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Abstract

Modeling document structure is of great importance for dis-
course analysis and related applications. The goal of this re-
search is to capture the document intent structure by modeling
documents as a mixture of topic words and rhetorical words.
While the topics are relatively unchanged through one docu-
ment, the rhetorical functions of sentences usually change fol-
lowing certain orders in discourse. We propose GMM-LDA,
a topic modeling based Bayesian unsupervised model, to an-
alyze the document intent structure cooperated with order in-
formation. Our model is flexible that has the ability to com-
bine the annotations and do supervised learning. Addition-
ally, entropic regularization can be introduced to model the
significant divergence between topics and intents. We per-
form experiments in both unsupervised and supervised set-
tings, results show the superiority of our model over several
state-of-the-art baselines.

Introduction

People often organize utterances into meaningful and coher-
ent documents, conforming to certain conventions and un-
derlying structures. For example, scripts (Frermann, Titov,
and Pinkal 2014), scientific papers (Ó Séaghdha and Teufel
2014), official mails, news and encyclopedia articles all have
relatively fixed discourse structure and exhibit recurrent pat-
terns. Learning the document structure is of great impor-
tance for discourse analysis and has various applications,
such as text generation (Prasad et al. 2005) and text sum-
marization (Louis, Joshi, and Nenkova 2010).

There are two important aspects of document structure
learning: topic modeling and rhetorical structure modeling.
Topic modeling assumes multiple topics often exist within a
domain. It aims to discover the latent semantics of the doc-
uments, with many popular models such as Latent Dirich-
let Allocation (LDA) (Blei, Ng, and Jordan 2003), in which
each document is posited as an admixture over an underly-
ing set of topics, and each word is draw from a specific topic.
Rhetorical structure modeling aims to uncover the under-
lying organization of documents. Inspired by the discourse
theory (Mann and Thompson 1988), each sentence in a doc-
ument can be assigned a rhetorical function, or called in-
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Figure 1: Demonstration of the intent and topic words. Stop
words (in gray) can be removed by preprocessing.

tent. For example, the sentences in a scientific paper may
have different intents such as “background”, “objective”,
“method” and “result”. Fig 1 presents an example of the in-
tent structure of an abstract.

Document-level topics and sentence-level intents usually
show contradictory characteristics. For example, it is often
sensible to assume that the topics are relatively unchanged
through one document (e.g., in LDA), while the sentences’
intents usually change following certain order in discourse.
Furthermore, each document often follows a progression of
nonrecurring coherent intents (Halliday and Hasan 1976),
and the sentences with the same intent tend to appear within
the same block of a document. Based on these observations,
it’s natural to think that jointly considering these two incom-
patible structures can help to model document better.

In this paper, we present a hierarchical Bayesian model to
discover both the topic structure and rhetorical structure of
documents by jointly considering topics and the above order
structure in discourse. To this end, we assume that all the
words can be divided into two types: topic word and intent
word. Specifically, topic words in a document are relevant to
the document’s topic and spread throughout the document,
while intent words mainly contribute to the rhetorical func-
tions of the sentences. Following the example in Fig. 1, the
words “document”, “discourse” and “intent” are likely to be
topic words; they indicate the specific research domain of
this document. Meanwhile, the words “result”, “dataset” and
“demonstrate” are likely to be intent words and a sentence
with these words may have the intent structure label “result”.
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We introduce a binary variable for each word to indicate
its type, and model the topic structure and intent structure
respectively using topic models. Inspired by the generalized
Mallows model (GMM) (Fligner and Verducci 1986), we in-
corporate the intent order structure using GMM-Multi prior,
which not only conforms to our intuition of nonrecurring
coherent intents but also captures the global effects of the
orders. To further improve the expressive ability, we present
two important variants of GMM-LDA. One is to incorporate
the known intent labels of sentences for supervised learn-
ing, and the other is to incorporate entropic regularization to
better separate the words into two types under the regular-
ized Bayesian inference framework (Zhu, Chen, and Xing
2014). Finally, we represent experiments on real datasets
to demonstrate the effectiveness of our methods over sev-
eral state-of-the-art baselines. To the best of our knowledge,
we present the first model for topics and intents simultane-
ously, where the intent order structure is described globally
by using GMM-Multi prior. In the rest paper, we first present
GMM-LDA, followed by the supervised version and en-
tropic regularization. Then we present experimental results
with analysis. Finally, we discuss related work and conclude.

Unsupervised GMM-LDA Model

We consider the following document structure learning
problem. We are given a corpus D = {sd}Dd=1 with D docu-
ments, where a document sd is a sequence of Nd sentences
denoted by sd = (wd1,wd2, ...,wdNd

) and a sentence wds

is a bag of Nds words denoted by wds = {wdsm}Nds
m=1. The

size of the vocabulary is V . There are T topics and K in-
tents in total. Topics are document-level, while intents are
sentence-level. Our goal of document structure learning is
to model the intent and the topic simultaneously and assign
an intent label to each sentence in the corpus.

We build our models on the following assumptions, 1)
Type: Each word in the corpus is either an intent word or
a topic word; 2) Order: The intents of sentences within a
document change following certain orders and the orders are
similar within a domain; and 3) Coherence: The same intent
does not appear in disconnected portions of a document.

To characterize the type assumption, we associate each
word with a binary variable to indicate whether it is an intent
word or a topic word. For the order and coherence assump-
tions, we introduce a GMM-Multi prior to model the intent
order structure. We start with the description of GMM-Multi
prior, then GMM-LDA in detail with its inference method.

GMM-Multi Prior for Intent Ordering

According to the coherence assumption, the same intent
could not be assigned to the unconnected portions of a doc-
ument. To satisfy this assumption, we introduce a GMM-
Multi prior over possible intent permutations. GMM-Multi,
motivated by (Chen et al. 2009), is an extension to the gener-
alized Mallows model (Fligner and Verducci 1986). It con-
centrates probability mass on a small set of similar permu-
tations around a canonical ordering π0, which confirms to
the intuition that the intent orders are similar within a do-
main. The inversion representation of permutations is used

instead of the direct order sequence: If we set the canonical
ordering π0 as the identity permutation (1, 2, ...,K), then
any permutation π can be denoted as a (K−1)-dimensional
vector υ = (υ1, υ2, ..., υK−1), where υk is the count of the
numbers in π that are before k and greater than k. For in-
stance, permutation π = (2, 1, 4, 5, 3) can be represented as
υ = (1, 0, 2, 0), where υ3 = 2 as there are two numbers,
4 and 5, that are before 3 and greater than 3. υK is omitted
as it is always zero. Obviously, a one-to-one correlation ex-
ists between these two kinds of permutation representations.
Furthermore, each element of υ is independent of each other.
The marginal distribution over υk is

GMMk(υk; ρk) =
e−ρkυk

ψk(ρk)
, (1)

where ψk(ρk) = 1−exp (−(K−k+1)ρk)
1−exp (−ρk)

is the normaliza-
tion factor and ρk > 0 is the dispersion parameter.
Then the probability mass function with parameters ρ =
(ρ1, ρ2, ..., ρK−1) can be written as the product over all the
components, so that the number of parameters grows lin-
early with the number of intents. Due to the exponential
form, the conjugate prior for ρk is also an exponential distri-
bution with two parameters :

GMM0(ρk; υk,0, ν0) ∝ e(−ρkυk,0−logψk(ρk))ν0 . (2)

Intuitively, ν0 is the number of previous trials and υk,0 is
the average number in previous trials for υk. Let ρ0 be the
prior value for each ρk. By setting the maximum likelihood
estimate of ρk to be ρ0, we can obtain υk,0 = 1

exp (ρ0)−1 −
K−k+1

exp ((K−k+1)ρ0)−1 .
The GMM-Multi prior is defined over sentence intents

zd via a generative process on a given inversion represen-
tation of permutation υd. Firstly, we draw a bag of intents
ud (Nd elements) and each element uds∼Multinomial(λ).
Then

∑
sI(uds = k) represents the number of sentences of

intent k in this document. Secondly, we obtain the permuta-
tion of intents πd = Compute−π(υd), where Compute−π
transforms υd into the intent permutation πd. And fi-
nally, we obtain the intent structure of the sentences zd =
Compute−z(ud,πd), so that zds is the intent label for sen-
tence wds. Compute−z is the algorithm to obtain the intent
structure zd using the bag of intents ud and the permutation
πd. It arranges all the intent labels in ud as the order of πd

with the same intent labels appearing together. For example,
when ud = {1, 1, 2, 3, 3, 3, 5} and πd = (2, 1, 4, 5, 3), we
can obtain zd = (2, 1, 1, 5, 3, 3, 3). Note that not all the K
intent labels should appear in zd; it depends on the intent
labels in ud. As in the example, ud does not contain 4, so 4
does not appear in the intent structure zd.

Generative Process of GMM-LDA

Now we present GMM-LDA, an unsupervised Bayesian
generative model, as illustrated in Fig. 2. GMM-LDA simul-
taneously models the topics (the blue part in Fig. 2) and the
intents (the red part in Fig. 2). The binary variable bdsm de-
notes the type of word wdsm: if bdsm = 1, then wdsm is a
topic word; if bdsm = 0, then wdsm is an intent word. Each
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Figure 2: The graphical structure of GMM-LDA.

sentence has a specific intent label zds, while each docu-
ment sd has a topic mixing distribution θd. For topic words,
there is a document-specific topic model. It is a hierarchi-
cal Bayesian model that posits each document as an admix-
ture of T topics, where each topic βt is a multinomial dis-
tribution over a V -word vocabulary, drawn from a language
model βt ∼ Dirichlet(β0) (t ∈ [T ]). For intent words, there
is a rhetorical language model, in which the intent structure
zd of document sd is generated from a bag of intent labels
ud and an intent permutation πd follows the GMM-Multi
prior. The total number of intents is K, and each intent αk is
also a multinomial distribution over vocabulary, drawn from
another language model αk ∼ Dirichlet(α0) (k ∈ [K]).

For each document sd, the generating process is
1. Draw a topic proportion θd ∼ Dirichlet(θ0).
2. Obtain the intent structure zd ∼ GMM-Multi(ρ,λ), so

that zds is the intent label for sentence wds.
3. For each word wdsm in document d,

(a) Draw an indicator bdsm ∼ Bernoulli(γ).
(b) If bdsm = 0, then wdsm is from intent part:

draw wdsm ∼ Multinomial(αzds).
(c) if bdsm = 1, then wdsm is from topic part:

draw a topic tdsm ∼ Multinomial(θd), and
draw wdsm ∼ Multinomial(βtdsm

).
For fully-Bayesian GMM-LDA, we assume the following
priors: γ ∼ Beta(γ0), λ ∼ Dirichlet(λ0), which is a dis-
tribution to express how likely each intent label is to appear
regardless of positions, and each component of ρ follows
ρk ∼ GMM0(ρ0, ν0), k ∈ [K − 1]. The variables sub-
scripted with 0 are fixed prior hyperparameters.

Collapsed Gibbs Sampling

Let M = {u,ρ,υ, t, b} denote all the variables to be
learned during training. Then with Bayes’ theorem, the pos-
terior distribution of GMM-LDA is

q(M|D) ∝ p0(M)p(D|M), (3)

where p0(M) is the prior and p(D|M) is the likelihood.
Then it can be learned with a collapsed Gibbs sampler due
to the conjugate priors. We naturally split the variables into
four parts, namely u, ρ, υ and {t, b}, then sample them us-
ing their posterior distributions respectively.

For u : For each document sd, ud is a bag of intent labels
with Nd elements. We resample each element uds via:

q(uds = x|D,M−uds
) ∝ p0(uds = x)p(sd|M,D−sd

)

∝ (f−ds
u=x + λ0)

K∏
k=1

Γ(f−d
0,k,· + V α0)

Γ(f0,k,· + V α0)

V∏
v=1

Γ(f0,k,v + α0)

Γ(f−d
0,k,v + α0)

,

where the subscript “−” denotes that some elements are
omitted from a set, e.g., M−uds

is the set M except uds

and D−sd
is the set of all documents in D except sd. Let

u = {ud}Dd=1 denote all the intent labels in the corpus.
f−ds
u=x is the count of times that intent label x appears in u

except uds. Let wv denote the v-th word in the vocabulary1,
where v ∈ [V ]. f0,k,v counts the times that wv appears as
an intent word in the sentences with intent label k. Then,
f0,k,· =

∑V
v=1 f0,k,v . The superscript “−d” indicates that

the frequency is calculated over all documents except sd.
For ρ : We update each ρk from its posterior distribution:

q(ρk|D,M−ρk
)=GMM0

(
ρk;

∑D
d=1υd,k+υk,0ν0

D+ν0
, D+ν0

)
,

Since the normalization constant is unknown, it is intractable
to sample directly from GMM0. Fortunately, slice sam-
pling (Neal 2003) can be used to solve this problem.

For υ : For the inversion representation υd of document
sd, each υd,k can be resampled independently from its pos-
terior distribution:

q(υd,k = v|D,M−υd,k
)∝p0(υd,k = v)p(sd|M,D−sd

)

∝ p0(υd,k = v)
K∏

k=1

Γ(f−d
0,k,· + V α0)

Γ(f0,k,· + V α0)

V∏
v=1

Γ(f0,k,v + α0)

Γ(f−d
0,k,v + α0)

,

where p0(υd,k = v) = GMMk(υd,k = v; ρk) is the prior.
For t, b : Since tdsm has meaningful value only when

bdsm = 1, we jointly sample bdsm and tdsm for the topics.
The joint distributions are

q(bdsm = 1, tdsm = t|D,M−{bdsm,tdsm})

∝ (f−dsm
b=1 + γ0)

f−dsm
1,t,v + β0

f−dsm
1,t,· + V β0

f−dsm
1,d,t + θ0

f−dsm
1,d,· + Tθ0

,

q(bdsm = 0, tdsm = ∅|D,M−{bdsm,tdsm})

∝ (f−dsm
b=0 + γ0)

f−dsm
0,zds,v

+ α0

f−dsm
0,zds,· + V α0

,

where fb=1 is the number of topic words in the corpus and
fb=0 is the number of intent words. f1,t,v counts all the times
that wv appears in the corpus with indicator variable value
1 and topic label t. Then, f1,t,· =

∑V
v=1 f1,t,v . f1,d,t is the

number of words in document sd with indicator variable
value 1 and topic label t. Then f1,d,· =

∑T
t=1 f1,d,t . The su-

perscript “−dsm” indicates that the frequency is calculated
except wdsm. According to the joint distribution of bdsm and
tdsm, we compute the T + 1 non-zero probabilities, then do
normalization and sample from the resulting multinomial.

1wv is different from wdsm. wdsm is a word in sentence wds .
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Figure 3: The graphical expression of computing π0.

Supervised GMM-LDA

GMM-LDA is unsupervised; it learns the document struc-
ture without human annotation. As suggested by exist-
ing supervised topic models (McAuliffe and Blei 2008;
Wang, Blei, and Li 2009; Zhu, Ahmed, and Xing 2012),
the predictive power can be greatly improved with a small
amount of labeled documents. Here, we present a supervised
GMM-LDA which combines the known intent labels of sen-
tences during learning.

We consider the setting where a part of the documents in
the corpus are labeled, that is, each sentence is assigned an
intent label. Our goal is to develop a supervised model to
learn the intent structures for the remaining unlabeled doc-
uments. The simplest way to leverage the label information
is to use the labels directly during learning instead of sam-
pling them. However, the GMM describes the intent order
structure in a global way, which makes the process more
complicated. In the unsupervised case, the canonical intent
permutation is the identity ordering (1, 2, ...,K) as the in-
tent numbers are completely symmetric and not linked to
any meaningful intent label. However, the true intent labels
are already known in the supervised case. Then a challeng-
ing problem is to determine the canonical permutation π0.
Moreover, for the part of labeled documents, we have the
true intent structure zd, which is unnecessary to draw from
the GMM-Multi prior. So the next challenging problem is
how to leverage the known intent structure zd to help for
learning. That is, how to obtain ud and πd using zd. Below,
we discuss in detail on how to solve these problems.

Forπ0: As shown in Fig.3, we present an approximate
three-step algorithm to obtain the canonical permutation π0.
Step 1: We compute π′

d for each labeled document sd,
where π′

d is the permutation of the Kd (� K) intent la-
bels appearing in document sd. We arrange the Kd intent
labels in the order they appear in zd. However, there exist
cases where the same intent label appears in disconnected
portions of zd, which are rare in practice. When encoun-
tering these cases, we take the position that the label ap-
pears most consecutively in the sequence. If there are two
or more of these occurrences, we take the first position (see
Fig. 3 for some examples). Step 2: We introduce variables
gij(i, j ∈ [K]), where gij counts the times of the intent la-
bel i appearing before j in all π′

d. Then we define a directed
graph G = (V, E), where V ∈ [K] is the set of nodes and
E = {(i, j)|gij >= gji; i, j ∈ V} is the set of edges. Step 3:

We obtain the π0 by calculating the topological sequence of
G. If there are circles in G, we randomly break them. If there
are multiple topological sequences, we randomly take one.
In our experiments, the real situations are always in accor-
dance with our intuition that only one topological sequence
can be obtained from G.

For ud and πd : To combine the label information, we
compute ud and πd using zd and π0. ud can be obtained
by directly putting all the ordered elements of zd into a bag.
πd is a permutation of K numbers, which can be obtained
by inserting the remaining K − Kd numbers into π′

d . We
want πd to be as close to π0 as possible, which is consistent
with the idea of GMM. Specially, d(πd,π0) is the distance
from πd to π0, which defined as the minimum number of
swaps of adjacent elements needed to transform πd into the
same order of π0. Inspired by the idea of greedy method, we
insert the K−Kd numbers into π′

d one by one and each step
need to minimize the distance. During supervised learning,
when it comes to a labeled document sd, we directly take
the values of πd and ud instead of updating them.

GMM-LDA with Entropic Regularization

GMM-LDA jointly models the two incompatible structures
of documents by using a binary variable to indicate the type
(intent or topic) of each word. It can happen that a same
word located in two different positions are assigned with dif-
ferent types, which is somewhat unreasonable. Most of the
time, the type of a word can be decided regardless of which
position it appears in. For instance, the words “propose” and
“experiment” are more likely to be intent words regardless
of their positions. In order to model the significant diver-
gence between topics and intents, we introduce the entropy
of the words to make our model more descriptive. As we
know, in information theory, the entropy of a discrete ran-
dom variable X = {x1, x2, ..., xn} can explicitly be written
as H(X) = −∑n

i=1 p(xi) log p(xi). Similarly, the entropy
of a word wv in the vocabulary can be formulated as:

H(bv) = −
∑
i=0,1

p(bv = i) log p(bv = i), (4)

where p(bv = i) denotes the probability that word wv ap-
pears as an intent word (i = 0) or an topic word (i = 1) in
the corpus. Lower entropic value means better separation.

As GMM-LDA is under Bayesian inference framework, it
is challengeable to incorporate the entropic knowledge. Nev-
ertheless, regularized Bayesian inference framework (Zhu,
Chen, and Xing 2014) provides us an alternative interpreta-
tion of Bayesian inference (Williams 1980) and can combine
domain knowledge flexibly. Specifically, GMM-LDA with
entropic regularization can be formulated as:

min
q(M)∈P

KL(q(M)||q(M|D)) + c

V∑
v=1

H(bv), (5)

where P is the space of probability distributions and c � 0 is
a regularization parameter. When c = 0, the optimal solution
of the Kullback-Leibler divergence KL(q||p) is q(M) =
q(M|D), the standard Bayesian posterior distribution as in
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Table 1: Results of unsupervised clustering.
Models

Chemical Elements
ARI Recall Prec Fscore ARI Recall Prec Fscore

K
=

5

K-means 0.0023 0.7139 0.4257 0.5333 0.0236 0.8107 0.3201 0.4583
Boilerplate-LDA 0.3953 0.6797 0.6647 0.6720 0.3060 0.6975 0.5091 0.5884
GMM 0.1942 0.5093 0.5982 0.5501 0.3395 0.7004 0.5348 0.6064
GMM-LDA (Uniform) 0.2614 0.6886 0.5836 0.6314 0.1911 0.6002 0.4449 0.5106
GMM-LDA 0.4055 0.7473 0.6699 0.7065 0.3223 0.7176 0.5271 0.6075
EGMM-LDA 0.4125 0.7553 0.6725 0.7115 0.3567 0.7450 0.5517 0.6339

K
=

10

K-means 0.0011 0.5779 0.4332 0.4949 0.0504 0.6895 0.3460 0.4606
Boilerplate-LDA 0.2861 0.5367 0.6955 0.6056 0.3511 0.5885 0.6440 0.6149
GMM 0.1381 0.3302 0.6268 0.4324 0.3652 0.5692 0.6491 0.6063
GMM-LDA (Uniform) 0.3206 0.6069 0.6227 0.6138 0.3432 0.5720 0.6146 0.5924
GMM-LDA 0.4477 0.6747 0.7311 0.7017 0.4013 0.6273 0.6857 0.6549
EGMM-LDA 0.4546 0.6786 0.7364 0.7063 0.4196 0.6418 0.6865 0.6631

Table 2: Statistics of datasets.
Corpus Docs Sentences Vocab Tokens

Chemical 965 9, 488 4, 981 123, 119
Elements 118 1, 848 5, 301 67, 484

Eq. (3). When c > 0, the entropic knowledge is imposed as
a regularization constraint. With mean-filed assumption, the
inference of Eq. (5) is similar to that of GMM-LDA. More-
over, the entropic regularization is only relevant to b, which
can be combined with both the unsupervised GMM-LDA
and the supervised GMM-LDA.

Experimental Results

To demonstrate the efficacy of our models, we evaluate the
performance on two tasks: unsupervised clustering and su-
pervised classification. We use two real datasets: 1) Chem-
ical (Guo et al. 2010): It contains 965 abstracts of scientific
papers about 5 kinds of chemicals, and each abstract focuses
on one of the 5 topics. Each sentence is annotated with one
of the 7 intent labels: Background, Objective, Related Work,
Method, Result, Conclusion and Future Work; and 2) Ele-
ments (Chen et al. 2009): It consists of 118 articles from the
English Wikipedia, and each article talks about one of the
118 chemical elements in the periodic table. Each paragraph
is annotated with an intent label. We take the 8 most fre-
quently occurring intent labels: Top-level Segment, History,
Isotopes, Applications, Occurrence, Notable Characteris-
tics, Precautions and Compounds, and filter out paragraphs
with other labels. Although the intent structure is paragraph-
level in Element, while it is sentence-level in Chemical, the
word “sentence” is used throughout the paper for simplic-
ity. Tab. 2 summarizes the dataset statistics. Although both
datasets are in chemistry domain, they have different charac-
teristics that can be observed from the experimental results.
In Chemical, the intent orders are relatively fixed due to the
writing conventions of scientific papers, while they are more
variable in Elements.

Data preprocessing involves removing a small set of stop
words, tokens containing non-alphabetic characters, tokens
appearing less than 3 times, tokens of length one and sen-
tences with less than 5 valid tokens. We report the average
results over 5 runs, while each run takes a sufficiently large

number of iterations (e.g. 2000) to converge. Statistical sig-
nificance is measured with t-test.

Unsupervised Clustering

Our goal of unsupervised clustering is to learn an intent label
for each sentence in the corpus without any true label infor-
mation. Adjusted Rand Index (ARI)(Vinh, Epps, and Bailey
2010), recall, precision and F-score are used as our evalua-
tion measures. F-score is the harmonic mean of recall and
precision. For all the four measures, higher scores are better.

We consider two variants of our model: 1) GMM-LDA:
Our unsupervised model; and 2) EGMM-LDA: GMM-LDA
with entropic regularization. For hyperparameters, we set
θ0 = 0.1, λ0 = 0.1, α0 = 0.1, β0 = 0.1 and γ0 = 1,
since we find that the results are insensitive to them. ν0 is
set to be 0.1 times the number of documents in the cor-
pus. For EGMM-LDA, we set the regularization parameter
c to be 0.1. The baseline methods we use are: 1) K-means:
The feature used for each sentence is the bag of words.
2) Boilerplate-LDA: The model presented in (Ó Séaghdha
and Teufel 2014). 3) GMM: The intent part of GMM-LDA,
which is the content model by (Chen et al. 2009) and can
be implemented by fixing all indicator variables bdsm to 0
during learning; and 4) GMM-LDA (Uniform): The model
assumes a uniform distribution over all intent permutations
and can be implemented by fixing ρ to zero.

Clustering performance: We set the number of topics
T = 10 for Chemical and T = 5 for Elements. Tab. 1 shows
the results. For Chemical, our two models outperform all
other methods on four measures, with p-values smaller than
0.001 except for Boilerplate-LDA with K = 5. The excep-
tion of Boilerplate-LDA may be caused by the large vari-
ance in the results of multiple runs when K is small. Since
the first-order Markov chain is used in Boilerplate-LDA for
order structure learning, which only has a local view and
is more susceptible to noise. Moreover, first-order Markov
chain would select the same intent label for disconnected
sentences within a document, which is against our intuition.
Our models overcome these problems by using GMM and
also achieve better performance. The simpler variants of our
models achieve reasonable performance. GMM underper-
forms GMM-LDA, indicating that modeling topics and in-
tents simultaneously provides a richer and more effective
way to document structure learning. The bad performance
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Figure 4: Sensitivity of ρ0.

of the uniform variant proves the indispensability to model
the intent order structure. Moreover, our model yields bet-
ter results with entropic regularization. As to Elements, the
results are similar to that of Chemical. However, we can ob-
serve that GMM performs competitively in Elements, which
shows the characteristic of this dataset that there is no ob-
vious topic structure. We can also observe that the highest
recall scores are obtained by K-means with very low preci-
sion scores, since K-means prefers to assign the same label
to most of the sentences. It can thus be seen that the task is
difficult and the richer models are required.

Hyperparameter ρ0: ρ0 controls the variability of the
order structure and would be set according to different
datasets. The model with large ρ0 assigns massive probabili-
ties around the canonical permutation and the order structure
is relatively fixed, while the model with small ρ0 relaxes the
constraints and has a variety of orders far from the canonical
one. For Elements with K = 10, we change ρ0 from 0.125
to 4 and report the F-scores of GMM-LDA in Fig. 4. It can
be observed that the performance is stable in a wide range
(e.g. 0.5 < ρ0 < 2). We set ρ0 = 2 for all the experiments
except for Elements with K = 10, in which we set ρ0 = 1.

Table 3: Most commonly words of two types on Chemical.
Intent Words Topic Words

days results increased rats protein expression
other control observed mice levels exposure
used present significant DNA activity adducts
more treated between gene effects treatment
data suggest compared cells tumor phenobarbital
study human showed liver induced formation

Types of words: To embody the intents and topics in the
results, we assume that each word in the vocabulary is ei-
ther an intent word or a topic word. If a word appears in the
corpus more as an intent word than a topic word, we clas-
sify it as an intent word; otherwise, it is a topic word. Note
that this additional condition is introduced only for the ease
of demonstration. In order to see how our models separate
these two types, we list 18 most commonly used words of
each type in Chemical according to the result of EGMM-
LDA. As shown in Tab. 3, we can observe that almost all
the intent words has rhetorical functions that can express the
intents of sentences, while almost all the topic words are
about chemical topics. The good separations justify our as-
sumption and show the effectiveness of our models.

Table 4: Results of supervised classification.
Models

Chemical Elements
ARI ACC ARI ACC

SVM 0.399 0.674 0.326 0.622
sBoilerplate-LDA 0.506 0.709 0.522 0.749
sGMM 0.276 0.530 0.531 0.744
sGMM-LDA 0.510 0.731 0.521 0.752
sEGMM-LDA 0.510 0.730 0.562 0.775

Supervised Classification

Now, we evaluate our supervised models for classifying sen-
tences. For each dataset, we randomly choose 20% docu-
ments; annotate their sentences with intent labels; and use
them for training. Our goal is to learn the intent labels for
the sentences in the remaining 80% documents. We report
accuracy (ACC) and the ARI scores to show the improve-
ments compared to the unsupervised learning. We again con-
sider two variants of our model: 1) sGMM-LDA: Our su-
pervised model; and 2) sEGMM-LDA: sGMM-LDA with
entropic regularization. The baseline methods are : 1) SVM:
We use the bag-of-words features, linear kernel and SVM-
Light tools (Joachims 1998). 2) sBoilerplate-LDA : The su-
pervised version of Boilerplate-LDA, in which we fix the
known labels during learning instead of updating them; and
3) sGMM : The intent part of our sGMM-LDA. All the set-
tings are the same as that in the unsupervised learning.

Classification performance: Tab. 4 presents the results.
For Chemical, the best accuracies are achieved by our two
models (p < 0.01), which again proves that our assump-
tion of the two types of words is reasonable and the intent
order structure can be better modeled by employing GMM.
For Elements, sBoilerplate-LDA and sGMM perform com-
petitively, while EGMM-LDA beats all the other methods
(p < 0.05). It shows that our model is more robust with
entropic regularization. The ARI scores improve a lot com-
pared to that in Tab. 1, indicating that the predictive power
can be largely improved with just 20% labeled documents.

Table 5: Results of the canonical intent permutation and the
intent words on Chemical with sEGMM-LDA.

No. Intent Label High-Frequency Words

0 Background cancer, studies, carcinogen, environmental,
aromatic, known, shown, however, used

1 Objective study, using, investigated, present, examined,
used, whether, determine, effect, evaluated

2 Method days, treated, diet, single, control, groups,
body, followed, water, using, injection

3 Result increased, significantly, observed, compared,
showed, higher, however, respectively

4 Related Work polymerase, significantly, results, codes, ICD,
comparisons, percent, suggest, enhances

5 Conclusion results, suggest, indicate, findings, study, role,
studies, thus, conclusion, important

6 Future Work needed, however, needs, required, future,
research, investigations, studies, observed

Intent words: We can obtain the canonical intent per-
mutation by the known intent labels, at the same time the
distribution over vocabulary can be learned. Tab. 5 shows
the results on Chemical with sEGMM-LDA. We can ob-
serve that the canonical intent order (numbered from 0 to
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6) conforms to the convention in scientific writing. More-
over, from the high-frequency words of each intent, we can
see that most of the words express the intent labels well. For
instance, “study” and “investigated” express the intent Ob-
jective, while “increased” and “significantly” are for Result.

Related Work

From the algorithmic perspective, our work is grounded in
topic models, such as Latent Dirichlet Allocation (LDA)
(Blei, Ng, and Jordan 2003), which have been widely de-
veloped for many NLP tasks. Instead of representing docu-
ments as bags of words, many expanded models take specific
structural constraints into consideration (Purver et al. 2006;
Gruber, Weiss, and Rosen-Zvi 2007). Among different mod-
els, our work has a closer relation to the models with or-
der structure. For order modeling, Markov chain can only
capture the dependence locally (Ó Séaghdha and Teufel
2014; Barzilay and Lee 2004; Elsner, Austerweil, and Char-
niak 2007), while the generalized Mallows model (GMM)
(Fligner and Verducci 1986) has a global view (Chen et
al. 2009; Du, Pate, and Johnson 2015; Cheng, Hühn, and
Hüllermeier 2009). A more complete model can be obtained
by dividing the words into different types. In early trial of
zoneLDAb (Varga, Preotiuc-Pietro, and Ciravegna 2012), a
type of words are for describing background, which are in-
dependent of the category of the sentence. Boilerplate-LDA
(Ó Séaghdha and Teufel 2014) also considers two types:
document-specific topic words and rhetorical words. Three
types of words are learnt by a rule-based method in (Nguyen
and Shirai 2015). However, global order structure is not con-
sidered in these models. Therefore, jointly modeling topics
and intents with global order structure is of great value.

Conclusion and Future Work

We present GMM-LDA (both unsupervised and super-
vised) for document structure learning, which simultane-
ously model topics and intents. The generalized Mallows
model is employed to model the intent order globally. More-
over, we consider the entropic regularization to make the
model more descriptive. Our results demonstrate the reason-
ability of our intuitions and the effectiveness of our mod-
els. For future work, we are interested in making our models
richer by combining local coherence constraints.
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