
1077-2626 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018 77

Manuscript received 31 Mar. 2017; accepted 1 Aug. 2017.
Date of publication 28 Aug. 2017; date of current version 1 Oct. 2017.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TVCG.2017.2744938

Analyzing the Training Processes of Deep Generative Models

Mengchen Liu, Jiaxin Shi, Kelei Cao, Jun Zhu, Shixia Liu

Abnormal images Normal images

H I J K

AB

C

D

conv2

mean2

variance2

E

F

G

L

(a)

(b)

(c)

Fig. 1. DGMTracker, a visual analytics tool that helps experts understand and diagnose the training processes of deep generative
models (DGMs): (a) the loss changes; (b) the data flow visualization to illustrate how data flows through a DGM and disclose how other
neurons influence the output of the neuron of interest; (c) visualization of the training dynamics (e.g., activation changes).

Abstract— Among the many types of deep models, deep generative models (DGMs) provide a solution to the important problem of
unsupervised and semi-supervised learning. However, training DGMs requires more skill, experience, and know-how because their
training is more complex than other types of deep models such as convolutional neural networks (CNNs). We develop a visual analytics
approach for better understanding and diagnosing the training process of a DGM. To help experts understand the overall training
process, we first extract a large amount of time series data that represents training dynamics (e.g., activation changes over time). A
blue-noise polyline sampling scheme is then introduced to select time series samples, which can both preserve outliers and reduce
visual clutter. To further investigate the root cause of a failed training process, we propose a credit assignment algorithm that indicates
how other neurons contribute to the output of the neuron causing the training failure. Two case studies are conducted with machine
learning experts to demonstrate how our approach helps understand and diagnose the training processes of DGMs. We also show
how our approach can be directly used to analyze other types of deep models, such as CNNs.

Index Terms—deep learning, deep generative models, blue noise sampling, credit assignment

1 INTRODUCTION

Deep generative models (DGMs) provide a powerful solution to un-
supervised and semi-supervised learning, where the primary focus is
to discover the hidden structure of data without resorting to external
labels [28] or with relatively small labeled datasets [22]. They over-
come the limitations of previous deep learning models for supervised

• M. Liu, K. Cao, and S. Liu are with Tsinghua University and National
Engineering Lab for Big Data Software. Email:
{liumc13,ckl13}@mails.tsinghua.edu.cn; shixia@tsinghua.edu.cn. S. Liu is
the corresponding author.

• J. Shi and J. Zhu are with Tsinghua University. Email:
shijx15@mails.tsinghua.edu.cn; dcszj@tsinghua.edu.cn.

learning (e.g., CNNs), which typically require a large set of labeled
data. Accordingly, DGMs have a wide range of applications, including
data clustering, image denoising, 3D scene construction, scene under-
standing, density estimation, data compression, representation learning,
and semi-supervised classification [20, 27].

However, training DGMs often requires more skill, experience, and
know-how than other kinds of deep models, such as CNNs [15], due
to the following reasons. First, unlike CNNs, which only involve
deterministic functions (e.g., convolution), DGMs often involve both
deterministic functions and random variables (e.g., Gaussian random
variables), which are typically more difficult to deal with in the training
process. Second, a CNN involves a bottom-up process that takes an
input (e.g., image) at the bottom layer and gradually produces high-
level features and outputs (e.g., categories), while a DGM typically
involves a top-down generative process to describe low-level inputs
(e.g., images) based on latent features. Therefore, a bottom-up Bayesian
inference process is often needed in a DGM to reveal the latent features
when an input (e.g., image) is provided. Though substantial progress

78 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

has been made on large-scale Bayesian inference [55], it is still highly
nontrivial to use it in practice.

For this reason, there is a growing interest in visually understanding
and diagnosing the training process of a DGM, which is of theoretical
and practical significance for deep learning experts. Visually analyzing
the training process is technically demanding. There are two major
challenges that we must address. The first challenge is to efficiently
and effectively handle the large amount of time series data produced
in the training process of a DGM. Typical time series data from the
training process includes activation/gradient/weight changes over time
(training dynamics). Since a DGM may consist of millions of activa-
tions/gradients/weights, the extracted time series dataset potentially
comprises millions of time series. Directly visualizing all the time
series with a line chart will induce excessive visual clutter. The second
challenge is how to identify the root cause of a failed training process.
In the training process of a DGM, the loss function is more likely to
become NaN (not a number) or Inf (infinity), which leads to a training
failure. Such errors are very hard to handle because they could arise
from multiple possible sources. Potential causes include a bug or an
error in the code, a lack of numerical stability in the computational
environment (random variables, library versions, etc.), or an inappro-
priate network structure. Even when we can determine that the error is
caused by the network structure, it is often difficult to locate the specific
neurons because the neurons influence each other.

In an attempt to tackle these challenges, we have developed an in-
teractive, visual analytics tool, DGMTracker, to better understand and
diagnose the training process of a DGM. The key to analyzing the
training process is to thoroughly examine training dynamics at different
levels of granularities. To this end, we represent the change of each
weight/activation/gradient as a time series and utilize a line chart to
encode the time series data. A blue-noise polyline sampling algorithm
is also developed to select polyline samples with blue-noise properties,
which means the samples are located randomly and uniformly in the
space. This algorithm can both preserve outliers and reduce visual clut-
ter caused by a large number of time series. To help experts identify the
root cause of a failed training process, we propose a credit assignment
algorithm. For a neuron that leads to a training failure, the algorithm
quickly discloses how other neurons contribute to the output of the
neuron of interest.

The key technical contributions of this work are:
• A visual analytics tool that helps better understand the training

process of a DGM and identify the root cause of a failed training.
• A blue-noise polyline sampling scheme that selects polyline

samples with blue-noise properties.
• A credit assignment algorithm that explains how other neurons

contribute to the output of the neuron causing a training problem.
Because a DGM usually contains a CNN or a multilayer percep-

tron (MLP) as its base component [2, 41], DGMTracker can be di-
rectly used to analyze other types of deep models, such as CNNs
and MLPs.

2 RELATED WORK

In the field of visual analytics and computer vision, a number of ap-
proaches have been developed to illustrate the working mechanisms
of deep models [32]. They can be categorized into two groups: single-
snapshot-based and multiple-snapshot-based.

2.1 Single-Snapshot-Based Approaches
The single-snapshot-based approaches focus on visualizing one repre-
sentative snapshot of the training process (e.g., the last snapshot). In
the field of computer vision, researchers mostly focus on disclosing
the learned feature detected by each neuron [11, 29, 35, 54]. This
is achieved by finding the preferred inputs (e.g., images) that highly
activate a specific neuron. Various approaches have been developed
to generate such inputs. For example, Nguyen et al. [36] employed a
DGM to synthesize realistic images that highly activate a neuron. In
the field of visual analytics, most researchers focus on presenting the
whole network structure [18, 30, 49]. Pioneering research was done
by Tzeng et al. [49]. They represented a neural network as a directed

acyclic graph (DAG), where each neuron was encoded by a node and
each connection between neurons was encoded by an edge. Although
their visualization is able to illustrate how data flows through a network,
this method suffers from severe visual clutter when dealing with large
networks. Recently, Liu et al. [30] developed CNNVis to effectively
illustrate a large deep CNN. In particular, they cluster the layers and
neurons as well as the connections between neurons, which helps to
reduce the visual clutter caused by a large number of neurons and the
connections between them.

These single-snapshot-based methods can help experts better under-
stand the inner workings of deep neural networks. However, they cannot
reveal the evolution from an initial randomized network to an effectively
trained one. In addition, they are not enough to help experts diagnose a
failed training process because experts do not know which snapshot to
examine in advance. Compared with the aforementioned approaches,
our approach helps experts examine the entire training process, enabling
them to quickly locate the problem causing a network failure.

2.2 Multi-Snapshot-Based Approaches
There are several recent attempts that aim to visually analyze the train-
ing dynamics in multiple snapshots. Such work falls into two major
categories: projection-based and non-projection-based.

Projection-based approaches use dimension reduction techniques
to project high-dimensional training dynamics to lower-dimensional
(usually 2D) spaces. Rauber et al. [42] proposed a compact visual-
ization to reveal how the learned representations of training samples
evolve during training. They projected the high-dimensional learned
representations of each snapshot to a 2D space by t-SNE [34]. They
also used 2D trails to convey the evolution of the learned representa-
tions. The t-SNE-based visualization revealed that the network was
able to distinguish images from different classes better over time in
the training. Although the projection-based approaches do a good job
of illustrating how the relationships between learned representations
change over time in a training process, they do not provide an overview
of training dynamics or the individual changes of activations, gradients,
or weights, over time. Examining such dynamic information is crucial
for locating the neuron that leads to a training failure [38].

Thus, a more effective way to visualize the training dynamics is
using non-projection-based approaches such as line charts. There are
several diagnostic tools that can show high-level training dynamics
using non-projection approaches [16, 37]. For example, the diagnosis
tool provided in TensorFlow [16] allows users to examine the change of
the overall performance statistics, such as loss and the average weight
in a layer, over time. These tools are able to provide experts with
an overview of the training process. However, it is not enough to
locate the neuron that leads to a failed training process. Compared to
these tools, our approach not only provides overall performance change
but also connects the overall statistics with more detailed information,
training dynamics. In particular, we first extract a large amount of
time series data that represent the training dynamics of a DGM. Then a
blue-noise sampling scheme is developed to select time series samples,
which both preserves outliers and reduces visual clutter. The sampling
scheme enables experts to locate the neurons of interest. In addition,
we develop a credit assignment algorithm to help further analyze the
root cause of a failed training process.

3 BACKGROUND

In this section, we briefly introduce the basic principles of a DGM [14],
which will be useful for subsequent discussions.

Here we take a DGM designed for generating images as an example
to illustrate how it works. Suppose we have a set of images X and the
goal is to generate new images similar to those in X . Mathematically,
the problem can be formulated as finding the true distribution Pt(X),
from which these images are sampled. Finding the exact Pt(X) is in-
tractable because we only know a finite set of images from Pt(X). Thus,
a DGM resorts to finding an approximate distribution Pg(X) that can
best match Pt(X). In particular, Pg(X) is described by taking points z
from a simple distribution (e.g., standard Gaussian or uniform distribu-
tions) and mapping them to the generated images x′ through a deep neu-

x
z Generator x’

Disciminator Real or not?

Convolution Fully connectedConvolution

DeconvolutionFully connected Deconvolution

Fig. 2. An example architecture of a GAN.

ral network f (z;w). This is based on the fact that any distribution in d
dimensions can be generated by mapping d variables under a Gaussian
distribution or a uniform distribution through a sufficiently complicated
function (e.g., a deep neural network) [10]. The above process is similar
to a decoding process, where the generated images x′ can be seen as
having been decoded from their representations z by a decoder f (z;w).
The most famous DGMs are variational autoencoders (VAEs) [24]
and generative adversarial nets (GANs) [15], both of which have been
extensively studied in unsupervised and semi-supervised learning.
VAE. The architecture of a VAE resembles that of an autoencoder,
which is a traditional model in unsupervised learning. Autoencoders
aim to generate a reconstruction of their input with minimum informa-
tion loss [14]. An autoencoder contains two networks: an encoder net-
work and a decoder network. The encoder maps input x to its represen-
tation za. The decoder then maps za to a reconstructed input x′. While
an autoencoder is deterministic, a VAE can be seen as a probabilistic
version of an autoencoder. In particular, in an autoencoder, the represen-
tation za is a real vector, while the representation zv in a VAE is a vector
of random variables (e.g., a vector of Gaussian random variables). A
VAE also contains two networks (Fig. 1): a probabilistic encoder to
approximate the true posterior distribution P(zv|x), and a generative
decoder to reconstruct x′ from zv. Each of these networks consists of
a set of standard CNN components, such as convolutional layers.
GAN. As shown in Fig. 2, a GAN contains two networks: a generator
and a discriminator. The generator generates images x′ from representa-
tions z and the discriminator tries to distinguish between the real images
and the generated images. The discriminator is usually a CNN [2, 41]
and the generator is made up of a set of standard CNN components,
such as fully connected layers. The training process of a GAN can be
seen as a two-player game. In the game, the generator must compete
against the discriminator. The competition in this game drives both
networks to improve their performance until the generated images are
indistinguishable from the real images. Compared with VAEs, training
a GAN is more difficult because of its unstable training dynamics [41].

4 DGMTRACKER

The development of DGMTracker can be divided into three stages. In
the first stage, we held three workshops to gather the initial requirements
from three groups of machine learning experts. In the second stage,
we iteratively refined the requirements and the prototype by repeatedly
consulting with the first group of experts and inviting them to try
the prototype. For simplicity’s sake, we denote these experts as Ei
(i = 1,2, · · · ,7). In the third stage, we worked with the experts to
use the prototype to solve the issues encountered in their deep model
training process. Because the outcomes of the third stage are reported
in Sec. 7, we will briefly introduce only the first two stages here.
Workshops. To identify the initial requirements, we held three work-
shops, involving twenty machine learning experts and practitioners in
total. We intend to invite experts who use different types of deep mod-
els such as DGMs and CNNs, so that the tool developed is more generic
and can be applied to a wide range of deep models. The participants
in the first workshop consist of seven machine learning experts from
the Tsinghua Machine Learning Group. One of their major research
interests is DGMs and CNNs in various settings, including supervised,
semi-supervised, unsupervised, and reinforcement learning. In the
second workshop, we invited six deep learning experts from Microsoft
Research Asia, who are denoted as E j (j = 8,9, · · · ,13). The experts
focus on solving computer vision tasks by using deep neural networks,
such as DGMs, deep residual networks [19], and R-CNNs [13]. The

third workshop involved seven experts from the Tsinghua Visual Me-
dia Group, who are denoted as Ek (k = 14,15, · · · ,20). They perform
pedestrian detection and image segmentation using R-CNNs. In the
workshops, we mainly probed these experts about their debugging pro-
cedures and the difficulties/inconveniences of the existing diagnosis
tools that they are using. Based on the aforementioned workshops, we
identified a set of requirements and started to develop DGMTracker.
Development. In this stage, we collaborated with the machine learning
experts in the first group to develop DGMTracker over the course of six
months. Two co-authors of this paper were also from this group. We
held biweekly discussions with the experts, during which we demon-
strated the prototype to them and gathered their feedback to iteratively
refine the prototype.

4.1 Requirement Analysis
We have identified the following high-level requirements based on the
analysis of the workshop discussions.
R1 - Connecting the overall statistics with detailed training dynam-
ics. All the experts expressed the need for the overall statistics of the
training, such as loss and accuracy, which serves as an entry point for
analyzing a training failure. They also need to examine the overall
pattern of the training dynamics, such as the activation changes, to
discover the potential reason for a failed training process. Moreover,
the experts said that they wanted to link the summary statistics with
the detailed training dynamics in the analysis process. This linkage
could enable them to efficiently locate the neurons that caused a failed
training process. However, this function is poorly supported by current
tools [16, 37] because visualizing all the training dynamics will result
in severe visual clutter. Thus, the core problem is to bridge the gap be-
tween the overall statistics and detailed training dynamics by providing
a level-of-detail visualization. For example, E1 said, “What I really
want is a multi-scale visualization, in which I can see both high-level
statistics and zoom in to the details. For example, I often need to check
how the activations of neurons change in the iterative training process.”
R2 - Examining how data flows through the network. One major
difference between a deep model and a shallow model is that a deep
model is composed of many layers. These layers have different roles
and are combined to approximate the target function. Thus, under-
standing how data flows through the layers of a network is crucial to
understanding the different roles of layers [42]. In addition, a failed
training process is often caused by a specific layer. For example, expert
E3 commented, “As the layers provided by the deep learning framework
(e.g., TensorFlow) are usually very robust, a failed training process is
usually caused by the layers constructed by me.” As a result, examining
the data flow among these layers, especially the layers constructed by
the experts, helps them locate the exact layer that may lead to the failed
training process. However, directly visualizing the data flow will result
in severe visual clutter because there may be dozens or even hundreds
of layers and thousands of neurons in each layer. Thus, we need an
effective visualization tool to illustrate the overall pattern of how data
flows through the network [42].
R3 - Facilitating the detection of outliers. Outlier (anomaly) detec-
tion aims to find data objects that behave very differently than ex-
pected [17]. Experts E1, E3 −E5, E10, and E15 commented that an
outlier in the training process is a potential reason for a failed training
process. For example, expert E2 said, “In my experience, the hardest
error to debug is the one caused by only one or a few neurons and the
error is propagated to the whole network. In this scenario, I need to use
the debug mode in Theano [5] or numerical checks in TensorFlow [16]
to search for the neurons at fault. It is a very long, complicated search-
ing process.” As a result, detecting outliers in the training process is
crucial for diagnosing a failed training process. However, it is still very
challenging to automatically and accurately identify outliers in the field
of machine learning [47]. Thus, the experts desired an effective way to
identify outliers in training. Previous research [1, 33, 53] also indicates
that visualizations can help experts better detect outliers.
R4 - Examining how neurons interact with each other. Currently
there is a poor understanding of how neurons interact with each other
in a DGM. As a result, even when experts can find the neuron that

LIU ET AL.: ANALYZING THE TRAINING PROCESSES OF DEEP GENERATIVE MODELS 79

has been made on large-scale Bayesian inference [55], it is still highly
nontrivial to use it in practice.

For this reason, there is a growing interest in visually understanding
and diagnosing the training process of a DGM, which is of theoretical
and practical significance for deep learning experts. Visually analyzing
the training process is technically demanding. There are two major
challenges that we must address. The first challenge is to efficiently
and effectively handle the large amount of time series data produced
in the training process of a DGM. Typical time series data from the
training process includes activation/gradient/weight changes over time
(training dynamics). Since a DGM may consist of millions of activa-
tions/gradients/weights, the extracted time series dataset potentially
comprises millions of time series. Directly visualizing all the time
series with a line chart will induce excessive visual clutter. The second
challenge is how to identify the root cause of a failed training process.
In the training process of a DGM, the loss function is more likely to
become NaN (not a number) or Inf (infinity), which leads to a training
failure. Such errors are very hard to handle because they could arise
from multiple possible sources. Potential causes include a bug or an
error in the code, a lack of numerical stability in the computational
environment (random variables, library versions, etc.), or an inappro-
priate network structure. Even when we can determine that the error is
caused by the network structure, it is often difficult to locate the specific
neurons because the neurons influence each other.

In an attempt to tackle these challenges, we have developed an in-
teractive, visual analytics tool, DGMTracker, to better understand and
diagnose the training process of a DGM. The key to analyzing the
training process is to thoroughly examine training dynamics at different
levels of granularities. To this end, we represent the change of each
weight/activation/gradient as a time series and utilize a line chart to
encode the time series data. A blue-noise polyline sampling algorithm
is also developed to select polyline samples with blue-noise properties,
which means the samples are located randomly and uniformly in the
space. This algorithm can both preserve outliers and reduce visual clut-
ter caused by a large number of time series. To help experts identify the
root cause of a failed training process, we propose a credit assignment
algorithm. For a neuron that leads to a training failure, the algorithm
quickly discloses how other neurons contribute to the output of the
neuron of interest.

The key technical contributions of this work are:
• A visual analytics tool that helps better understand the training

process of a DGM and identify the root cause of a failed training.
• A blue-noise polyline sampling scheme that selects polyline

samples with blue-noise properties.
• A credit assignment algorithm that explains how other neurons

contribute to the output of the neuron causing a training problem.
Because a DGM usually contains a CNN or a multilayer percep-

tron (MLP) as its base component [2, 41], DGMTracker can be di-
rectly used to analyze other types of deep models, such as CNNs
and MLPs.

2 RELATED WORK

In the field of visual analytics and computer vision, a number of ap-
proaches have been developed to illustrate the working mechanisms
of deep models [32]. They can be categorized into two groups: single-
snapshot-based and multiple-snapshot-based.

2.1 Single-Snapshot-Based Approaches
The single-snapshot-based approaches focus on visualizing one repre-
sentative snapshot of the training process (e.g., the last snapshot). In
the field of computer vision, researchers mostly focus on disclosing
the learned feature detected by each neuron [11, 29, 35, 54]. This
is achieved by finding the preferred inputs (e.g., images) that highly
activate a specific neuron. Various approaches have been developed
to generate such inputs. For example, Nguyen et al. [36] employed a
DGM to synthesize realistic images that highly activate a neuron. In
the field of visual analytics, most researchers focus on presenting the
whole network structure [18, 30, 49]. Pioneering research was done
by Tzeng et al. [49]. They represented a neural network as a directed

acyclic graph (DAG), where each neuron was encoded by a node and
each connection between neurons was encoded by an edge. Although
their visualization is able to illustrate how data flows through a network,
this method suffers from severe visual clutter when dealing with large
networks. Recently, Liu et al. [30] developed CNNVis to effectively
illustrate a large deep CNN. In particular, they cluster the layers and
neurons as well as the connections between neurons, which helps to
reduce the visual clutter caused by a large number of neurons and the
connections between them.

These single-snapshot-based methods can help experts better under-
stand the inner workings of deep neural networks. However, they cannot
reveal the evolution from an initial randomized network to an effectively
trained one. In addition, they are not enough to help experts diagnose a
failed training process because experts do not know which snapshot to
examine in advance. Compared with the aforementioned approaches,
our approach helps experts examine the entire training process, enabling
them to quickly locate the problem causing a network failure.

2.2 Multi-Snapshot-Based Approaches
There are several recent attempts that aim to visually analyze the train-
ing dynamics in multiple snapshots. Such work falls into two major
categories: projection-based and non-projection-based.

Projection-based approaches use dimension reduction techniques
to project high-dimensional training dynamics to lower-dimensional
(usually 2D) spaces. Rauber et al. [42] proposed a compact visual-
ization to reveal how the learned representations of training samples
evolve during training. They projected the high-dimensional learned
representations of each snapshot to a 2D space by t-SNE [34]. They
also used 2D trails to convey the evolution of the learned representa-
tions. The t-SNE-based visualization revealed that the network was
able to distinguish images from different classes better over time in
the training. Although the projection-based approaches do a good job
of illustrating how the relationships between learned representations
change over time in a training process, they do not provide an overview
of training dynamics or the individual changes of activations, gradients,
or weights, over time. Examining such dynamic information is crucial
for locating the neuron that leads to a training failure [38].

Thus, a more effective way to visualize the training dynamics is
using non-projection-based approaches such as line charts. There are
several diagnostic tools that can show high-level training dynamics
using non-projection approaches [16, 37]. For example, the diagnosis
tool provided in TensorFlow [16] allows users to examine the change of
the overall performance statistics, such as loss and the average weight
in a layer, over time. These tools are able to provide experts with
an overview of the training process. However, it is not enough to
locate the neuron that leads to a failed training process. Compared to
these tools, our approach not only provides overall performance change
but also connects the overall statistics with more detailed information,
training dynamics. In particular, we first extract a large amount of
time series data that represent the training dynamics of a DGM. Then a
blue-noise sampling scheme is developed to select time series samples,
which both preserves outliers and reduces visual clutter. The sampling
scheme enables experts to locate the neurons of interest. In addition,
we develop a credit assignment algorithm to help further analyze the
root cause of a failed training process.

3 BACKGROUND

In this section, we briefly introduce the basic principles of a DGM [14],
which will be useful for subsequent discussions.

Here we take a DGM designed for generating images as an example
to illustrate how it works. Suppose we have a set of images X and the
goal is to generate new images similar to those in X . Mathematically,
the problem can be formulated as finding the true distribution Pt(X),
from which these images are sampled. Finding the exact Pt(X) is in-
tractable because we only know a finite set of images from Pt(X). Thus,
a DGM resorts to finding an approximate distribution Pg(X) that can
best match Pt(X). In particular, Pg(X) is described by taking points z
from a simple distribution (e.g., standard Gaussian or uniform distribu-
tions) and mapping them to the generated images x′ through a deep neu-

x
z Generator x’

Disciminator Real or not?

Convolution Fully connectedConvolution

DeconvolutionFully connected Deconvolution

Fig. 2. An example architecture of a GAN.

ral network f (z;w). This is based on the fact that any distribution in d
dimensions can be generated by mapping d variables under a Gaussian
distribution or a uniform distribution through a sufficiently complicated
function (e.g., a deep neural network) [10]. The above process is similar
to a decoding process, where the generated images x′ can be seen as
having been decoded from their representations z by a decoder f (z;w).
The most famous DGMs are variational autoencoders (VAEs) [24]
and generative adversarial nets (GANs) [15], both of which have been
extensively studied in unsupervised and semi-supervised learning.
VAE. The architecture of a VAE resembles that of an autoencoder,
which is a traditional model in unsupervised learning. Autoencoders
aim to generate a reconstruction of their input with minimum informa-
tion loss [14]. An autoencoder contains two networks: an encoder net-
work and a decoder network. The encoder maps input x to its represen-
tation za. The decoder then maps za to a reconstructed input x′. While
an autoencoder is deterministic, a VAE can be seen as a probabilistic
version of an autoencoder. In particular, in an autoencoder, the represen-
tation za is a real vector, while the representation zv in a VAE is a vector
of random variables (e.g., a vector of Gaussian random variables). A
VAE also contains two networks (Fig. 1): a probabilistic encoder to
approximate the true posterior distribution P(zv|x), and a generative
decoder to reconstruct x′ from zv. Each of these networks consists of
a set of standard CNN components, such as convolutional layers.
GAN. As shown in Fig. 2, a GAN contains two networks: a generator
and a discriminator. The generator generates images x′ from representa-
tions z and the discriminator tries to distinguish between the real images
and the generated images. The discriminator is usually a CNN [2, 41]
and the generator is made up of a set of standard CNN components,
such as fully connected layers. The training process of a GAN can be
seen as a two-player game. In the game, the generator must compete
against the discriminator. The competition in this game drives both
networks to improve their performance until the generated images are
indistinguishable from the real images. Compared with VAEs, training
a GAN is more difficult because of its unstable training dynamics [41].

4 DGMTRACKER

The development of DGMTracker can be divided into three stages. In
the first stage, we held three workshops to gather the initial requirements
from three groups of machine learning experts. In the second stage,
we iteratively refined the requirements and the prototype by repeatedly
consulting with the first group of experts and inviting them to try
the prototype. For simplicity’s sake, we denote these experts as Ei
(i = 1,2, · · · ,7). In the third stage, we worked with the experts to
use the prototype to solve the issues encountered in their deep model
training process. Because the outcomes of the third stage are reported
in Sec. 7, we will briefly introduce only the first two stages here.
Workshops. To identify the initial requirements, we held three work-
shops, involving twenty machine learning experts and practitioners in
total. We intend to invite experts who use different types of deep mod-
els such as DGMs and CNNs, so that the tool developed is more generic
and can be applied to a wide range of deep models. The participants
in the first workshop consist of seven machine learning experts from
the Tsinghua Machine Learning Group. One of their major research
interests is DGMs and CNNs in various settings, including supervised,
semi-supervised, unsupervised, and reinforcement learning. In the
second workshop, we invited six deep learning experts from Microsoft
Research Asia, who are denoted as E j (j = 8,9, · · · ,13). The experts
focus on solving computer vision tasks by using deep neural networks,
such as DGMs, deep residual networks [19], and R-CNNs [13]. The

third workshop involved seven experts from the Tsinghua Visual Me-
dia Group, who are denoted as Ek (k = 14,15, · · · ,20). They perform
pedestrian detection and image segmentation using R-CNNs. In the
workshops, we mainly probed these experts about their debugging pro-
cedures and the difficulties/inconveniences of the existing diagnosis
tools that they are using. Based on the aforementioned workshops, we
identified a set of requirements and started to develop DGMTracker.
Development. In this stage, we collaborated with the machine learning
experts in the first group to develop DGMTracker over the course of six
months. Two co-authors of this paper were also from this group. We
held biweekly discussions with the experts, during which we demon-
strated the prototype to them and gathered their feedback to iteratively
refine the prototype.

4.1 Requirement Analysis
We have identified the following high-level requirements based on the
analysis of the workshop discussions.
R1 - Connecting the overall statistics with detailed training dynam-
ics. All the experts expressed the need for the overall statistics of the
training, such as loss and accuracy, which serves as an entry point for
analyzing a training failure. They also need to examine the overall
pattern of the training dynamics, such as the activation changes, to
discover the potential reason for a failed training process. Moreover,
the experts said that they wanted to link the summary statistics with
the detailed training dynamics in the analysis process. This linkage
could enable them to efficiently locate the neurons that caused a failed
training process. However, this function is poorly supported by current
tools [16, 37] because visualizing all the training dynamics will result
in severe visual clutter. Thus, the core problem is to bridge the gap be-
tween the overall statistics and detailed training dynamics by providing
a level-of-detail visualization. For example, E1 said, “What I really
want is a multi-scale visualization, in which I can see both high-level
statistics and zoom in to the details. For example, I often need to check
how the activations of neurons change in the iterative training process.”
R2 - Examining how data flows through the network. One major
difference between a deep model and a shallow model is that a deep
model is composed of many layers. These layers have different roles
and are combined to approximate the target function. Thus, under-
standing how data flows through the layers of a network is crucial to
understanding the different roles of layers [42]. In addition, a failed
training process is often caused by a specific layer. For example, expert
E3 commented, “As the layers provided by the deep learning framework
(e.g., TensorFlow) are usually very robust, a failed training process is
usually caused by the layers constructed by me.” As a result, examining
the data flow among these layers, especially the layers constructed by
the experts, helps them locate the exact layer that may lead to the failed
training process. However, directly visualizing the data flow will result
in severe visual clutter because there may be dozens or even hundreds
of layers and thousands of neurons in each layer. Thus, we need an
effective visualization tool to illustrate the overall pattern of how data
flows through the network [42].
R3 - Facilitating the detection of outliers. Outlier (anomaly) detec-
tion aims to find data objects that behave very differently than ex-
pected [17]. Experts E1, E3 −E5, E10, and E15 commented that an
outlier in the training process is a potential reason for a failed training
process. For example, expert E2 said, “In my experience, the hardest
error to debug is the one caused by only one or a few neurons and the
error is propagated to the whole network. In this scenario, I need to use
the debug mode in Theano [5] or numerical checks in TensorFlow [16]
to search for the neurons at fault. It is a very long, complicated search-
ing process.” As a result, detecting outliers in the training process is
crucial for diagnosing a failed training process. However, it is still very
challenging to automatically and accurately identify outliers in the field
of machine learning [47]. Thus, the experts desired an effective way to
identify outliers in training. Previous research [1, 33, 53] also indicates
that visualizations can help experts better detect outliers.
R4 - Examining how neurons interact with each other. Currently
there is a poor understanding of how neurons interact with each other
in a DGM. As a result, even when experts can find the neuron that

80 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

Activation
Gradient

Weight

Data flow visualization

Training dynamics analysis

Snapshot-level analysis

Neuron-level analysis

Analytical process

Layer-level analysis

DGMTracker

Snapshot level

Neuron level

Color Coding
-1.0 1.0
Clusters:

conv2

mean2

variance2

Fig. 3. DGMTracker consists of two modules: a data flow visualization and a training dynamics analysis. These modules are well aligned with the
typical analytical process of an expert.

leads to a failed training process, it is hard for them to identify the
root cause of a network failure. E2 said, “Even if I find an activation
(of a neuron) is abnormal, it’s usually hard for me to figure out what
has led to this problem.” Without a comprehensive understanding of
how neurons interact with each other, an exhaustive manual trial-and-
error solution is infeasible. For example, E2 commented, “I often
encounter the error of infinitive weights in the trial process. I usually
clip the gradients or the weights to make the model work. However,
the clipping will slow down the training process or even does not work
at all.” Experts E3 and E7 also commented that sometimes an error in
one layer is caused by an abnormal phenomenon in another layer and
the abnormality propagates to this layer. As a result, all the experts
expressed the need to understand how neurons interact with each other.
In particular, they are interested in how other neurons contribute to the
output of the neuron being studied. This has also been confirmed by
previous research [26].

4.2 System Overview

The collected requirements motivated us to develop DGMTracker,
which consists of the following modules:

• A data flow visualization module that visualizes how data flows
through a DGM (R2) and discloses how other neurons influence
the output of the neuron of interest (R4);

• A training dynamics analysis module that samples the time
series to preserve outliers and reduce visual clutter caused by a
large amount of time series data (R1, R3).

These two modules are well aligned with the tasks in an expert’s
typical debugging process (Fig. 4). Generally, an expert starts his or her
analysis by examining the loss changes to identify the abnormal snap-
shots. In DGMTracker, we allow an expert to explore the loss changes
with different time granularities by employing the focus+context time-
line [50] (Fig. 1 (a)). The expert can click on the loss curve to select the
snapshot of interest. Once the snapshot of interest has been identified,
the expert usually prints out some high-level statistics for each layer
(e.g., averaged activations) to identify the layer of interest (snapshot-
level analysis). To support such analysis, the data flow visualization
provides a hybrid visualization to illustrate how data flows through
the network at the snapshot level (Fig. 1 (b)). Then, to locate the neu-
ron that leads to the network failure, the expert usually prints out the

conv2

mean2

variance2

(b)(a)

conv2

mean2

variance2

Maximum
Average

Minimum

Focus snapshot

Fig. 4. A hybrid visualization to illustrate the data flow at the snapshot
level: (a) a DAG layout to visualize the structure of a DGM; (b) line charts
to represent the data flow.

training dynamics of the layer of interest, such as how the activations
change in several snapshots (layer-level analysis). To help an expert
with this task, the time series analysis module selects time series sam-
ples that can both preserve outliers and reduce visual clutter (Fig. 1 (c)).
After detecting the abnormal neurons, the expert usually uses his or her
prior knowledge to analyze the root cause of a failed training process
(neuron-level analysis). This step heavily depends on the expertise of
the expert. To ease this step, we allow the expert to interactively select
a set of neurons (Fig. 1G) and explore how other neurons contribute to
the output of these neurons by the data flow visualization (Fig. 1L).

5 DATA FLOW VISUALIZATION

The data flow visualization aims to illustrate how data flows through a
network (snapshot-level analysis, R2) and how other neurons contribute
to the output of the neuron of interest (neuron-level analysis, R4).

5.1 Snapshot Level Visualization
At the snapshot level, we focus on analyzing how data flows through a
network (R2). Recently, Rauber et al. [42] developed a t-SNE-based
method to show how the data flows through the network layers. How-
ever, this method can only handle a network with a chain structure
because it utilizes a trail to illustrate the flow of each input data point
through the layers. To handle networks with a more complicated struc-
tures where the layers can split and merge (e.g., VAE), we have designed
a hybrid visualization that combines a directed acyclic graph (DAG)
visualization (illustrating how layers are connected) with a set of line
charts (presenting the data flow in each layer).
DAG visualization. We represent the structure of a DGM as a DAG,
where each layer is a node and their connections are edges (Fig. 4(a)).
The layout algorithm in TextFlow [9] is employed to calculate the
position of each node. To handle large DGMs with dozens or even
hundreds of layers, we employ the method used in TensorFlow [16]
to hierarchically organize the layers. In the hierarchy, each leaf node
is a layer and each non-leaf node represents a layer group. For large
DGMs, only the top-level nodes of this hierarchy are shown by default
and experts can expand a layer group to examine the individual layers.
Line charts for representing data flow. The data flow is represented
by a set of line charts. To provide the experts with the context of the
training dynamics, a line chart is placed within each node (Fig. 4(b)). In
a line chart, the central vertical line represents the focus snapshot. Each
curve represents the training dynamics around the focus snapshot St ,
such as the averaged activations in the snapshots from St−k to St+k. We
set k = 10 in DGMTracker and allow experts to interactively change
this value.

(a) (b) (c)

Maximum

Average

Minimum

Fig. 5. Example patterns of data flow within each node: (a) abrupt
changes of many activations; (b) abrupt changes of a few activations; (c)
activations that become unstable after the focus snapshot.

During development, we found several interesting patterns and
present several examples that correspond to activations. Fig. 5(a)
indicates that many activations change abruptly at the focus snapshot.
Fig. 5(b) shows that most activations remain stable but a few activations
change abruptly at the focus snapshot. The above two patterns indicate
that there are probably errors in the corresponding layer. These two
patterns may cause other layers to behave like the one shown in
Fig. 5(c), where the activations are stable before the focus snapshot
and become unstable after the focus snapshot. The pattern in Fig. 5(c)
implies that there are probably errors in other layers.

5.2 Neuron Level Visualization
At the neural level, we focus on computing and presenting how other
neurons contribute to the output of the neuron being explored (R4).
This helps experts analyze the root cause of a network failure (neuron-
level analysis). To this end, we borrow the idea of credit assignment
from machine learning [43]. Credit assignment determines which
components (e.g., neurons) in the network are responsible for an error
if the output of the network differs from the target.

5.2.1 Computation of Credit Assignment

As shown in Fig. 6, the output of a neuron nl
j in layer l is not only

influenced by the neurons in layer l − 1 (forward contribution) but
is also influenced by the neurons in layer l + 1 (backward contribu-
tion). These two types of contributions together determine the output of
nl

j. The forward contribution has been studied in the field of machine
learning [26, 54]. We adopt the state-of-the-art Layer-wise Relevance
Propagation (LRP) algorithm [26], to compute the forward contribution.
For the backward contribution, we leverage the backpropagation algo-
rithm [6], which clearly discloses how the outputs of neurons in layer
l+1 indirectly influence the outputs of the neurons in layer l. Next, we
introduce how to compute the forward and backward contributions.
Forward contribution. As shown in Fig. 6, a neuron nl

j in layer l
receives the outputs of neurons in layer l − 1. The output al

j of nl
j

can be computed as: al
j = σ(∑i wi jal−1

i), where σ() is the activation

function and wi j is the weight connecting nl
j and nl−1

i . In the LRP, the

contribution C(al−1
i → al

j) of nl−1
i on nl

j is computed as:

C(al−1
i → al

j) = wi jal−1
i /Z, (1)

where Z = ∑h wh ja
l−1
h is a normalization factor.

Backward contribution. According to the backpropagation algo-
rithm [6], the output al+1

k of the neuron nl+1
k in layer l + 1 has a

backward contribution on the gradient gi j of weight wi j. After wi j
is updated according to its gradient, the weight will contributes to the
output al

i of the neuron nl
j. The analysis above can be summarized as:

al+1
k ⇒ gi j ⇒ wi j ⇒ al

i , (2)

where A ⇒ B means A has a contribution on B. In this way, the outputs
of neurons in layer l +1 indirectly contribute to the outputs of neurons
in layer l. To compute the backward contribution, we aggregate the
contribution of each step in Eq. 2, and obtain:

C(al+1
k → al

j) = wk ja
l+1
k /Y, (3)

where Y =∑h w jhal+1
h is a normalization factor. The detailed deduction

can be found in the supplemental material.

......

 1l − l 1l +

ijw 1l
kn + 1l

in −

 l
jn

jkw

Layer:

Forward contribution
Backward contribution

Fig. 6. Illustration of the forward and backward contribution. The forward
(backward) contribution discloses how neurons are influenced by the
neurons in the previous (next) layer.

conv2

variance2

K-Means

(a)

(b) (d)

conv2

variance2

conv2

variance2

(c) (e)
Feature map

Hover

Hover

conv2

variance2

Fig. 7. Credit visualization: (a) before clustering; (b) after K-Means
clustering; (c) after organizing neurons as feature maps; (d) and (e)
detail contribution when mouse hovers.

5.2.2 Credit Visualization

Based on the forward and backward contribution, an expert can select
a set of neurons and analyze the forward or backward contribution at a
specific time point. Here, we take the forward contribution as an exam-
ple to illustrate the basic idea of the visualization design. As shown in
Fig. 7(a), each neuron is represented by a rectangle and colored by its ac-
tivation value (red: negative activation; green: positive activation). The
contribution of one neuron to another is encoded by an edge (Fig. 7(a)).
We also use the same color-coding to encode the contribution value
(green: a positive contribution; red: a negative contribution).

Directly visualizing all the neurons and the contributions in a layer
will cause severe visual clutter. To address this issue, we first tried to
cluster the neurons using the popular K-Means clustering algorithm [6]
and only show the clusters whose neurons highly contribute to the
output of the selected neurons (Fig. 7(b)). To save screen space, we rep-
resent the neurons in a cluster as a grid. In addition, by default, we only
present the averaged contribution between two neuron clusters. The
expert can hover over one neuron to examine the detailed contributions
of other neurons to that neuron (Fig. 7(d)). To provide the analysis
context for the expert, we combine the credit visualization with the
snapshot-level visualization (Fig. 1) in a focus+context manner.

After we presented this visualization to the experts, they commented
that this design was suitable for fully-connected layers but not for convo-
lutional and deconvolutional layers. For these types of layers, they want
to examine the relative position of the image patch that each neuron is
influenced by. This is very useful for identifying which part of the input
image might lead to the current situation if the neuron causes an input-
image-related failure. Accordingly, a better solution is to represent the
neurons using feature maps [27]. In a convolutional/deconvolutional
layer, a feature map consists of a set of neurons that share the same
weights [27]. The position of a neuron is determined by the position of
the image patch that influences the output of this neuron. Each neuron
in a feature map of layer l is connected to a local patch (a subset of
neurons) in the feature maps of layer l − 1. As a result, organizing
neurons as feature maps can disclose which patch in the feature maps
of layer l−1 contributes to the output of a neuron in layer l. By tracing
back to layer 0 (input image), we then connect the neuron with the
corresponding image patch.

Thus, for convolutional/deconvolutional layers, we organize the
neurons as feature maps and use a matrix to illustrate the activation
distribution of the neurons in a feature map (Fig. 7(c)). This change can
help experts better identify the connection patterns between neurons
in adjacent layers. For example, Fig. 7(e) indicates that the larger
activation of the neuron is mostly caused by neurons in the left corner
of the second feature map in the previous layer. This phenomenon
cannot be identified when using K-Means clustering (Fig. 7(d)) because
the neurons are placed randomly.

LIU ET AL.: ANALYZING THE TRAINING PROCESSES OF DEEP GENERATIVE MODELS 81

Activation
Gradient

Weight

Data flow visualization

Training dynamics analysis

Snapshot-level analysis

Neuron-level analysis

Analytical process

Layer-level analysis

DGMTracker

Snapshot level

Neuron level

Color Coding
-1.0 1.0
Clusters:

conv2

mean2

variance2

Fig. 3. DGMTracker consists of two modules: a data flow visualization and a training dynamics analysis. These modules are well aligned with the
typical analytical process of an expert.

leads to a failed training process, it is hard for them to identify the
root cause of a network failure. E2 said, “Even if I find an activation
(of a neuron) is abnormal, it’s usually hard for me to figure out what
has led to this problem.” Without a comprehensive understanding of
how neurons interact with each other, an exhaustive manual trial-and-
error solution is infeasible. For example, E2 commented, “I often
encounter the error of infinitive weights in the trial process. I usually
clip the gradients or the weights to make the model work. However,
the clipping will slow down the training process or even does not work
at all.” Experts E3 and E7 also commented that sometimes an error in
one layer is caused by an abnormal phenomenon in another layer and
the abnormality propagates to this layer. As a result, all the experts
expressed the need to understand how neurons interact with each other.
In particular, they are interested in how other neurons contribute to the
output of the neuron being studied. This has also been confirmed by
previous research [26].

4.2 System Overview

The collected requirements motivated us to develop DGMTracker,
which consists of the following modules:

• A data flow visualization module that visualizes how data flows
through a DGM (R2) and discloses how other neurons influence
the output of the neuron of interest (R4);

• A training dynamics analysis module that samples the time
series to preserve outliers and reduce visual clutter caused by a
large amount of time series data (R1, R3).

These two modules are well aligned with the tasks in an expert’s
typical debugging process (Fig. 4). Generally, an expert starts his or her
analysis by examining the loss changes to identify the abnormal snap-
shots. In DGMTracker, we allow an expert to explore the loss changes
with different time granularities by employing the focus+context time-
line [50] (Fig. 1 (a)). The expert can click on the loss curve to select the
snapshot of interest. Once the snapshot of interest has been identified,
the expert usually prints out some high-level statistics for each layer
(e.g., averaged activations) to identify the layer of interest (snapshot-
level analysis). To support such analysis, the data flow visualization
provides a hybrid visualization to illustrate how data flows through
the network at the snapshot level (Fig. 1 (b)). Then, to locate the neu-
ron that leads to the network failure, the expert usually prints out the

conv2

mean2

variance2

(b)(a)

conv2

mean2

variance2

Maximum
Average

Minimum

Focus snapshot

Fig. 4. A hybrid visualization to illustrate the data flow at the snapshot
level: (a) a DAG layout to visualize the structure of a DGM; (b) line charts
to represent the data flow.

training dynamics of the layer of interest, such as how the activations
change in several snapshots (layer-level analysis). To help an expert
with this task, the time series analysis module selects time series sam-
ples that can both preserve outliers and reduce visual clutter (Fig. 1 (c)).
After detecting the abnormal neurons, the expert usually uses his or her
prior knowledge to analyze the root cause of a failed training process
(neuron-level analysis). This step heavily depends on the expertise of
the expert. To ease this step, we allow the expert to interactively select
a set of neurons (Fig. 1G) and explore how other neurons contribute to
the output of these neurons by the data flow visualization (Fig. 1L).

5 DATA FLOW VISUALIZATION

The data flow visualization aims to illustrate how data flows through a
network (snapshot-level analysis, R2) and how other neurons contribute
to the output of the neuron of interest (neuron-level analysis, R4).

5.1 Snapshot Level Visualization
At the snapshot level, we focus on analyzing how data flows through a
network (R2). Recently, Rauber et al. [42] developed a t-SNE-based
method to show how the data flows through the network layers. How-
ever, this method can only handle a network with a chain structure
because it utilizes a trail to illustrate the flow of each input data point
through the layers. To handle networks with a more complicated struc-
tures where the layers can split and merge (e.g., VAE), we have designed
a hybrid visualization that combines a directed acyclic graph (DAG)
visualization (illustrating how layers are connected) with a set of line
charts (presenting the data flow in each layer).
DAG visualization. We represent the structure of a DGM as a DAG,
where each layer is a node and their connections are edges (Fig. 4(a)).
The layout algorithm in TextFlow [9] is employed to calculate the
position of each node. To handle large DGMs with dozens or even
hundreds of layers, we employ the method used in TensorFlow [16]
to hierarchically organize the layers. In the hierarchy, each leaf node
is a layer and each non-leaf node represents a layer group. For large
DGMs, only the top-level nodes of this hierarchy are shown by default
and experts can expand a layer group to examine the individual layers.
Line charts for representing data flow. The data flow is represented
by a set of line charts. To provide the experts with the context of the
training dynamics, a line chart is placed within each node (Fig. 4(b)). In
a line chart, the central vertical line represents the focus snapshot. Each
curve represents the training dynamics around the focus snapshot St ,
such as the averaged activations in the snapshots from St−k to St+k. We
set k = 10 in DGMTracker and allow experts to interactively change
this value.

(a) (b) (c)

Maximum

Average

Minimum

Fig. 5. Example patterns of data flow within each node: (a) abrupt
changes of many activations; (b) abrupt changes of a few activations; (c)
activations that become unstable after the focus snapshot.

During development, we found several interesting patterns and
present several examples that correspond to activations. Fig. 5(a)
indicates that many activations change abruptly at the focus snapshot.
Fig. 5(b) shows that most activations remain stable but a few activations
change abruptly at the focus snapshot. The above two patterns indicate
that there are probably errors in the corresponding layer. These two
patterns may cause other layers to behave like the one shown in
Fig. 5(c), where the activations are stable before the focus snapshot
and become unstable after the focus snapshot. The pattern in Fig. 5(c)
implies that there are probably errors in other layers.

5.2 Neuron Level Visualization
At the neural level, we focus on computing and presenting how other
neurons contribute to the output of the neuron being explored (R4).
This helps experts analyze the root cause of a network failure (neuron-
level analysis). To this end, we borrow the idea of credit assignment
from machine learning [43]. Credit assignment determines which
components (e.g., neurons) in the network are responsible for an error
if the output of the network differs from the target.

5.2.1 Computation of Credit Assignment

As shown in Fig. 6, the output of a neuron nl
j in layer l is not only

influenced by the neurons in layer l − 1 (forward contribution) but
is also influenced by the neurons in layer l + 1 (backward contribu-
tion). These two types of contributions together determine the output of
nl

j. The forward contribution has been studied in the field of machine
learning [26, 54]. We adopt the state-of-the-art Layer-wise Relevance
Propagation (LRP) algorithm [26], to compute the forward contribution.
For the backward contribution, we leverage the backpropagation algo-
rithm [6], which clearly discloses how the outputs of neurons in layer
l+1 indirectly influence the outputs of the neurons in layer l. Next, we
introduce how to compute the forward and backward contributions.
Forward contribution. As shown in Fig. 6, a neuron nl

j in layer l
receives the outputs of neurons in layer l − 1. The output al

j of nl
j

can be computed as: al
j = σ(∑i wi jal−1

i), where σ() is the activation

function and wi j is the weight connecting nl
j and nl−1

i . In the LRP, the

contribution C(al−1
i → al

j) of nl−1
i on nl

j is computed as:

C(al−1
i → al

j) = wi jal−1
i /Z, (1)

where Z = ∑h wh ja
l−1
h is a normalization factor.

Backward contribution. According to the backpropagation algo-
rithm [6], the output al+1

k of the neuron nl+1
k in layer l + 1 has a

backward contribution on the gradient gi j of weight wi j. After wi j
is updated according to its gradient, the weight will contributes to the
output al

i of the neuron nl
j. The analysis above can be summarized as:

al+1
k ⇒ gi j ⇒ wi j ⇒ al

i , (2)

where A ⇒ B means A has a contribution on B. In this way, the outputs
of neurons in layer l +1 indirectly contribute to the outputs of neurons
in layer l. To compute the backward contribution, we aggregate the
contribution of each step in Eq. 2, and obtain:

C(al+1
k → al

j) = wk ja
l+1
k /Y, (3)

where Y =∑h w jhal+1
h is a normalization factor. The detailed deduction

can be found in the supplemental material.

......

 1l − l 1l +

ijw 1l
kn + 1l

in −

 l
jn

jkw

Layer:

Forward contribution
Backward contribution

Fig. 6. Illustration of the forward and backward contribution. The forward
(backward) contribution discloses how neurons are influenced by the
neurons in the previous (next) layer.

conv2

variance2

K-Means

(a)

(b) (d)

conv2

variance2

conv2

variance2

(c) (e)
Feature map

Hover

Hover

conv2

variance2

Fig. 7. Credit visualization: (a) before clustering; (b) after K-Means
clustering; (c) after organizing neurons as feature maps; (d) and (e)
detail contribution when mouse hovers.

5.2.2 Credit Visualization

Based on the forward and backward contribution, an expert can select
a set of neurons and analyze the forward or backward contribution at a
specific time point. Here, we take the forward contribution as an exam-
ple to illustrate the basic idea of the visualization design. As shown in
Fig. 7(a), each neuron is represented by a rectangle and colored by its ac-
tivation value (red: negative activation; green: positive activation). The
contribution of one neuron to another is encoded by an edge (Fig. 7(a)).
We also use the same color-coding to encode the contribution value
(green: a positive contribution; red: a negative contribution).

Directly visualizing all the neurons and the contributions in a layer
will cause severe visual clutter. To address this issue, we first tried to
cluster the neurons using the popular K-Means clustering algorithm [6]
and only show the clusters whose neurons highly contribute to the
output of the selected neurons (Fig. 7(b)). To save screen space, we rep-
resent the neurons in a cluster as a grid. In addition, by default, we only
present the averaged contribution between two neuron clusters. The
expert can hover over one neuron to examine the detailed contributions
of other neurons to that neuron (Fig. 7(d)). To provide the analysis
context for the expert, we combine the credit visualization with the
snapshot-level visualization (Fig. 1) in a focus+context manner.

After we presented this visualization to the experts, they commented
that this design was suitable for fully-connected layers but not for convo-
lutional and deconvolutional layers. For these types of layers, they want
to examine the relative position of the image patch that each neuron is
influenced by. This is very useful for identifying which part of the input
image might lead to the current situation if the neuron causes an input-
image-related failure. Accordingly, a better solution is to represent the
neurons using feature maps [27]. In a convolutional/deconvolutional
layer, a feature map consists of a set of neurons that share the same
weights [27]. The position of a neuron is determined by the position of
the image patch that influences the output of this neuron. Each neuron
in a feature map of layer l is connected to a local patch (a subset of
neurons) in the feature maps of layer l − 1. As a result, organizing
neurons as feature maps can disclose which patch in the feature maps
of layer l−1 contributes to the output of a neuron in layer l. By tracing
back to layer 0 (input image), we then connect the neuron with the
corresponding image patch.

Thus, for convolutional/deconvolutional layers, we organize the
neurons as feature maps and use a matrix to illustrate the activation
distribution of the neurons in a feature map (Fig. 7(c)). This change can
help experts better identify the connection patterns between neurons
in adjacent layers. For example, Fig. 7(e) indicates that the larger
activation of the neuron is mostly caused by neurons in the left corner
of the second feature map in the previous layer. This phenomenon
cannot be identified when using K-Means clustering (Fig. 7(d)) because
the neurons are placed randomly.

82 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

(a) (b) (c)

Without sampling Random sampling Blue-noise polyline sampling

Fig. 8. Comparison of different sampling methods: (a) without sampling; (b) random sampling; (c) blue-noise polyline sampling. The blue-noise
polyline sampling algorithm can better reduce visual clutter (the red rectangle) and preserve outliers (the green rectangle).

6 TRAINING DYNAMICS ANALYSIS

When an expert selects a layer, we aim to present the corresponding
training dynamics to facilitate him or her in finding the neuron of
interest. To enable the expert to focus on analysis, we employ a familiar
visual metaphor, a line chart, to visually convey the training dynamics (a
set of time series data). However, directly using a line chart to visualize
a large amount of time series data will cause severe visual clutter [31].
To solve this problem, we propose a blue-noise polyline sampling
algorithm to select time series samples with blue noise properties,
which can both preserve outliers and reduce visual clutter (R1, R3).

6.1 Motivation

The use of blue-noise sampling is triggered by its wide usage in a
variety of computer graphics applications, such as image reconstruc-
tion and color stippling [4]. Here blue-noise sampling means that the
selected samples have blue-noise properties, i.e., the selected samples
are located randomly and uniformly in the space [45]. This uniformity
is very important in visualization [7], which is able to make the high-
density regions of the candidate set less sampled and the low-density
regions more sampled than random sampling. As a result, the blue-
noise sampling can better reduce visual clutter and preserve outliers.

Accordingly, we propose to use blue-noise sampling to select a set
of appropriate time series. The state-of-the-art method for blue-noise
sampling is the line segment sampling algorithm [45]. A line segment is
“a part of a line that is bounded by two distinct end points, and contains
every point on the line between its end points” [52]. This algorithm
first evenly groups the lines segments into NG groups according to their
angles with the x-axis. The angle of a line segment s can be computed
by: arctan(y2−y1

x2−x1
), where p1 = (x1,y1) and p2 = (x2,y2) are the end

points of s. Then, a set of line segments are selected by the multi-class
blue-noise sampling [51]. In particular, in each iteration, a new line
segment is drawn from the most under-filled group to ensure each group
of line segments are well sampled. The fill rate is defined as the number
of existing samples for a group over the target number of samples for
that group. The new line segment will be added to the sample set
if its minimum distance from other existing line segment samples is
larger than a predefined threshold [51]. The distance between two
line segments are defined as the distance between their middle points.
This process is repeated until the required amount of line segments
are selected. Although this algorithm works well for line segments, it
cannot be directly used to sample the time series data, each of which
is a polyline (a connected sequence of line segments). As a result, we
have developed a blue-noise polyline sampling algorithm.

6.2 Blue-Noise Polyline Sampling

As a polyline is a connected sequence of line segments, an intuitive
method for sampling polyline samples with blue-noise properties is: 1)
selecting line segment samples with blue-noise properties by using the
blue-noise line segment sampling; 2) selecting polylines that contain the
selected line segments as samples. However, this approach cannot guar-
antee that the selected polylines have blue-noise properties. To address
this issue, we need to simultaneously select all the line segments in one
polyline and maintain blue-noise properties of the selected polylines.

As stated above, the core process of blue-noise line segment sam-
pling is selecting a line segment from the most under-filled group and
computing the distance between the new samples and existing sam-
ples to determine whether to accept the new sample. Accordingly, if

we want to adapt the blue-noise line segment sampling to polyline
sampling, we need to solve two problems:
P1: how to select a polyline from the most under-filled group;
P2: how to compute the distance between two polylines.
Solution to P1. An intuitive method for solving P1 is randomly select-
ing a line segment from the most under-filled group and selecting the
corresponding polyline. This method is fast but may select many line
segments in other over-filled groups. A better solution is to directly
select the best polyline that makes the fill rates the most balanced. In
particular, we compute a score sL for each non-selected polyline L:
sL = ∑NG

i=1 | f rnew
i −1|, where f rnew

i is the new fill rate of group i, if L is
selected. A major issue with this solution is its expensive computational
cost. To solve this problem, we employ the property that the calculation
of each score is independent and use parallel computing to accelerate it.
Solution to P2. As the distance between two segments is computed by
the distance between their middle points [45], a natural approach to
computing the distance d(L1,L2) between two polylines L1 and L2 is:

d(L1,L2) =
1

NS

NS

∑
i=1

dC(si
1,s

i
2), (4)

where NS is the number of line segments in L1 and L2, dC(,) is the
distance between the middle points of two line segments, and si

1, si
2

are two line segments of the same snapshot belonging to L1 and L2.
The advantage of this approach is it can preserve as many outliers as
possible (Fig. 8(c)). If two segments are far apart, the distance between
the corresponding polylines will mainly be determined by the distance
between these two line segments.
Result. Fig. 8 compares the visualizations generated without sampling
(Fig. 8(a)), with random sampling (Fig. 8(b)), and with blue-noise
polyline sampling (Fig. 8(c)). The time series data we use is comprised
of the changes in weights in the first layer of the VAE used in the
second case study. There were originally 1,728 (3*3*3*64) time series.
We sampled 5% of the time series from the data by random sampling
and blue-noise polyline sampling.

Without sampling, the high-density region in Fig. 8(a) suffers severe
visual clutter (the red rectangle). Compared with random sampling
(Fig. 8(b)), our method better reduces visual clutter caused by a large
amount of time series data (the red rectangle in Fig. 8(b) and (c)). From
the visualization with no sampling, we find some time series outliers
that shift away from the main trend (green rectangle in Fig. 8(a)).
Comparing Fig. 8(b) and (c) indicates that, our method better preserves
these time series outliers.

6.3 Interaction

We provide the following interactions to facilitate experts in examining
the time series data at different time granularities. We provide a pop-up
menu to show the options for analyzing the data of interest (Fig. 9).
Dimension aggregation. The activations/gradients/weights in a layer
can be modeled as a tensor. For example, the activations produced by
a specific image in a convolutional layer can be modeled as a three
dimensional tensor T ∈ RH×W×C, where H, W , and C are its height,
width, and number of channels, respectively. Aggregating some dimen-
sions can greatly reduce the number of time series to be visualized.
Thus, we allow experts to interactively aggregate some dimensions of
the training dynamics and decide how to aggregate these dimensions
before conducting time series sampling (Fig. 9 (a)).

O ptions

Aggregate Dimensions:

N S H W C

How to Aggregate: Max

Start Snapshot: 1

End Snapshot: 24384

O K Cancel

(a)

(b)

Fig. 9. The pop-up menu for the
training dynamics visualization.

Focus+context timeline. As
there may be hundreds of thou-
sands of snapshots in a training
process, presenting all the snap-
shots will cause severe visual clut-
ter. To solve this problem, we
adopt the focus+context timeline
technique [50] to allow experts to
zoom into the snapshots of inter-
est. This helps experts effectively
explore the training dynamics at
multiple levels of time granularity.
Experts can also select the time
range to explore (Fig. 9 (b)).

7 APPLICATION

We conducted two case studies to demonstrate the effectiveness of
DGMTracker in helping the expert understand and diagnose DGMs.
In the first case study, we collaborated with expert E1 to achieve a
better understanding of the training processes of GANs. In the second
case study, we collaborated with expert E2 to diagnose a failed training
process of a VAE.

7.1 Understanding the Training Process of a GAN
This case study aims to better understand the working mechanisms of a
GAN, which is one of the state-of-the-art DGMs. One major problem
in training a GAN is the instability of its training process. Recently,
Arjovsky et al. [2] developed the Wasserstein GAN (WGAN) to address
this problem. They found that the original metric used by GAN may
induce gradient vanishing. To solve this problem, they proposed a
new metric, i.e., the Wasserstein distance [2], which is continuous and
differentiable almost everywhere, thus provides more reliable gradients.
During his investigation, E1 got confused by two phenomena that were
introduced but not fully explained in these two papers [2, 15].
Inappropriate loss function. In the original paper of GAN, Goodfel-
low et al. [15] claimed that a two-player-minimax-game-based loss was
inappropriate in practice because it would make the training process
stuck. However, E1 did not quite understand why this loss function
makes the training process stuck.
Instability of momentum-based optimizers. Momentum is a widely
used technique in the optimization methods of deep learning [46]. How-
ever, in the training of WGAN, it is reported that the training process
is unstable if a momentum-based optimizer is used [2]. Although the
momentum is identified as a potential cause, why the momentum leads
to an unstable training process is not fully explained.

As a result, the expert wanted to use DGMTracker to address these
two issues.

7.1.1 Influence of an Inappropriate Loss Function
Goodfellow et al. [15] introduced a two-player minimax game [39] loss
for training a GAN:

min
G

max
D

Ex∼pdata(x) logD(x)+Ez∼p(z) log(1−D(G(z))), (5)

where the generator is denoted by G, and the discriminator is denoted
by D. Goodfellow et al. [15] claimed that using the above loss in
practice was inappropriate because it would make the training process
stuck, but E1 did not understand why.

fc deconv1 deconv2 deconv3

conv1 conv2 conv3 fc

z

x
Generator

Discriminator

Fig. 10. The network structure of the GAN used in the case study.

To this end, he built a GAN whose structure is shown in Fig. 10.
It contains 5.48 millions of weights. He trained the network using the
loss on a benchmark dataset, CIFAR10 [25]. The training of this model
and other models in our case studies was performed using the ZhuSuan

Fig. 11. The discriminator loss quickly stops changing after a few itera-
tions which indicates the training process gets stuck.

framework [48]. From the loss curve, E1 found the discriminator loss
quickly stopped changing after a few iterations (Fig. 11). It indicated
that the training process quickly got stuck.

To understand why this happened, E1 clicked on the loss curve at
iteration 8 where the training had been stuck and checked the data flow
of gradients at the snapshot level. He found that the gradients were
non-zero at the very beginning of the training process, but they all
vanished after a few iterations (Fig. 12). To identify from which layer
the gradients started vanishing, E1 carefully examined the data flow
and found the gradients vanished even in the last fully connected layer
(Fig. 12A). In a deep model, the gradients are backpropagated from
the last layer to the first layer. As a result, he suspected that the fully
connected layer caused the training process being stuck. This triggered
E1 to check the outputs of the layer. He found an abnormal phenomenon
that the outputs invoked by the generated images decreased close to 0
after a few iterations (Fig. 13A) and the outputs invoked by real images
increased close to 1 after a few iterations (Fig. 13B).

loss

conv1 conv2 conv3 fc
A

Fig. 12. The gradients vanish when using an inappropriate loss.

By looking at the generated images, E1 understood why such phe-
nomenon happened. At the beginning of training, the generator was
not good enough to produce realistic images. In this case, the discrimi-
nator was easily trained to distinguish them from real images. Because
the output of the discriminator is the probability that an image looks
realistic, the outputs invoked by the generated images were close to 0
after several iterations.

After understanding why such phenomenon happened, the expert
continued to analyze its influence on the training. This abnormal phe-
nomenon drove E1 to check the derivatives of the loss with respect to the
outputs of the fully connected layer. The expert found when such phe-
nomenon occurred, the derivatives were almost zero. According to the
backpropagation algorithm, this makes the gradients of weights in all
layers very small, which in turn induces the training process to be stuck.

7.1.2 Instability of Momentum-Based Optimizers
To analyze why a momentum-based optimizer made the training process
of a WGAN unstable, E1 built a WGAN whose major structure was the
same as that of the GAN used above. E1 trained the network using a
momentum-based optimizer, Adam [21], on the CIFAR10 dataset.

E1 started his analysis by examining the discriminator loss. He
immediately identified two sudden increases (Fig. 14A and B). To

(b)

A

B

Outputs invoked by generated images

Outputs invoked by real images

0.
0

1.
0

0.
0

1.
0

1 2 3 4 5 6 7 8 10 12 15

1 2 3 4 5 6 7 8 10 12 15

fc
/o

ut
_f

ak
e

fc
/o

ut
_r

ea
l

(a)

Fig. 13. The output changes of the discriminator: (a) the outputs invoked
by generated images become close to 0; and (b) the outputs invoked by
real images become close to 1.

LIU ET AL.: ANALYZING THE TRAINING PROCESSES OF DEEP GENERATIVE MODELS 83

(a) (b) (c)

Without sampling Random sampling Blue-noise polyline sampling

Fig. 8. Comparison of different sampling methods: (a) without sampling; (b) random sampling; (c) blue-noise polyline sampling. The blue-noise
polyline sampling algorithm can better reduce visual clutter (the red rectangle) and preserve outliers (the green rectangle).

6 TRAINING DYNAMICS ANALYSIS

When an expert selects a layer, we aim to present the corresponding
training dynamics to facilitate him or her in finding the neuron of
interest. To enable the expert to focus on analysis, we employ a familiar
visual metaphor, a line chart, to visually convey the training dynamics (a
set of time series data). However, directly using a line chart to visualize
a large amount of time series data will cause severe visual clutter [31].
To solve this problem, we propose a blue-noise polyline sampling
algorithm to select time series samples with blue noise properties,
which can both preserve outliers and reduce visual clutter (R1, R3).

6.1 Motivation

The use of blue-noise sampling is triggered by its wide usage in a
variety of computer graphics applications, such as image reconstruc-
tion and color stippling [4]. Here blue-noise sampling means that the
selected samples have blue-noise properties, i.e., the selected samples
are located randomly and uniformly in the space [45]. This uniformity
is very important in visualization [7], which is able to make the high-
density regions of the candidate set less sampled and the low-density
regions more sampled than random sampling. As a result, the blue-
noise sampling can better reduce visual clutter and preserve outliers.

Accordingly, we propose to use blue-noise sampling to select a set
of appropriate time series. The state-of-the-art method for blue-noise
sampling is the line segment sampling algorithm [45]. A line segment is
“a part of a line that is bounded by two distinct end points, and contains
every point on the line between its end points” [52]. This algorithm
first evenly groups the lines segments into NG groups according to their
angles with the x-axis. The angle of a line segment s can be computed
by: arctan(y2−y1

x2−x1
), where p1 = (x1,y1) and p2 = (x2,y2) are the end

points of s. Then, a set of line segments are selected by the multi-class
blue-noise sampling [51]. In particular, in each iteration, a new line
segment is drawn from the most under-filled group to ensure each group
of line segments are well sampled. The fill rate is defined as the number
of existing samples for a group over the target number of samples for
that group. The new line segment will be added to the sample set
if its minimum distance from other existing line segment samples is
larger than a predefined threshold [51]. The distance between two
line segments are defined as the distance between their middle points.
This process is repeated until the required amount of line segments
are selected. Although this algorithm works well for line segments, it
cannot be directly used to sample the time series data, each of which
is a polyline (a connected sequence of line segments). As a result, we
have developed a blue-noise polyline sampling algorithm.

6.2 Blue-Noise Polyline Sampling

As a polyline is a connected sequence of line segments, an intuitive
method for sampling polyline samples with blue-noise properties is: 1)
selecting line segment samples with blue-noise properties by using the
blue-noise line segment sampling; 2) selecting polylines that contain the
selected line segments as samples. However, this approach cannot guar-
antee that the selected polylines have blue-noise properties. To address
this issue, we need to simultaneously select all the line segments in one
polyline and maintain blue-noise properties of the selected polylines.

As stated above, the core process of blue-noise line segment sam-
pling is selecting a line segment from the most under-filled group and
computing the distance between the new samples and existing sam-
ples to determine whether to accept the new sample. Accordingly, if

we want to adapt the blue-noise line segment sampling to polyline
sampling, we need to solve two problems:
P1: how to select a polyline from the most under-filled group;
P2: how to compute the distance between two polylines.
Solution to P1. An intuitive method for solving P1 is randomly select-
ing a line segment from the most under-filled group and selecting the
corresponding polyline. This method is fast but may select many line
segments in other over-filled groups. A better solution is to directly
select the best polyline that makes the fill rates the most balanced. In
particular, we compute a score sL for each non-selected polyline L:
sL = ∑NG

i=1 | f rnew
i −1|, where f rnew

i is the new fill rate of group i, if L is
selected. A major issue with this solution is its expensive computational
cost. To solve this problem, we employ the property that the calculation
of each score is independent and use parallel computing to accelerate it.
Solution to P2. As the distance between two segments is computed by
the distance between their middle points [45], a natural approach to
computing the distance d(L1,L2) between two polylines L1 and L2 is:

d(L1,L2) =
1

NS

NS

∑
i=1

dC(si
1,s

i
2), (4)

where NS is the number of line segments in L1 and L2, dC(,) is the
distance between the middle points of two line segments, and si

1, si
2

are two line segments of the same snapshot belonging to L1 and L2.
The advantage of this approach is it can preserve as many outliers as
possible (Fig. 8(c)). If two segments are far apart, the distance between
the corresponding polylines will mainly be determined by the distance
between these two line segments.
Result. Fig. 8 compares the visualizations generated without sampling
(Fig. 8(a)), with random sampling (Fig. 8(b)), and with blue-noise
polyline sampling (Fig. 8(c)). The time series data we use is comprised
of the changes in weights in the first layer of the VAE used in the
second case study. There were originally 1,728 (3*3*3*64) time series.
We sampled 5% of the time series from the data by random sampling
and blue-noise polyline sampling.

Without sampling, the high-density region in Fig. 8(a) suffers severe
visual clutter (the red rectangle). Compared with random sampling
(Fig. 8(b)), our method better reduces visual clutter caused by a large
amount of time series data (the red rectangle in Fig. 8(b) and (c)). From
the visualization with no sampling, we find some time series outliers
that shift away from the main trend (green rectangle in Fig. 8(a)).
Comparing Fig. 8(b) and (c) indicates that, our method better preserves
these time series outliers.

6.3 Interaction

We provide the following interactions to facilitate experts in examining
the time series data at different time granularities. We provide a pop-up
menu to show the options for analyzing the data of interest (Fig. 9).
Dimension aggregation. The activations/gradients/weights in a layer
can be modeled as a tensor. For example, the activations produced by
a specific image in a convolutional layer can be modeled as a three
dimensional tensor T ∈ RH×W×C, where H, W , and C are its height,
width, and number of channels, respectively. Aggregating some dimen-
sions can greatly reduce the number of time series to be visualized.
Thus, we allow experts to interactively aggregate some dimensions of
the training dynamics and decide how to aggregate these dimensions
before conducting time series sampling (Fig. 9 (a)).

O ptions

Aggregate Dimensions:

N S H W C

How to Aggregate: Max

Start Snapshot: 1

End Snapshot: 24384

O K Cancel

(a)

(b)

Fig. 9. The pop-up menu for the
training dynamics visualization.

Focus+context timeline. As
there may be hundreds of thou-
sands of snapshots in a training
process, presenting all the snap-
shots will cause severe visual clut-
ter. To solve this problem, we
adopt the focus+context timeline
technique [50] to allow experts to
zoom into the snapshots of inter-
est. This helps experts effectively
explore the training dynamics at
multiple levels of time granularity.
Experts can also select the time
range to explore (Fig. 9 (b)).

7 APPLICATION

We conducted two case studies to demonstrate the effectiveness of
DGMTracker in helping the expert understand and diagnose DGMs.
In the first case study, we collaborated with expert E1 to achieve a
better understanding of the training processes of GANs. In the second
case study, we collaborated with expert E2 to diagnose a failed training
process of a VAE.

7.1 Understanding the Training Process of a GAN
This case study aims to better understand the working mechanisms of a
GAN, which is one of the state-of-the-art DGMs. One major problem
in training a GAN is the instability of its training process. Recently,
Arjovsky et al. [2] developed the Wasserstein GAN (WGAN) to address
this problem. They found that the original metric used by GAN may
induce gradient vanishing. To solve this problem, they proposed a
new metric, i.e., the Wasserstein distance [2], which is continuous and
differentiable almost everywhere, thus provides more reliable gradients.
During his investigation, E1 got confused by two phenomena that were
introduced but not fully explained in these two papers [2, 15].
Inappropriate loss function. In the original paper of GAN, Goodfel-
low et al. [15] claimed that a two-player-minimax-game-based loss was
inappropriate in practice because it would make the training process
stuck. However, E1 did not quite understand why this loss function
makes the training process stuck.
Instability of momentum-based optimizers. Momentum is a widely
used technique in the optimization methods of deep learning [46]. How-
ever, in the training of WGAN, it is reported that the training process
is unstable if a momentum-based optimizer is used [2]. Although the
momentum is identified as a potential cause, why the momentum leads
to an unstable training process is not fully explained.

As a result, the expert wanted to use DGMTracker to address these
two issues.

7.1.1 Influence of an Inappropriate Loss Function
Goodfellow et al. [15] introduced a two-player minimax game [39] loss
for training a GAN:

min
G

max
D

Ex∼pdata(x) logD(x)+Ez∼p(z) log(1−D(G(z))), (5)

where the generator is denoted by G, and the discriminator is denoted
by D. Goodfellow et al. [15] claimed that using the above loss in
practice was inappropriate because it would make the training process
stuck, but E1 did not understand why.

fc deconv1 deconv2 deconv3

conv1 conv2 conv3 fc

z

x
Generator

Discriminator

Fig. 10. The network structure of the GAN used in the case study.

To this end, he built a GAN whose structure is shown in Fig. 10.
It contains 5.48 millions of weights. He trained the network using the
loss on a benchmark dataset, CIFAR10 [25]. The training of this model
and other models in our case studies was performed using the ZhuSuan

Fig. 11. The discriminator loss quickly stops changing after a few itera-
tions which indicates the training process gets stuck.

framework [48]. From the loss curve, E1 found the discriminator loss
quickly stopped changing after a few iterations (Fig. 11). It indicated
that the training process quickly got stuck.

To understand why this happened, E1 clicked on the loss curve at
iteration 8 where the training had been stuck and checked the data flow
of gradients at the snapshot level. He found that the gradients were
non-zero at the very beginning of the training process, but they all
vanished after a few iterations (Fig. 12). To identify from which layer
the gradients started vanishing, E1 carefully examined the data flow
and found the gradients vanished even in the last fully connected layer
(Fig. 12A). In a deep model, the gradients are backpropagated from
the last layer to the first layer. As a result, he suspected that the fully
connected layer caused the training process being stuck. This triggered
E1 to check the outputs of the layer. He found an abnormal phenomenon
that the outputs invoked by the generated images decreased close to 0
after a few iterations (Fig. 13A) and the outputs invoked by real images
increased close to 1 after a few iterations (Fig. 13B).

loss

conv1 conv2 conv3 fc
A

Fig. 12. The gradients vanish when using an inappropriate loss.

By looking at the generated images, E1 understood why such phe-
nomenon happened. At the beginning of training, the generator was
not good enough to produce realistic images. In this case, the discrimi-
nator was easily trained to distinguish them from real images. Because
the output of the discriminator is the probability that an image looks
realistic, the outputs invoked by the generated images were close to 0
after several iterations.

After understanding why such phenomenon happened, the expert
continued to analyze its influence on the training. This abnormal phe-
nomenon drove E1 to check the derivatives of the loss with respect to the
outputs of the fully connected layer. The expert found when such phe-
nomenon occurred, the derivatives were almost zero. According to the
backpropagation algorithm, this makes the gradients of weights in all
layers very small, which in turn induces the training process to be stuck.

7.1.2 Instability of Momentum-Based Optimizers
To analyze why a momentum-based optimizer made the training process
of a WGAN unstable, E1 built a WGAN whose major structure was the
same as that of the GAN used above. E1 trained the network using a
momentum-based optimizer, Adam [21], on the CIFAR10 dataset.

E1 started his analysis by examining the discriminator loss. He
immediately identified two sudden increases (Fig. 14A and B). To

(b)

A

B

Outputs invoked by generated images

Outputs invoked by real images

0.
0

1.
0

0.
0

1.
0

1 2 3 4 5 6 7 8 10 12 15

1 2 3 4 5 6 7 8 10 12 15

fc
/o

ut
_f

ak
e

fc
/o

ut
_r

ea
l

(a)

Fig. 13. The output changes of the discriminator: (a) the outputs invoked
by generated images become close to 0; and (b) the outputs invoked by
real images become close to 1.

84 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

identify the influence of such sudden increases, E1 first studied how the
weights are updated in Adam. Traditional stochastic gradient descent
optimizer (SGD) directly updates the weight wi by the product of its
gradient gi and the learning rate α (α > 0):

wt+1
i = wt

i −αgt
i . (6)

While Adam first adaptively estimates the mean and the variance of
each gradient, and then updates the weight by the estimated mean and
variance. Based on this observation, he chose to examine the means
and variances of the gradients of the weights in the first convolutional
layer in the discriminator because this layer is prone to training errors,
such as gradient vanishing [14] (Fig. 15).

3180 3209 4397 4431 4439 4441 4443

A B

Fig. 14. Two sudden increases in the discriminator loss, which cause the
training process to be unstable.

(a)

(b)

Means

Gradients

3180 3209 4397 4431 4441 4445 4452 4475 4486

3180 3209 4397 4431 4441 4445 4452 4475 4486

A

B

Fig. 15. The signs of the gradients have sudden changes but the signs
of the means remain unchanged in a training process using Adam: (a)
changes of the means; (b) changes of the gradients.

He noticed that the signs of the gradients had sudden changes at itera-
tion 4,441 (Fig. 15B), but the signs of the means maintained unchanged
(Fig. 15A). This key observation explains why momentum-based opti-
mizers make the training process unstable. E1 further explained, “When
the signs of gradients changed, their means do not immediately reflect
this change because they are determined by all the gradients before that
time point (Fig. 16). As a result, the training process chooses a wrong
direction and is more unstable than the one that uses a non-momentum-
based optimizer (RMSprop).”

To further verify this analysis, E1 additionally examined the changes
of (wt+1

i −wt
i)g

t
i for each weight wi. This analysis is triggered by Eq. 6,

which indicates that (wt+1
i −wt

i)g
t
i =−α(gt

i)
2 ≤ 0. Thus, if this value is

positive, the sign of the weight change is not consistent with its gradient;
As shown in Fig. 17, there are some positive values in the training
process that uses Adam (Fig. 17A). When using a non-momentum-
based optimizer (RMSprop, as recommended by [2]), almost no such
positive values appeared in the training process (Fig. 17B). This further
verified the analysis of the expert. This phenomenon was also observed
but not explained by Arjovsky et al. [2]. The expert commented, “Now

t-1 t t+1Weight

Gradient According to the gradient

Adam

0

Fig. 16. Illustration of weight changes when the signs of the gradient
changes in a training process using Adam.

99 201 3155 3180 3209 4397 4431 4441 4445 4452 4475 4486 5272

(b)

A

(a)

B

co
nv

1/
w

ei
gh

t
co

nv
1/

w
ei

gh
t

0
099 301 4061 4302 4313 4799 4811 4820 4823 4839 5272

Fig. 17. The changes of (wt+1
i −wt

i)g
t
i in the training processes: (a) using

Adam; (b) using RMSprop.

I understand why the performance of the momentum-based optimizer is
unsatisfactory in this case. The major reason is that there will be sudden
changes in the gradients, which makes the momentum-based optimizer
less effective. While in other types of deep models, such as CNNs,
such phenomenon occurs less often. In that case, a momentum-based
optimizer usually works well.”

7.2 Diagnosing a Failed Training Process of a VAE
This case study demonstrates how DGMTracker helps an expert (E2)
diagnose the failed training process of a VAE. E2 is a deep learning
researcher from the first group. He has been working on VAEs for
unsupervised learning, which is an important research topic in the field
of deep learning [3, 23, 44]. Recently, E2 designed a baseline network
for his research, shown in Fig. 1. The network is composed of two
parts: a probabilistic encoder and a probabilistic decoder. Both con-
sist of alternating convolutional/deconvolutional layers and Gaussian
sampling layers. The network contains about 0.22 millions of weights.
He trained the network on the CIFAR10 dataset [25]. However, the
training of this network failed. The loss became NaN in the iterations
between 10,000 and 30,000 (depending on the random seed used for
network initialization).

To help the expert probe the possible reason, we presented E2 with
the visualization of a failed training process. E2 first looked at the loss
of the model, which is the primary criterion for evaluating the training
performance. It got to NaN at iteration 24,397 (Fig. 1A). It is notable
that there was a large loss appearing at iteration 24,384 (Fig. 1B), after
which quickly followed the NaN. So E2 clicked this point on the loss
curve and looked into the snapshot to examine the snapshot-level data
flow. In particular, E2 checked the maximum/average/minimum activa-
tion in each layer. E2 quickly found that the source of this abnormal
behavior was in the activation of the second Gaussian sampling layer
(Fig. 1C), whose activations had a sudden increase at iteration 24,384.
By tracing back the data flow, he found there was also a sudden increase
of activations in the convolutional layer that outputs the logarithmic
variance of the Gaussian sampling layer (Fig. 1D). This indicates that
the change in this convolutional layer led to the sudden increase of the
Gaussian sampling layer.

To examine why the logarithmic variance had such a sudden increase,
E2 further examined the activation changes in this convolutional layer.
Because there were too many activations (about 2 million) in this
layer, E2 chose to aggregate the height and weight dimensions of the
activations and got a time series for each channel in an image. As
shown in Fig. 1E, most of the activations of this layer remained stable.
However, some of them showed the unusual behavior of going down
from the beginning of training (Fig. 1F). E2 was drawn to these curves
in purple. In addition, he found that some of the time series data had a
sudden increase at iteration 24,384 (Fig. 1G). He hovered over them
and found an interesting fact that all the sudden changes in activations
were invoked by the 10-th image (Fig. 1G). So E2 loaded the image to
check the potential difference. This image had a very green background
(Fig. 1H). As the images in CIFAR10 were RGB-formatted images, the
pixel values of the green channel in the background would be very large.
Having so many pixels with such extreme values in a single image is
not common in a natural image dataset like CIFAR10 (Fig. 1J and K).
E2 then assumed this image led to the failed training process. To verify
his assumption, E2 selected the neurons with the largest activations
and examined the forward contribution to analyze why the activations

y Log variance Variance
y=x y=exp(x)

y Variance
y=softplus(x)

y=softplus(x)Variance

y

Variance

y

y=exp(x)

(a) (b)

y=x y=x

Fig. 18. Comparison between using logarithmic variance and variance in
Gaussian sampling: (a) logarithmic variance; (b) variance.

were large. After hovering over the neuron with the largest activation,
the expert found that some neurons from the green background had a
large contribution on the output of the neuron with the largest activation
(Fig. 1L). This further verified his assumption.

Having analyzed the root cause of the failure, E2 proposed a direct
solution for this. He replaced the abnormal image with another normal
image (the first image) in the dataset and retrained the network. How-
ever, the network failed again with a similar behavior at a later iteration
(around 300,000). This indicates that this abnormal image was only
part of the reason that led to the failure. After the same analysis, he
found the failure was caused by a similar image, which was a plane with
a blue sky background (Fig.1I). After rethinking these discoveries and
attempts, E2 gave up solving the problem by replacing the abnormal
images because there might be many other abnormal images.

Thus, E2 decided to theoretically analyze why the network was
so sensitive to the extreme values of input images. Aided by the
discoveries from DGMTracker, he quickly concluded the sensitivity
was caused by the transformation from logarithmic variance to variance.
In particular, as shown in Fig. 18(a), if the result of the convolution
operation y increased a little, the variance of the Gaussian sampler
would increase a lot (when y > 0). Under this situation, the Gaussian
sampler may generate very large samples because of the large variance.
If such large samples are generated, the loss would have a sudden
increase and make the training process fail. To solve this problem, E2
proposed directly generating variance for the Gaussian sampler instead
of using logarithmic variance. As the variance should be larger than
zero, E2 replaced the current identity activation function (y = x) with
the softplus activation function f (x) = log(1+ ex) (Fig. 18(b)).

After the replacement, the training process no longer encountered
such a problem. The final loss was about 4.9, which was measured
by the number of bits [14]. E2 was quite satisfied with the result and
commented, “Using a logarithmic variance is a common practice in
constructing VAEs. I have noticed for a long time that the training
processes of such networks are prone to the NaN error. To avoid such
an error, I often try to clip the gradients or the weights to make the
model work. Sometimes it works but sometimes it does not. Even
if it works, the training is greatly slowed down because the clipped
gradients are smaller than usual. Now I know the root cause of the error
is the logarithmic variance. The result of this visual debugging process
not only makes this VAE work, but also teaches me to be careful using
logarithmic variance in my future research.”

8 DISCUSSION

Our case studies demonstrate the effectiveness of DGMTracker. Never-
theless, there are several opportunities for improvements.
Generalization. While the case studies focus on understanding and
diagnosing DGMs, DGMTracker can be directly used to analyze a
wider range of deep models, such as CNNs and MLPs. For example,
we have shown in the first case study that DGM Tracker can be used to
analyze CNNs. In particular, the discriminator network in the GAN is
a CNN and we have analyzed why its training process is different, with
different optimization approaches.

More precisely, DGMTracker can analyze the training process of a
deep model in which connections between neurons do not form a cycle.
Such models are called deep feedforward networks [14]. These models
are the quintessential deep learning models and form the basis of many
important commercial applications [14]. For example, a CNN is one
kind of deep feedforward network and widely used in face recognition

systems. The factor that constrains the generalization of DGMTracker
is the data flow visualization. We can easily extend it to other kinds
of deep models, such as recurrent neural networks (RNNs), which has
cyclic connections between neurons. Specifically, we can unfold an
RNN to a deep feedforward network [27] and use DGMTracker to
analyze its training process.
Disk storage. A large amount of training dynamics is produced in
a training process. For example, the training process of the VAE
we used generates more than 5TB data (250MB per snapshot and
more than 20,000 snapshots). Storing all this data to the hard disk is
prohibitive for users without a powerful computer. Currently, we solve
this problem by two strategies. The first strategy is saving the recent
snapshots (e.g., 1,000) and a fixed number of important snapshots in the
history (e.g., 2,000). We compute the importance of each snapshot by
the PIP method [12] because of its efficiency and capability of giving
high scores to perceptually important points. The second strategy
is only saving the loss, weights, and random seeds in each saved
snapshot. The activations and gradients are computed on demand using
the training set, weights, and random seeds. By these two strategies,
we reduced the amount of data that was saved in the VAE case study
from 5TB to 6.25GB, which is not demanding for a personal computer.
To further reduce the disk storage space, it is desirable to employ
information theory [8] to detect more informative training dynamics.
Online analysis. Currently, in DGMTracker, all the training dynamics
are collected offline and then fed into the tool for further analysis. This
offline analysis already helps experts in diagnosing a failed training pro-
cess to a large extent. In addition, in the back-and-forth communication
with the experts, they expressed the need to analyze the online training
process because training a DGM could take several days [40]. With
online analysis, experts can monitor the real-time running results and
stop the training process if necessary. The key to addressing this need
is to design a set of visualizations that can effectively convey streaming
training dynamics and to develop several data mining algorithms that
can detect outliers (anomalies) from the continuously incoming training
dynamics (e.g., online blue-noise polyline sampling).

9 CONCLUSION

In this paper, we have developed a visual analytics tool, DGMTracker,
to facilitate machine learning experts in better understanding and di-
agnosing DGMs. DGMTracker is well aligned with the three-level
analytical process of analyzing DGMs (snapshot-, layer-, and neuron-
level analysis). In particular, we have designed a data flow visualization
to illustrate how data flows through a DGM (snapshot level) and to
disclose how other neurons contribute to the neuron of interest (neuron
level). A blue-noise polyline sampling algorithm has been developed
to select time series samples to preserve outliers and reduce visual
clutter (layer level). We conducted two case studies to demonstrate
the effectiveness and usefulness of our tool in analyzing the training
process of DGMs.

Future research will focus on the following three aspects. The first
task is to extend DGMTracker from offline analysis to online analysis.
To this end, we plan to develop an online blue-noise polyline sampling
algorithm and an online data flow visualization. Another interesting
venue for future work is better easing the debugging process by em-
ploying pattern mining techniques to disclose interesting patterns in the
training dynamics. The major bottleneck is the large size of the training
dynamics prohibits many high-cost pattern mining techniques. Last
but not least, we plan to further reduce the amount of data needed for
analyzing a training process. In particular, we will leverage information
theory to select the most informative training dynamics.

ACKNOWLEDGMENTS

M. Liu, K. Cao, and S. Liu are supported by National NSF of China
(No. 61672308). J. Shi and J. Zhu are supported by the National NSF
of China (61620106010 and 61621136008), a grant from NVIDIA, and
the Tsinghua Tiangong Intelligent Technology Institute. The authors
would like to thank Prof. Kun Zhou, Chongxuan Li, Xizhou Zhu, and
all the experts in our workshops for insightful discussions.

LIU ET AL.: ANALYZING THE TRAINING PROCESSES OF DEEP GENERATIVE MODELS 85

identify the influence of such sudden increases, E1 first studied how the
weights are updated in Adam. Traditional stochastic gradient descent
optimizer (SGD) directly updates the weight wi by the product of its
gradient gi and the learning rate α (α > 0):

wt+1
i = wt

i −αgt
i . (6)

While Adam first adaptively estimates the mean and the variance of
each gradient, and then updates the weight by the estimated mean and
variance. Based on this observation, he chose to examine the means
and variances of the gradients of the weights in the first convolutional
layer in the discriminator because this layer is prone to training errors,
such as gradient vanishing [14] (Fig. 15).

3180 3209 4397 4431 4439 4441 4443

A B

Fig. 14. Two sudden increases in the discriminator loss, which cause the
training process to be unstable.

(a)

(b)

Means

Gradients

3180 3209 4397 4431 4441 4445 4452 4475 4486

3180 3209 4397 4431 4441 4445 4452 4475 4486

A

B

Fig. 15. The signs of the gradients have sudden changes but the signs
of the means remain unchanged in a training process using Adam: (a)
changes of the means; (b) changes of the gradients.

He noticed that the signs of the gradients had sudden changes at itera-
tion 4,441 (Fig. 15B), but the signs of the means maintained unchanged
(Fig. 15A). This key observation explains why momentum-based opti-
mizers make the training process unstable. E1 further explained, “When
the signs of gradients changed, their means do not immediately reflect
this change because they are determined by all the gradients before that
time point (Fig. 16). As a result, the training process chooses a wrong
direction and is more unstable than the one that uses a non-momentum-
based optimizer (RMSprop).”

To further verify this analysis, E1 additionally examined the changes
of (wt+1

i −wt
i)g

t
i for each weight wi. This analysis is triggered by Eq. 6,

which indicates that (wt+1
i −wt

i)g
t
i =−α(gt

i)
2 ≤ 0. Thus, if this value is

positive, the sign of the weight change is not consistent with its gradient;
As shown in Fig. 17, there are some positive values in the training
process that uses Adam (Fig. 17A). When using a non-momentum-
based optimizer (RMSprop, as recommended by [2]), almost no such
positive values appeared in the training process (Fig. 17B). This further
verified the analysis of the expert. This phenomenon was also observed
but not explained by Arjovsky et al. [2]. The expert commented, “Now

t-1 t t+1Weight

Gradient According to the gradient

Adam

0

Fig. 16. Illustration of weight changes when the signs of the gradient
changes in a training process using Adam.

99 201 3155 3180 3209 4397 4431 4441 4445 4452 4475 4486 5272

(b)

A

(a)

B

co
nv

1/
w

ei
gh

t
co

nv
1/

w
ei

gh
t

0
099 301 4061 4302 4313 4799 4811 4820 4823 4839 5272

Fig. 17. The changes of (wt+1
i −wt

i)g
t
i in the training processes: (a) using

Adam; (b) using RMSprop.

I understand why the performance of the momentum-based optimizer is
unsatisfactory in this case. The major reason is that there will be sudden
changes in the gradients, which makes the momentum-based optimizer
less effective. While in other types of deep models, such as CNNs,
such phenomenon occurs less often. In that case, a momentum-based
optimizer usually works well.”

7.2 Diagnosing a Failed Training Process of a VAE
This case study demonstrates how DGMTracker helps an expert (E2)
diagnose the failed training process of a VAE. E2 is a deep learning
researcher from the first group. He has been working on VAEs for
unsupervised learning, which is an important research topic in the field
of deep learning [3, 23, 44]. Recently, E2 designed a baseline network
for his research, shown in Fig. 1. The network is composed of two
parts: a probabilistic encoder and a probabilistic decoder. Both con-
sist of alternating convolutional/deconvolutional layers and Gaussian
sampling layers. The network contains about 0.22 millions of weights.
He trained the network on the CIFAR10 dataset [25]. However, the
training of this network failed. The loss became NaN in the iterations
between 10,000 and 30,000 (depending on the random seed used for
network initialization).

To help the expert probe the possible reason, we presented E2 with
the visualization of a failed training process. E2 first looked at the loss
of the model, which is the primary criterion for evaluating the training
performance. It got to NaN at iteration 24,397 (Fig. 1A). It is notable
that there was a large loss appearing at iteration 24,384 (Fig. 1B), after
which quickly followed the NaN. So E2 clicked this point on the loss
curve and looked into the snapshot to examine the snapshot-level data
flow. In particular, E2 checked the maximum/average/minimum activa-
tion in each layer. E2 quickly found that the source of this abnormal
behavior was in the activation of the second Gaussian sampling layer
(Fig. 1C), whose activations had a sudden increase at iteration 24,384.
By tracing back the data flow, he found there was also a sudden increase
of activations in the convolutional layer that outputs the logarithmic
variance of the Gaussian sampling layer (Fig. 1D). This indicates that
the change in this convolutional layer led to the sudden increase of the
Gaussian sampling layer.

To examine why the logarithmic variance had such a sudden increase,
E2 further examined the activation changes in this convolutional layer.
Because there were too many activations (about 2 million) in this
layer, E2 chose to aggregate the height and weight dimensions of the
activations and got a time series for each channel in an image. As
shown in Fig. 1E, most of the activations of this layer remained stable.
However, some of them showed the unusual behavior of going down
from the beginning of training (Fig. 1F). E2 was drawn to these curves
in purple. In addition, he found that some of the time series data had a
sudden increase at iteration 24,384 (Fig. 1G). He hovered over them
and found an interesting fact that all the sudden changes in activations
were invoked by the 10-th image (Fig. 1G). So E2 loaded the image to
check the potential difference. This image had a very green background
(Fig. 1H). As the images in CIFAR10 were RGB-formatted images, the
pixel values of the green channel in the background would be very large.
Having so many pixels with such extreme values in a single image is
not common in a natural image dataset like CIFAR10 (Fig. 1J and K).
E2 then assumed this image led to the failed training process. To verify
his assumption, E2 selected the neurons with the largest activations
and examined the forward contribution to analyze why the activations

y Log variance Variance
y=x y=exp(x)

y Variance
y=softplus(x)

y=softplus(x)Variance

y

Variance

y

y=exp(x)

(a) (b)

y=x y=x

Fig. 18. Comparison between using logarithmic variance and variance in
Gaussian sampling: (a) logarithmic variance; (b) variance.

were large. After hovering over the neuron with the largest activation,
the expert found that some neurons from the green background had a
large contribution on the output of the neuron with the largest activation
(Fig. 1L). This further verified his assumption.

Having analyzed the root cause of the failure, E2 proposed a direct
solution for this. He replaced the abnormal image with another normal
image (the first image) in the dataset and retrained the network. How-
ever, the network failed again with a similar behavior at a later iteration
(around 300,000). This indicates that this abnormal image was only
part of the reason that led to the failure. After the same analysis, he
found the failure was caused by a similar image, which was a plane with
a blue sky background (Fig.1I). After rethinking these discoveries and
attempts, E2 gave up solving the problem by replacing the abnormal
images because there might be many other abnormal images.

Thus, E2 decided to theoretically analyze why the network was
so sensitive to the extreme values of input images. Aided by the
discoveries from DGMTracker, he quickly concluded the sensitivity
was caused by the transformation from logarithmic variance to variance.
In particular, as shown in Fig. 18(a), if the result of the convolution
operation y increased a little, the variance of the Gaussian sampler
would increase a lot (when y > 0). Under this situation, the Gaussian
sampler may generate very large samples because of the large variance.
If such large samples are generated, the loss would have a sudden
increase and make the training process fail. To solve this problem, E2
proposed directly generating variance for the Gaussian sampler instead
of using logarithmic variance. As the variance should be larger than
zero, E2 replaced the current identity activation function (y = x) with
the softplus activation function f (x) = log(1+ ex) (Fig. 18(b)).

After the replacement, the training process no longer encountered
such a problem. The final loss was about 4.9, which was measured
by the number of bits [14]. E2 was quite satisfied with the result and
commented, “Using a logarithmic variance is a common practice in
constructing VAEs. I have noticed for a long time that the training
processes of such networks are prone to the NaN error. To avoid such
an error, I often try to clip the gradients or the weights to make the
model work. Sometimes it works but sometimes it does not. Even
if it works, the training is greatly slowed down because the clipped
gradients are smaller than usual. Now I know the root cause of the error
is the logarithmic variance. The result of this visual debugging process
not only makes this VAE work, but also teaches me to be careful using
logarithmic variance in my future research.”

8 DISCUSSION

Our case studies demonstrate the effectiveness of DGMTracker. Never-
theless, there are several opportunities for improvements.
Generalization. While the case studies focus on understanding and
diagnosing DGMs, DGMTracker can be directly used to analyze a
wider range of deep models, such as CNNs and MLPs. For example,
we have shown in the first case study that DGM Tracker can be used to
analyze CNNs. In particular, the discriminator network in the GAN is
a CNN and we have analyzed why its training process is different, with
different optimization approaches.

More precisely, DGMTracker can analyze the training process of a
deep model in which connections between neurons do not form a cycle.
Such models are called deep feedforward networks [14]. These models
are the quintessential deep learning models and form the basis of many
important commercial applications [14]. For example, a CNN is one
kind of deep feedforward network and widely used in face recognition

systems. The factor that constrains the generalization of DGMTracker
is the data flow visualization. We can easily extend it to other kinds
of deep models, such as recurrent neural networks (RNNs), which has
cyclic connections between neurons. Specifically, we can unfold an
RNN to a deep feedforward network [27] and use DGMTracker to
analyze its training process.
Disk storage. A large amount of training dynamics is produced in
a training process. For example, the training process of the VAE
we used generates more than 5TB data (250MB per snapshot and
more than 20,000 snapshots). Storing all this data to the hard disk is
prohibitive for users without a powerful computer. Currently, we solve
this problem by two strategies. The first strategy is saving the recent
snapshots (e.g., 1,000) and a fixed number of important snapshots in the
history (e.g., 2,000). We compute the importance of each snapshot by
the PIP method [12] because of its efficiency and capability of giving
high scores to perceptually important points. The second strategy
is only saving the loss, weights, and random seeds in each saved
snapshot. The activations and gradients are computed on demand using
the training set, weights, and random seeds. By these two strategies,
we reduced the amount of data that was saved in the VAE case study
from 5TB to 6.25GB, which is not demanding for a personal computer.
To further reduce the disk storage space, it is desirable to employ
information theory [8] to detect more informative training dynamics.
Online analysis. Currently, in DGMTracker, all the training dynamics
are collected offline and then fed into the tool for further analysis. This
offline analysis already helps experts in diagnosing a failed training pro-
cess to a large extent. In addition, in the back-and-forth communication
with the experts, they expressed the need to analyze the online training
process because training a DGM could take several days [40]. With
online analysis, experts can monitor the real-time running results and
stop the training process if necessary. The key to addressing this need
is to design a set of visualizations that can effectively convey streaming
training dynamics and to develop several data mining algorithms that
can detect outliers (anomalies) from the continuously incoming training
dynamics (e.g., online blue-noise polyline sampling).

9 CONCLUSION

In this paper, we have developed a visual analytics tool, DGMTracker,
to facilitate machine learning experts in better understanding and di-
agnosing DGMs. DGMTracker is well aligned with the three-level
analytical process of analyzing DGMs (snapshot-, layer-, and neuron-
level analysis). In particular, we have designed a data flow visualization
to illustrate how data flows through a DGM (snapshot level) and to
disclose how other neurons contribute to the neuron of interest (neuron
level). A blue-noise polyline sampling algorithm has been developed
to select time series samples to preserve outliers and reduce visual
clutter (layer level). We conducted two case studies to demonstrate
the effectiveness and usefulness of our tool in analyzing the training
process of DGMs.

Future research will focus on the following three aspects. The first
task is to extend DGMTracker from offline analysis to online analysis.
To this end, we plan to develop an online blue-noise polyline sampling
algorithm and an online data flow visualization. Another interesting
venue for future work is better easing the debugging process by em-
ploying pattern mining techniques to disclose interesting patterns in the
training dynamics. The major bottleneck is the large size of the training
dynamics prohibits many high-cost pattern mining techniques. Last
but not least, we plan to further reduce the amount of data needed for
analyzing a training process. In particular, we will leverage information
theory to select the most informative training dynamics.

ACKNOWLEDGMENTS

M. Liu, K. Cao, and S. Liu are supported by National NSF of China
(No. 61672308). J. Shi and J. Zhu are supported by the National NSF
of China (61620106010 and 61621136008), a grant from NVIDIA, and
the Tsinghua Tiangong Intelligent Technology Institute. The authors
would like to thank Prof. Kun Zhou, Chongxuan Li, Xizhou Zhu, and
all the experts in our workshops for insightful discussions.

86 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 24, NO. 1, JANUARY 2018

REFERENCES

[1] B. Alsallakh and L. Ren. Powerset: A comprehensive visualization of set
intersections. IEEE Transactions on Visualization and Computer Graphics,
23(1):361–370, 2017.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

[3] P. Bachman. An architecture for deep, hierarchical generative models. In
Advances in Neural Information Processing Systems, pages 4826–4834,
2016.

[4] M. Balzer, T. Schlömer, and O. Deussen. Capacity-constrained point dis-
tributions: A variant of Lloyd’s method. ACM Transactions on Graphics,
28(3):86:1–86:8, 2009.

[5] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU and GPU math
expression compiler. In Python in Science Conference, pages 3–10, 2010.

[6] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[7] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K. L.
Ma. Visual abstraction and exploration of multi-class scatterplots. IEEE
Transactions on Visualization and Computer Graphics, 20(12):1683–1692,
2014.

[8] M. Chen and H. Jaenicke. An information-theoretic framework for visu-
alization. IEEE Transactions on Visualization and Computer Graphics,
16(6):1206–1215, 2010.

[9] W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. J. Gao, H. Qu, and X. Tong.
Textflow: towards better understanding of evolving topics in text. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2412–2421,
2011.

[10] L. Devroye. Sample-based non-uniform random variate generation. In
Conference on Winter Simulation, pages 260–265. ACM, 1986.

[11] A. Dosovitskiy and T. Brox. Inverting visual representations with convo-
lutional networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 4829–4837, 2016.

[12] T. Fu, F. Chung, R. Luk, and C. Ng. Representing financial time series
based on data point importance. Engineering Applications of Artificial
Intelligence, 21(2):277–300, 2008.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 580–587,
2014.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, pages 2672–2680,
2014.

[16] Google. Tensorflow. https://www.tensorflow.org, 2017. last
accessed 2017-06-18.

[17] J. Han, J. Pei, and M. Kamber. Data Mining: Concepts and Techniques.
Elsevier, 2011.

[18] A. W. Harley. An interactive node-link visualization of convolutional
neural networks. In International Symposium on Visual Computing, pages
867–877, 2015.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for im-
age recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[20] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[21] D. Kinga and J. B. Adam. Adam: A method for stochastic optimization.
In International Conference on Learning Representations, 2015.

[22] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-
supervised learning with deep generative models. In Advances in Neural
Information Processing Systems, pages 3581–3589, 2014.

[23] D. P. Kingma, T. Salimans, and M. Welling. Improving variational infer-
ence with inverse autoregressive flow. arXiv preprint arXiv:1606.04934,
2016.

[24] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv
preprint arXiv:1312.6114, 2013.

[25] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, University of Montreal, 2009.

[26] S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller, and W. Samek. The
LRP toolbox for artificial neural networks. Journal of Machine Learning

Research, 17(114):1–5, 2016.
[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.
[28] C. Li, J. Zhu, and B. Zhang. Learning to generate with memory. In

International Conference on Machine Learning, pages 1177–1186, 2016.
[29] T.-Y. Lin and S. Maji. Visualizing and understanding deep texture represen-

tations. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2791–2799, 2016.

[30] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017.

[31] S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization:
recent advances and challenges. The Visual Computer, 30(12):1373–1393,
2014.

[32] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of ma-
chine learning models: A visual analytics perspective. Visual Informatics,
1(1):48–56, 2017.

[33] Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. Wil-
son. Patterns and sequences: Interactive exploration of clickstreams to
understand common visitor paths. IEEE Transactions on Visualization
and Computer Graphics, 23(1):321–330, 2017.

[34] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[35] A. Mahendran and A. Vedaldi. Understanding deep image representations
by inverting them. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 5188–5196, 2015.

[36] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesiz-
ing the preferred inputs for neurons in neural networks via deep generator
networks. In Advances in Neural Information Processing Systems, pages
3387–3395, 2016.

[37] NVIDIA. NVIDIA DIGITS: Interactive deep learning GPU training
system. https://developer.nvidia.com/digits, 2017. last
accessed 2017-06-18.

[38] G. B. Orr and K.-R. Müller. Neural networks: tricks of the trade. Springer,
2003.

[39] M. J. Osborne. An Introduction to Game Theory. New York: Oxford
University Pres., 2002.

[40] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin.
Variational autoencoder for deep learning of images, labels and captions.
In Advances in Neural Information Processing Systems, pages 2352–2360,
2016.

[41] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[42] P. E. Rauber, S. G. Fadel, A. X. Falco, and A. C. Telea. Visualizing
the hidden activity of artificial neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1):101–110, 2017.

[43] D. E. Rumelhart, B. Widrow, and M. A. Lehr. The basic ideas in neural
networks. Communications of the ACM, 37(3):87–93, 1994.

[44] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther.
Ladder variational autoencoders. In Advances in Neural Information
Processing Systems, pages 3738–3746, 2016.

[45] X. Sun, K. Zhou, J. Guo, G. Xie, J. Pan, W. Wang, and B. Guo. Line
segment sampling with blue-noise properties. ACM Transactions on
Graphics, 32(4):127–1, 2013.

[46] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In International Conference
on Machine Learning, pages 1139–1147, 2013.

[47] G. K. L. Tam, V. Kothari, and M. Chen. An analysis of machine- and
human-analytics in classification. IEEE Transactions on Visualization and
Computer Graphics, 23(1):71–80, 2017.

[48] Tsinghua Machine Learning Group. ZhuSuan. https://github.
com/thu-ml/zhusuan, 2017. last accessed 2017-06-18.

[49] F. Y. Tzeng and K. L. Ma. Opening the black box - data driven visualization
of neural networks. In IEEE Visualization, pages 383–390, 2005.

[50] X. Wang, S. Liu, Y. Chen, T.-Q. Peng, J. Su, J. Yang, and B. Guo. How
ideas flow across multiple social groups. In IEEE Visual Analytics Science
and Technology, pages 770–778, 2016.

[51] L.-Y. Wei. Multi-class blue noise sampling. ACM Transactions on Graph-
ics, 29(4):79, 2010.

[52] Wikipedia. Line segment definition. https://en.wikipedia.org/
wiki/Line_segment, 2017. last accessed 2017-06-18.

[53] P. Xu, H. Mei, L. Ren, and W. Chen. Vidx: Visual diagnostics of assembly

line performance in smart factories. IEEE Transactions on Visualization
and Computer Graphics, 23(1):291–300, 2017.

[54] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pages 818–833,
2014.

[55] J. Zhu, J. Chen, W. Hu, and B. Zhang. Big learning with Bayesian methods.
National Science Review, 4(3):1–25, 2017.

LIU ET AL.: ANALYZING THE TRAINING PROCESSES OF DEEP GENERATIVE MODELS 87

REFERENCES

[1] B. Alsallakh and L. Ren. Powerset: A comprehensive visualization of set
intersections. IEEE Transactions on Visualization and Computer Graphics,
23(1):361–370, 2017.

[2] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein GAN. arXiv preprint
arXiv:1701.07875, 2017.

[3] P. Bachman. An architecture for deep, hierarchical generative models. In
Advances in Neural Information Processing Systems, pages 4826–4834,
2016.

[4] M. Balzer, T. Schlömer, and O. Deussen. Capacity-constrained point dis-
tributions: A variant of Lloyd’s method. ACM Transactions on Graphics,
28(3):86:1–86:8, 2009.

[5] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins,
J. Turian, D. Warde-Farley, and Y. Bengio. Theano: a CPU and GPU math
expression compiler. In Python in Science Conference, pages 3–10, 2010.

[6] C. M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[7] H. Chen, W. Chen, H. Mei, Z. Liu, K. Zhou, W. Chen, W. Gu, and K. L.
Ma. Visual abstraction and exploration of multi-class scatterplots. IEEE
Transactions on Visualization and Computer Graphics, 20(12):1683–1692,
2014.

[8] M. Chen and H. Jaenicke. An information-theoretic framework for visu-
alization. IEEE Transactions on Visualization and Computer Graphics,
16(6):1206–1215, 2010.

[9] W. Cui, S. Liu, L. Tan, C. Shi, Y. Song, Z. J. Gao, H. Qu, and X. Tong.
Textflow: towards better understanding of evolving topics in text. IEEE
Transactions on Visualization and Computer Graphics, 17(12):2412–2421,
2011.

[10] L. Devroye. Sample-based non-uniform random variate generation. In
Conference on Winter Simulation, pages 260–265. ACM, 1986.

[11] A. Dosovitskiy and T. Brox. Inverting visual representations with convo-
lutional networks. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 4829–4837, 2016.

[12] T. Fu, F. Chung, R. Luk, and C. Ng. Representing financial time series
based on data point importance. Engineering Applications of Artificial
Intelligence, 21(2):277–300, 2008.

[13] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierar-
chies for accurate object detection and semantic segmentation. In IEEE
Conference on Computer Vision and Pattern Recognition, pages 580–587,
2014.

[14] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press,
2016.

[15] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio. Generative adversarial nets. In
Advances in Neural Information Processing Systems, pages 2672–2680,
2014.

[16] Google. Tensorflow. https://www.tensorflow.org, 2017. last
accessed 2017-06-18.

[17] J. Han, J. Pei, and M. Kamber. Data Mining: Concepts and Techniques.
Elsevier, 2011.

[18] A. W. Harley. An interactive node-link visualization of convolutional
neural networks. In International Symposium on Visual Computing, pages
867–877, 2015.

[19] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for im-
age recognition. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778, 2016.

[20] G. E. Hinton and R. R. Salakhutdinov. Reducing the dimensionality of
data with neural networks. Science, 313(5786):504–507, 2006.

[21] D. Kinga and J. B. Adam. Adam: A method for stochastic optimization.
In International Conference on Learning Representations, 2015.

[22] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-
supervised learning with deep generative models. In Advances in Neural
Information Processing Systems, pages 3581–3589, 2014.

[23] D. P. Kingma, T. Salimans, and M. Welling. Improving variational infer-
ence with inverse autoregressive flow. arXiv preprint arXiv:1606.04934,
2016.

[24] D. P. Kingma and M. Welling. Auto-encoding variational Bayes. arXiv
preprint arXiv:1312.6114, 2013.

[25] A. Krizhevsky. Learning multiple layers of features from tiny images.
Technical report, University of Montreal, 2009.

[26] S. Lapuschkin, A. Binder, G. Montavon, K.-R. Müller, and W. Samek. The
LRP toolbox for artificial neural networks. Journal of Machine Learning

Research, 17(114):1–5, 2016.
[27] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature,

521(7553):436–444, 2015.
[28] C. Li, J. Zhu, and B. Zhang. Learning to generate with memory. In

International Conference on Machine Learning, pages 1177–1186, 2016.
[29] T.-Y. Lin and S. Maji. Visualizing and understanding deep texture represen-

tations. In IEEE Conference on Computer Vision and Pattern Recognition,
pages 2791–2799, 2016.

[30] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better analysis of
deep convolutional neural networks. IEEE Transactions on Visualization
and Computer Graphics, 23(1):91–100, 2017.

[31] S. Liu, W. Cui, Y. Wu, and M. Liu. A survey on information visualization:
recent advances and challenges. The Visual Computer, 30(12):1373–1393,
2014.

[32] S. Liu, X. Wang, M. Liu, and J. Zhu. Towards better analysis of ma-
chine learning models: A visual analytics perspective. Visual Informatics,
1(1):48–56, 2017.

[33] Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. Wil-
son. Patterns and sequences: Interactive exploration of clickstreams to
understand common visitor paths. IEEE Transactions on Visualization
and Computer Graphics, 23(1):321–330, 2017.

[34] L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of
Machine Learning Research, 9(Nov):2579–2605, 2008.

[35] A. Mahendran and A. Vedaldi. Understanding deep image representations
by inverting them. In IEEE Conference on Computer Vision and Pattern
Recognition, pages 5188–5196, 2015.

[36] A. Nguyen, A. Dosovitskiy, J. Yosinski, T. Brox, and J. Clune. Synthesiz-
ing the preferred inputs for neurons in neural networks via deep generator
networks. In Advances in Neural Information Processing Systems, pages
3387–3395, 2016.

[37] NVIDIA. NVIDIA DIGITS: Interactive deep learning GPU training
system. https://developer.nvidia.com/digits, 2017. last
accessed 2017-06-18.

[38] G. B. Orr and K.-R. Müller. Neural networks: tricks of the trade. Springer,
2003.

[39] M. J. Osborne. An Introduction to Game Theory. New York: Oxford
University Pres., 2002.

[40] Y. Pu, Z. Gan, R. Henao, X. Yuan, C. Li, A. Stevens, and L. Carin.
Variational autoencoder for deep learning of images, labels and captions.
In Advances in Neural Information Processing Systems, pages 2352–2360,
2016.

[41] A. Radford, L. Metz, and S. Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv
preprint arXiv:1511.06434, 2015.

[42] P. E. Rauber, S. G. Fadel, A. X. Falco, and A. C. Telea. Visualizing
the hidden activity of artificial neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1):101–110, 2017.

[43] D. E. Rumelhart, B. Widrow, and M. A. Lehr. The basic ideas in neural
networks. Communications of the ACM, 37(3):87–93, 1994.

[44] C. K. Sønderby, T. Raiko, L. Maaløe, S. K. Sønderby, and O. Winther.
Ladder variational autoencoders. In Advances in Neural Information
Processing Systems, pages 3738–3746, 2016.

[45] X. Sun, K. Zhou, J. Guo, G. Xie, J. Pan, W. Wang, and B. Guo. Line
segment sampling with blue-noise properties. ACM Transactions on
Graphics, 32(4):127–1, 2013.

[46] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of
initialization and momentum in deep learning. In International Conference
on Machine Learning, pages 1139–1147, 2013.

[47] G. K. L. Tam, V. Kothari, and M. Chen. An analysis of machine- and
human-analytics in classification. IEEE Transactions on Visualization and
Computer Graphics, 23(1):71–80, 2017.

[48] Tsinghua Machine Learning Group. ZhuSuan. https://github.
com/thu-ml/zhusuan, 2017. last accessed 2017-06-18.

[49] F. Y. Tzeng and K. L. Ma. Opening the black box - data driven visualization
of neural networks. In IEEE Visualization, pages 383–390, 2005.

[50] X. Wang, S. Liu, Y. Chen, T.-Q. Peng, J. Su, J. Yang, and B. Guo. How
ideas flow across multiple social groups. In IEEE Visual Analytics Science
and Technology, pages 770–778, 2016.

[51] L.-Y. Wei. Multi-class blue noise sampling. ACM Transactions on Graph-
ics, 29(4):79, 2010.

[52] Wikipedia. Line segment definition. https://en.wikipedia.org/
wiki/Line_segment, 2017. last accessed 2017-06-18.

[53] P. Xu, H. Mei, L. Ren, and W. Chen. Vidx: Visual diagnostics of assembly

line performance in smart factories. IEEE Transactions on Visualization
and Computer Graphics, 23(1):291–300, 2017.

[54] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional
networks. In European Conference on Computer Vision, pages 818–833,
2014.

[55] J. Zhu, J. Chen, W. Hu, and B. Zhang. Big learning with Bayesian methods.
National Science Review, 4(3):1–25, 2017.

