithms
for exploitation-exploration problems. Such algorithms are
relatively less known. Recently, Chapelle & Li (2011) eval-
uate the performance of TS compared with other famous
UCB-like algorithms (Carpentier & Munos, 2011), and show
that TS has a state-of-the-art performance in various tasks.
Since then, many works on analyzing TS have appeared
(Kaufmann et al., 2012; Agrawal & Goyal, 2012; Guha &
Munagala, 2014). It turned out that TS has nice properties
in a theoretical point of view. However, TS is still not very
popular in practice. A possible reason is that inferring the
posterior is usually intractable. This paper tries to resolve
the problem.

Gumbel-Max trick: Gumbel-Max trick is a tool to connect
sampling problems and optimization problems, and has
been used in various problems (Chen & Ghahramani, 2016;
Maddison et al., 2014; Papandreou & Yuille, 2011). The
most related work is (Chen & Ghahramani, 2016), which
also exploits the Gumber-Max trick for sampling a discrete
random variable and relates to multi-armed bandits. But they
consider the distributions with P (x) ∝ p0(x)

∏n
i=1 pi(x)

which is significantly different from our problem.

Best arm identification in fixed confidence setting: This
setting comes from a fundamental question about explo-
ration and exploitation tradeoff: when can an agent stop
learning and start exploiting the learned knowledge? Many
algorithms have been proposed. They mainly fall into two
categories: The first one is LUCB (Kalyanakrishnan et al.,
2012), in which the agent pulls arms according to the con-
fidence bound; the second is the racing algorithms which
were first introduced by (Maron & Moore, 1997). In a
racing algorithm, the agent maintains a set of active arms,
and it pulls all active arms in each round and eliminate the
suboptimal arms according to certain elimination rules.

3. Preliminaries of Thompson Sampling
Let K denote the number of arms. Each arm i is associ-
ated with a reward distribution, whose mean value is de-
noted by µi (i.e., mean reward). We consider Bayesian
bandits, which treat µi as a random variable. Let π de-
note the prior distribution over µ = {µ1, · · · ,µK}. Sup-
pose upto time step t, the agent has chosen action i for
τi,t times, and received the corresponding rewards Xi(t) =
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{xi,1, · · · , xi,τi,t}. Let X(t) = {X1(t), · · · , XK(t)} be
all the observations until time t.

Thompson sampling (TS) selects each arm randomly ac-
cording to its (posterior) probability to be optimal, which
is

∀i ∈ [K], Pi(t) := P

(
µi = max

j
µj |X(t)

)
, (1)

and [K] := {1, · · · ,K} denotes the set of integers from
1 to K. Previous implementation (Chapelle & Li, 2011)
of TS is outlined in Alg. 1, in which the Lines 6 and 7
essentially draw samples from Pi(t). As we can see in
Line 6 of Alg. 1, this implementation requires to infer the
posterior distribution of the mean rewards, which is efficient
if the prior is conjugate. However, in practice non-conjugate
priors are more flexible in many situations such as where the
arms are not independent, as discussed in the introduction.

In non-conjugate cases, directly inferring the posterior dis-
tribution is typically difficult. One possible solution is to ap-
proximate the intractable posterior with a sequential Monte
Carlo (SMC) sampler, which can be done as follows: At
each time step t, we maintain a set of weighted particles
{(ξit, wit)}Ni=1, where wit is the weight of particle xit. Ini-
tially, these particles are sampled from the prior distribution,
i.e., ξi1 ∼ π, and the weights are equal (e.g., the unit 1).
When we observed Xt, we reweight wit+1 according to the
likelihood function, that is wit+1 = witP (Xt|ξit). We use

P (x = ξit) =
wit∑
i′ w

i′
t

to approximate the posterior. Though
straightforward, SMC has some shortcomings. For example,
there is no standard way to choose the number of particles
and when the number of observations grows up, most parti-
cles’ relative weights are approaching zero (Doucet et al.,
2001), it makes SMC being an inefficient approximation
of the posterior. Our empirical results in Section 5 further
demonstrate that SMC is not sufficient; thereby calling for a
new algorithm.

4. Algorithm
We now present our algorithm. It is not easy to deal with
the discrete distribution Pi(t) in Eq. (1) directly, especially
when the prior is non-conjugate. One key step to derive our
algorithm is that we can reformulate TS as an optimization
problem via the Gumbel-Max trick (Papandreou & Yuille,
2011), as detailed in Section 4.1 and followed by the racing
algorithm in Section 4.2.

4.1. Thompson sampling as a bandit problem

Consider a general K-dimensional discrete distribution
P = {P1, · · · , PK}. Instead of directly drawing sam-
ples from P , the Gumbel-Max trick provides an alter-
native way, with which we first draw K i.i.d samples

Algorithm 1 Thompson sampling
1: Input: Prior distribution π.
2: t = 0.
3: Maintain sets: Xi = ∅,∀i ∈ [K], X =
{X1, · · · , XK}.

4: while t < T do
5: t = t+ 1.
6: Draw samples µ ∼ P (µ|X).
7: It = arg maxi µi.
8: Take action It, and receive reward xt, XIt = XIt ∪

{xt}.
9: end while

{ε1, · · · , εK} from the Gumbel(0, 1)1 distribution, and then
set I = arg maxi∈[K] εi + logPi. It was shown that
we have the samples from the target distribution, that is,
P (I = i) = Pi (Kuzmin & Warmuth, 2005). So, the
Gumbel-Max trick provides a nice way to turn a sampling
problem to an optimization problem. It has been used in var-
ious settings (Chen & Ghahramani, 2016; Maddison et al.,
2014; Papandreou & Yuille, 2011).

Applying the Gumbel-Max trick to our problem in Eq. (1),
we can represent TS as the following optimization problem:

It = arg max
i∈[K]

εi + logPi(t)

= arg max
i∈[K]

eεiP (µi = arg max
j

µj |X(t))

where {εi}Ki=1 denote the set of samples from Gumbel(0, 1).
However, it is still hard to directly solve it.

Our key idea to solve this problem efficiently is to construct
a tractable distribution and further turn this problem as a
best arm identification (BAI) problem. Specifically, by intro-
ducing an arbitrary proposal distribution, Bt, over the state
space of µ (we will introduce how to choose suitable pro-
posal for our problem in Section 4.1.1.), we can reformulate
the problem as follows:

It = arg max
i∈[K]

eεi
∫
µ

P (µ|X(t))1[µi = max
j

µj ]

= arg max
i∈[K]

eεi
∫
µ

Bt(µ)1[µi = max
j

µj ]
P (µ|X(t))

Bt(µ)

= arg max
i∈[K]

Eµ∼Bt

[
eεi1[µi = max

j
µj ]

P (µ|X(t))

Bt(µ)

]
= arg max

i∈[K]

Eµ∼Bt

[
eεi1[µi = max

j
µj ]

P (X(t)|µ)

Bt(µ)

]
(2)

1If εi ∼ Gumbel(0, 1), then P (ε = x) ∝ e−(x+e−x). More-
over, it is easy to sample from Gumbel(0, 1)—simply draw u from
the uniform distribution U [0, 1] and set ε as − log(− log u).
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From the Gumbel-Max theory, we know that It follows our
target posterior distribution, that is, It ∼ P (t) (Papandreou
& Yuille, 2011). Essentially, the problem in Eq. (2) is to
find the variable with maximum expectation and we can
use Monte-Carlo methods to estimate the expectation ef-
ficiently. As in our case, each variable corresponds to an
arm, and this is known as a best arm identification (BAI)
problem (Jamieson & Nowak, 2014). The benefit of our
formulation is that we only need to draw samples from pro-
posal Bt, which can be done efficiently, in order to estimate
the expectations.

We solve the above BAI problem in the popular fixed-
confidence setting (Jamieson & Nowak, 2014): for δ ∈
(0, 1) and σ > 0, an algorithm is called (δ, σ)-PAC (Kauf-
mann et al., 2015) if and only if with probability at least
1 − δ, it identifies arm i such that µi > maxj∈[K] µj − σ.
This setting provides a simple and practical method to de-
termine the number of samples we need to draw from the
proposal Bt: we can stop the sampling process if we are
sure enough that we have identified a sufficiently good arm.
Following lemma shows a (δ, σ)-PAC algorithm is asymp-
totically good.
Lemma 1. Let Pi(δ, σ, t) be the sampling distribution of
an (δ, σ)-PAC algorithm for Eq. (2), then the total variation
between Pi(δ, σ, t) and Pi(t) converges to 0 asymptotically,
that is:

lim
δ,σ→0

∑
i

|Pi(δ, σ, t)− Pi(t)| = 0

Proof. According to the definition, a (δ, σ)-PAC algorithm
outputs i such that eεiPi > eεjPj − σ, ∀j with probability
at least 1− δ. Let event E denote the algorithm outputs i :
eεiPi > eεjPj − σ, ∀j successfully. We know that P (E) >
1− δ. LetA ∈ [K] be the output of this algorithm, G ∈ [K]
be an arbitrary arm such that eεGPG > eεjPj −σ, ∀j ∈ [K].
We use following process to generate a random variable K:
If E happens, K = A, else K = G. We have:∑

i

|Pi(δ, σ, t)− Pi(t)|

≤
∑
i

|Pi(δ, σ, t)− P (K = i)|+ |Pi(t)− P (K = i)|

≤ δ +
∑
i

|Pi(t)− P (K = i)|

Now we only need to bound the second term.
∑
i |Pi(t)−

P (K = i)| is independent with δ and by definition,
eεKPK > eεjPj − σ is always true. So we have:

P (K = i) ≤ Pr[eεiPi > max
j
eεjPj − σ]

and

P (K = i) ≥ Pr[eεiPi > max
j
eεjPj + σ]

Recall that ε1, · · · , εK are i.i.d Gumbel random variables.
According to the definition of Gumbel distribution and with
algebras, we have:

Pr[exp{εi}Pi > max
j

exp{εj}Pj − σ]

=

∫ +∞

εi=−∞
Pr(εi)

∏
j 6=i

Pr[εj < log
eεiPi + σ

Pj
]

=

∫ ∞
εi=−∞

exp(−εi − exp(−εi)) exp

(
− 1− Pi
eεiPi + σ

)
Above function is continuous and monotonically increasing
with respect to σ, so as σ → 0, we have:

lim
σ→0

Pr[exp{εi}Pi > max
j

exp{εj}Pj − σ]

=

∫ ∞
εi=−∞

exp

(
−ε− 1

Pi
exp(−ε)

)
= Pi

Similarly, we have limσ→0 P (K = i) ≥ Pi(t). Now we
complete the proof.

4.1.1. CHOOSE PROPOSAL

Now we consider how to choose a suitable proposal Bt.
The first choice is to let Bt = π directly as in SMC. How-
ever, as the number of observations grows, the distributions
π(µ) and P (µ|X(t)) will become ill-matched in most cases
(Doucet et al., 2001). This will violate the assumption of
our stopping rule (see Section 4.2 for details).

A better proposal can be constructed by the prior-swapping
trick (Neiswanger & Xing, 2017). The key observation of
the prior swapping trick is that for many practical distribu-
tions, there exists a convenient prior that allows for efficient
posterior inference. For example, suppose P (x|µi) is a
Bernoulli distribution, then Beta distribution is the con-
jugate prior. Suppose π′ = {π′1, · · · , π′K} is such a prior
that allows for efficient posterior inference, we use the cor-
responding posterior π′(µ)P (X(t)|µ) as our proposal Bt.
When the number of observation grows, Bt still matches
P (t) well. The reason is that by Bayes’ rule, we have
P (µ|X) ∝ π(µ)

∏n
i=1 P (Xi|µ) where n is the number of

observations. When n grows up, likelihood
∏n
i=1 P (Xi|µ)

"dominates" the posterior, and our proposal Bt carries all
information of the likelihood term.

For many widely-used distributions, there exist such priors.
For example, any exponential family distribution exists a
conjugate prior. And we can efficiently draw samples from
the posterior distributions for many of them, see (George
et al., 1993) for more details. Beyond exponential family
distributions with conjugate priors, there are tractable distri-
butions with other priors. For example, many 1-dimensional
exponential family distributions with a non-informative Jef-
freys prior is tractable (Jaynes, 1968). The Jeffreys prior
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Name distribution prior posterior
Bernoulli px(1− p)1−x Beta(1, 1) Beta(1 + s, 1 + T − s)

Exponential λe−λx Γ(1, 1) Γ(1 + T, 1 + s)

Gaussian 1√
2π

exp{− (x−µ)2
2 } ∝ 1 N ( sT ,

1
T )

Poisson λxe−λ

x! ∝ 1√
λ

Γ( 1
2 + s, T )

Table 1. Examples of distributions with Jeffreys prior. s is the sum of T observations.

is proportional to the square root of the Fisher information
matrix and maybe improper (e.g., the Jeffreys prior for Gaus-
sian is uniform in an infinite space). Some tractable and
representative exponential family distributions with Jeffreys
prior are listed in Table 1. So in the sequel of this paper, we
use such posterior with a false prior as our proposal.

4.2. The racing algorithm

For the clarity of notations, we let

fi(µ, t) = eεi1[µi = max
j

µj ]
P (X(t)|µ)

Bt(µ)

as the function within the expectation and Bt(µ) is the pro-
posal distribution at time t. We further use vi = fi(µ, t)
to denote a random variable, where µ ∼ Bt. Recall that
our goal is to identify the arm with the maximum expec-
tation It = arg maxi E[vi]. Suppose we have a set of
samples d = {d1, · · · , dm} where dj ∼ Bt. We use
fi,m = 1

m

∑m
j=1 fi(dj , t) as our unbiased estimator of

E[vi].

Recall that the goal of a BAI problem is to identify the one
with the highest expectation among a set of random vari-
ables. Following (Kaufmann et al., 2015), a practical BAI
algorithm in the fixed confidence setting typically consists
of:

• Policy: given a sequence of past observations, a policy
determines which arms to pull.

• Stopping rule: a stopping rule can be described as a
series of observation sets Ft, t ∈ N+

2 , where Ft is
a set of observations. When an element o ∈ Ft is
observed, the policy stops sampling.

• Recommendation rule: a recommendation rule is usu-
ally to recommend the best arm. A BAI algorithm
usually recommends the arm with the highest empiri-
cal mean.

Our algorithm imitates the racing algorithms (Maron &
Moore, 1997; Even-Dar et al., 2006) for BAI problems.
In racing algorithms, people maintain a set of arms as the

2N+ is the set of positive integers.

candidates of the best arm. The policy of a racing algorithm
is to draw a sample from the underlying distribution of each
remained arm during each round. And then eliminate the
suboptimal arms if the gap between the empirical means of
the suboptimal arm and the maximum one is bigger than
a threshold function. A racing algorithm stops if and only
if only one arm is not eliminated. The reason we choose
racing algorithm is that we can compute fi,m with the same
d, so drawing a sample from Bt is essentially pulling all
arms at the same time. Our algorithm is shown in Alg. 2.
In lines 7-15 of Alg. 2, we solve the BAI problem via a
racing algorithm: we sample µ̂ ∼ Bt repeatedly until the
empirically best arm i1 is better than others i2 significantly,
e.g, larger than a threshold function defined by β(m, δ).

Theorem 1 guarantees that Alg. 2 is (δ, σ)-PAC.

Theorem 1. If the threshold function β(m, δ) satisfies the
following condition,

P (∃m > 0 : |fi,m − E[vi]| > β(m, δ)) < δ. (3)

then in Alg. 2, at each time t, with probability at least
1−Kδ, E[vIt ] > E[f̄i]− σ for all i.

Proof. We exploit standard arguments to prove the theorem.
When Line 13 is executed, and I is a bad arm, that is EfI <
Ef̄i − σ. By f̄I − f̄i∗ > 2β(m, δ) − σ. It is easy to
see that at least one of the following two events happens:
f̄I−β(m, δ) > EfI or f̄i∗+β(m, δ)−σ < Efi∗−σ. With
InEq. (3) and the union bound, we complete the proof.

As stated in Theorem 1, the only requirement on the thresh-
old function β(m, δ) is that it should satisfy the condition
in InEq. (3). In fact, there are various threshold functions
satisfying condition InEq. (3) under different assumptions
(Kaufmann et al., 2015; Jamieson & Nowak, 2014). It is
significant to choose a suitable assumption for our problem
in Eq. (2) and pick a corresponding threshold function since
the threshold function determines the number of particles
used in Alg. 2. We adopt the threshold function for Gaussian
bandits (Kaufmann et al., 2015) by considering the follow-
ing two aspects: (1) the random variable in Eq. (2) can
be unbounded and Gaussian bandits consider random vari-
ables with an unbounded support; (2) according to the law
of large numbers, as the number of observations increases,
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Algorithm 2 Racing Thompson
1: Input: Prior distribution π, parameters δ, σ, and time

horizon T .
2: t = 0.
3: Xi = ∅,∀i ∈ [K], X = {X1, · · · , XK}.
4: while t < T do
5: Draw K i.i.d samples εi from the Gumbel(0, 1) dis-

tribution.
6: m = 1, d = ∅.
7: loop
8: Draw a sample µ̂ ∼ Bt, d = d ∪ {µ̂}.
9: m = m+ 1.

10: ∀i, f̄i = 1
m

∑m
j=1 fi(dj , t).

11: Identify the best arm i1 = arg maxi∈[K] f̄i and
the second best i2 = arg maxi∈[K]\{i1} f̄i.

12: if f̄i1 − f̄i2 > 2β(m, δ)− σ then
13: Break the loop.
14: end if
15: end loop
16: It = arg maxi

1
m

∑m
j=1 fi(dj , t).

17: Take action It, and receive reward xt, XIt = XIt ∪
{xt}.

18: end while

the variance of random variables in Eq. (2) converges to 0.
Thus, it is natural to take variance into consideration. And
Kaufmann et al. (2015) consider variance in their threshold
function and design a near optimal algorithm for Gaussian
bandits. We present their results in Lemma 2.

Lemma 2 ((Kaufmann et al., 2015)). Let x1, x2, · · · be a
series of i.i.d variables sampled from a Gaussian distribu-
tion with mean µ and variance η. Let µ̄m = 1

m

∑
i∈[m] xi.

Define

β(m, δ) =

√
2η

m
(log

1

δ
+ 3 log log

1

δ
+ (3/2) log log(em)).

(4)

Then the following inequality holds:

P (∃m > 1, |µ̄m − µ| > β(m, δ)) < δ.

In practice, we do not know the variance in advance. So we
empirically estimate it instead. As we can see in Section 5,
our algorithm works well.

4.2.1. INDEPENDENT PRIOR π

For a typical racing algorithm (Maron & Moore, 1997), if
we have confirmed that an arm is suboptimal, then we’ll
never pull it again. Thus, suppose at a round, there remains
s active arms, then the running time of a typical racing
algorithm is O(s). However, it is clear that the running time
of Alg. 2 is O(K) per round. This is because when π is a

dependent prior, the estimator fi,m of an active arm i relies
on all arms.

Fortunately, when π is an independent prior (it is possible
that π is still non-conjugate), that is π =

∏
j∈[K] πk, we do

not need to care about the eliminated arms anymore. For
clarity, let It denote the set of active arms at round t. With
algebras, it is clear that we only need to identify arm:

It = arg max
i∈It

∫ ∏
j∈It

πj(µj)e
εi1

[
µi = arg max

j∈It
µj

]
∏

j∈It,s∈[τj ]

Pj(xj,s|µj)dµ.

Obviously, It is independent from the arms not in It. With
the above ideas, the per round running time of Alg. 2 can
be reduced from O(K) to O(|It|).

5. Experiments
In this section, we empirically compare Alg. 2 with three
implementations of Alg. 1 which are efficient in online
posterior inference:

• Thompson: the first method is the vanilla Thompson
sampling (TS) (i.e., the exact version of Alg. 1). As
stated before, this method only works when using a
conjugate prior. For the problems with a non-conjugate
prior, we will use a conjugate surrogate, which is im-
proper, so that we can still infer the posterior efficiently
in closed-form and apply the standard TS;

• Sequential Monte-Carlo (SMC): the second one is to
use sequential Monte-Carlo to approximate the poste-
rior;

• Prior swapping (PS) (Neiswanger & Xing, 2017): the
last one is to use the prior-swapping trick to approx-
imate the posterior. The difference between PS and
SMC is that PS uses the posterior with a false but con-
venient prior to be proposal while SMC uses a true
prior as the proposal.

Recall that the agent selects arm It at time step t, and
the goal is to maximize the expected cumulative reward
Eµ∼π

∑T
t=1 µIt , where µi is the unknown mean of arm i,

and µ ∼ π. It is easy to see that maximizing the cumulative
reward is equivalent to minimizing the regret:

Eµ∼π

[
T max
i∈[K]

µi −
T∑
t=1

µIt

]
. (5)

We follow the setting in (Chapelle & Li, 2011) and compare
the regret of Alg. 2 with baselines in all our experiments.
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σ = 0.05 σ = 0.1 σ = 0.2
δ = 0.1 4.94 3.51 2.97
δ = 0.2 4.01 3.14 2.9
δ = 0.3 3.93 2.99 2.9

(a)

(b)

Figure 1. Empirical evaluation of the relationship between the num-
ber of particles and parameters δ, σ where (a) the averaged number
of particles for each arm for various settings with the number of
time stepequaling to 100 and (b) the number of particles for each
arm varies over time.

5.1. Sensitivity of parameters

Our racing algorithm has two parameters δ, σ as shown in
Alg. 2, where these parameters balance the number of sam-
ples we need to draw and the accuracy of Alg. 2 (Please see
Section 4.2). We first empirically analyze the relationship
between the number of particles and parameters δ, σ in Alg
2. We do experiments on Bernoulli bandits, i.e. P (x|µi)
is a Bernoulli distribution. We consider a Bayesian bandit
problem with 5 arms. We use Beta(5, 5) as the prior of all
arms and set the number of time steps as t = 1000. We
repeat the experiment for 10 times and present the average
results in Fig. 1.

Fig. 1 (a) shows that the smaller the parameters δ, σ are, the
more particles we use. This is consistent with the definition
of δ and σ (Please see Section 4.1). Fig. 1(b) presents
the number of particles varying over time. As we can see,
the number of particles decreases as the number of time
steps increases. This is because the variance of the random
variable associated with each arm decreases as the number
of observations grows up and the Alg. 2 stops early when
the variance is small (See Section 4.2 for more details).

5.2. Regret compared with vanilla Thompson sampling

In order to evaluate the performance of Alg. 2 in terms
of regret, we first compare Alg. 2 with Thompson sam-
pling in the bandit problems with conjugate priors. We do
experiments on Bernoulli bandits. To make Alg. 1 com-
putationally efficient, we use the Beta distribution which
is the conjugate prior so that the standard TS can apply.

There are 10 arms, and the prior of the i-th arm follows
Beta(·|a, b), where a and b are uniformly selected from
the interval (1.0, 10.0). For Alg. 2, we use the posterior
distribution with a Beta(1, 1) prior as our proposal (Bt).
We repeat for 100 times and present the average results
in Fig. 2(a). Fig. 2(a) shows that our racing Alg. 2 has
similar performance in terms of regret compared with the
vanilla Thompson sampling (i.e., Alg. 1) for parameters
(σ, ε) = (0.05, 0.1).And on average, Alg. 2 uses about 3.5
samples per arm in each time step.

We set δ and σ to be 0.1 and 0.05 respectively in following
experiments as under this setting, Alg. 2 has similar regret
to vanilla Thompson sampling.

5.3. Non-conjugate prior

In this section, we evaluate Alg. 2 and the baselines on the
bandits with non-conjugate priors. We consider two repre-
sentative bandit problems: Bernoulli bandits and Gaussian
bandits. Notice that Alg. 2, SMC and PS are all particle-
based methods, that is, we use samples from proposal dis-
tributions to estimate the target distribution, i.e., P (t). To
prove the efficiency of Alg. 2, we use much more particles
for SMC and PS in our experiments, so that their running
time is longer than Alg. 2. And we’ll show that even though
SMC and PS have longer running time, they have worse
performances compared with Alg. 2 in terms of the regret.

5.3.1. BERNOULLI BANDIT WITH NON-CONJUGATE
PRIOR

We first evaluate the performance of Alg. 2 for a non-
conjugate prior on Bernoulli bandits. We also do exper-
iments on synthetic data with 10 arms. Suppose there is a
real-valued vector ui associated with each arm, and the L2-
norm of ui is 1. These vectors can be interpreted as features.
For convenience, suppose the prior is a 10-dimensional
Gaussian distribution with each dimension’s mean is 0.5
and we restrict the value within [0, 1]. We define the covari-
ance matrix Σ of the prior distribution as follows: Σi,i = 1
for all i and Σi,j = ui · uj , where x · y denotes the inner
product between vectors x and y. Similar to last experiment,
we set the number of time steps at 2000. As mentioned
before, we run Alg. 2 with parameters δ = 0.1, σ = 0.05,
and in this experiment, Alg. 2 uses about 3.0 particles per
arm. There is no principled method to determine the number
of particles for PS and SMC. To compare these algorithms
fairly, we use more particles for PS and SMC. More specifi-
cally, for PS and SMC, we use 10 and 20 particles for each
arm respectively. For Thompson, we consider a uniform
prior which allows efficient posterior inference. Results are
presented in Fig. 2 (b). As shown in Fig. 2(b), Alg. 2
outperforms all baselines significantly even though PS and
SMC use much more particles compared with Alg. 2.
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(a) Conjugate prior (b) Non-conjugate Bernoulli bandit (c) Non-conjugate Gaussian bandit

Figure 2. The regret of bandits with (a) Bernoulli bandits with a conjugate prior; (b) Bernoulli bandits with a non-conjugate prior and (c)
Gaussian bandits a non-conjugate prior.

5.3.2. GAUSSIAN BANDIT WITH NON-CONJUGATE PRIOR

Our last experiment is on Gaussian bandits with non-
conjugate priors. There are 10 arms, and the mean of the
i-th arm is uniformly selected from [−10, 10]. We set the
number of time steps at 2000. We first run Alg. 2 with
parameters δ = 0.1, σ = 0.05, which uses 3.5 particles
on average for each arm per round. For PS and SMC, we
use 10 and 20 particles for each arm respectively. And for
Thompson sampling, we use an improper prior N (0, 5).
The results are averaged over 100 runs. We present the
results except that of SMC in Fig. 2(c), since it has a very
bad performance in this experiment, and the averaged regret
of SMC is about 1200. We can see that Alg. 2 also outper-
forms Thompson and PS even though PS uses much more
particles to approximate the posterior.

6. Conclusion and future work
We present an efficient racing algorithm for Thompson sam-
pling with general non-conjugate priors. Our method is
built on a new reformulation of Thompson sampling as a
best arm identification problem based on the Gumbel-Max
trick. Our racing algorithm has a theoretical guarantee. And
we show that even if the prior is non-conjugate, we can
implement Thompson sampling efficiently and not hurt the
performance concurrently.

We believe our work enlarges the applicable area where
Thompson sampling was hard to be applied due to the non-
conjugate priors in the past. In real-world applications,
non-conjugate prior appears naturally, for example, when
using a dependent prior to capture the similarities between
articles in article recommendation. We think it is meaning-
ful to explore the usage of non-conjugate priors on such
tasks. We hope our work encourages more efforts on ap-
plying Bayesian Bandits with non-conjugate priors to more
applications.

7. Acknowledgements
This work was supported by NSFC Projects (Nos.
61620106010, 61621136008, 61332007), Beijing NSF
Project (No. L172037), Tiangong Institute for Intelligent
Computing, NVIDIA NVAIL Program, Siemens and Intel.

References
Agrawal, S. and Goyal, N. Analysis of thompson sampling

for the multi-armed bandit problem. In COLT, pp. 39–1,
2012.

Agrawal, S. and Goyal, N. Near-optimal regret bounds for
thompson sampling. Journal of the ACM (JACM), 64(5):
30, 2017.

Bubeck, S., Cesa-Bianchi, N., et al. Regret analysis of
stochastic and nonstochastic multi-armed bandit prob-
lems. Foundations and Trends R© in Machine Learning, 5
(1):1–122, 2012.

Carpentier, A. and Munos, R. Finite time analysis of strat-
ified sampling for monte carlo. In Advances in Neural
Information Processing Systems, pp. 1278–1286, 2011.

Chapelle, O. and Li, L. An empirical evaluation of thompson
sampling. In Advances in neural information processing
systems, pp. 2249–2257, 2011.

Chen, Y. and Ghahramani, Z. Scalable discrete sampling as a
multi-armed bandit problem. In International Conference
on Machine Learning, pp. 2492–2501, 2016.

Del Moral, P. and Doucet, A. Particle methods: An in-
troduction with applications. In ESAIM: Proceedings,
volume 44, pp. 1–46. EDP Sciences, 2014.

Doucet, A., De Freitas, N., and Gordon, N. An introduction
to sequential monte carlo methods. In Sequential Monte
Carlo methods in practice, pp. 3–14. Springer, 2001.



Racing Thompson: an Efficient Algorithm for Thompson Sampling with Non-conjugate Priors

Even-Dar, E., Mannor, S., and Mansour, Y. Action elimina-
tion and stopping conditions for the multi-armed bandit
and reinforcement learning problems. Journal of machine
learning research, 7(Jun):1079–1105, 2006.

George, E. I., Makov, U., and Smith, A. Conjugate likeli-
hood distributions. Scandinavian Journal of Statistics, pp.
147–156, 1993.

Gopalan, A., Mannor, S., and Mansour, Y. Thompson sam-
pling for complex online problems. In ICML, volume 14,
pp. 100–108, 2014.

Guha, S. and Munagala, K. Stochastic regret minimization
via thompson sampling. In COLT, pp. 317–338, 2014.

Ikonomovska, E., Jafarpour, S., and Dasdan, A. Real-time
bid prediction using thompson sampling-based expert
selection. In Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 1869–1878. ACM, 2015.

Jamieson, K. and Nowak, R. Best-arm identification algo-
rithms for multi-armed bandits in the fixed confidence
setting. In Information Sciences and Systems (CISS),
2014 48th Annual Conference on, pp. 1–6. IEEE, 2014.

Jaynes, E. T. Prior probabilities. IEEE Transactions on
systems science and cybernetics, 4(3):227–241, 1968.

Kalyanakrishnan, S., Tewari, A., Auer, P., and Stone, P.
Pac subset selection in stochastic multi-armed bandits.
In Proceedings of the 29th International Conference on
Machine Learning (ICML-12), pp. 655–662, 2012.

Kaufmann, E., Korda, N., and Munos, R. Thompson sam-
pling: An asymptotically optimal finite-time analysis. In
International Conference on Algorithmic Learning The-
ory, pp. 199–213. Springer, 2012.

Kaufmann, E., Cappé, O., and Garivier, A. On the com-
plexity of best arm identification in multi-armed bandit
models. The Journal of Machine Learning Research,
2015.

Kawale, J., Bui, H. H., Kveton, B., Tran-Thanh, L., and
Chawla, S. Efficient thompson sampling for online
matrix-factorization recommendation. In Advances in
Neural Information Processing Systems, pp. 1297–1305,
2015.

Kuzmin, D. and Warmuth, M. K. Optimum follow the leader
algorithm. In International Conference on Computational
Learning Theory, pp. 684–686. Springer, 2005.

Lai, T. L. and Robbins, H. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics, 6(1):
4–22, 1985.

Maddison, C. J., Tarlow, D., and Minka, T. A* sampling. In
Advances in Neural Information Processing Systems, pp.
3086–3094, 2014.

Maron, O. and Moore, A. W. The racing algorithm: Model
selection for lazy learners. In Lazy learning, pp. 193–225.
Springer, 1997.

Neiswanger, W. and Xing, E. Post-inference prior swapping.
In International Conference on Machine Learning, pp.
2594–2602, 2017.

Papandreou, G. and Yuille, A. L. Perturb-and-map random
fields: Using discrete optimization to learn and sample
from energy models. In Computer Vision (ICCV), 2011
IEEE International Conference on, pp. 193–200. IEEE,
2011.

Propp, J. G. and Wilson, D. B. Exact sampling with coupled
markov chains and applications to statistical mechan-
ics. Random structures and Algorithms, 9(1-2):223–252,
1996.

Scott, S. L. A modern bayesian look at the multi-armed ban-
dit. Applied Stochastic Models in Business and Industry,
26(6):639–658, 2010.

Thompson, W. R. On the likelihood that one unknown
probability exceeds another in view of the evidence of
two samples. Biometrika, 25(3/4):285–294, 1933.


