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Abstract
Recently there have been increasing interests in
learning and inference with implicit distributions
(i.e., distributions without tractable densities). To
this end, we develop a gradient estimator for
implicit distributions based on Stein’s identity
and a spectral decomposition of kernel operators,
where the eigenfunctions are approximated by the
Nyström method. Unlike the previous works that
only provide estimates at the sample points, our
approach directly estimates the gradient function,
thus allows for a simple and principled out-of-
sample extension. We provide theoretical results
on the error bound of the estimator and discuss
the bias-variance tradeoff in practice. The effec-
tiveness of our method is demonstrated by appli-
cations to gradient-free Hamiltonian Monte Carlo
and variational inference with implicit distribu-
tions. Finally, we discuss the intuition behind
the estimator by drawing connections between the
Nyström method and kernel PCA, which indicates
that the estimator can automatically adapt to the
geometry of the underlying distribution.

1. Introduction
Recently there have been increasing interests in learning
and inference with implicit distributions, i.e., distributions
defined by a sampling process but without tractable den-
sities. Popular examples include Generative adversarial
networks (GAN) (Goodfellow et al., 2014; Mohamed &
Lakshminarayanan, 2016). Compared to the explicit like-
lihoods (e.g., Gaussian) in other deep generative models
such as variational autoencoders (VAE) (Kingma & Welling,
2013), implicit distributions are shown able to capture the
complex data manifold that lies in a high dimensional space,
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leading to more realistic samples generated by GAN than
other models. Besides, as the constraint of requiring an
explicit density is removed, implicit distributions are treated
as more flexible variants of variational families for approxi-
mate inference (Ranganath et al., 2016; Liu & Feng, 2016;
Mescheder et al., 2017; Tran et al., 2017; Huszár, 2017; Li
& Turner, 2018; Shi et al., 2018).

Despite that it is appealing to use flexible implicit distri-
butions, which capture complex correlations and manifold
structures, deploying them in practical scenes is still chal-
lenging. This is because most learning and inference algo-
rithms require optimizing some divergences between two
distributions, which often rely on evaluating the densities
of them. However, the density of an implicit distribution is
intractable and we only have access to its samples. Previous
works have explored two directions to solve the problem.
One is to first approximate the optimization objective with
the samples and then use the approximation to guide the
learning procedure. Many works in this direction are based
on the fact that the density ratio between two distributions
can be estimated from their samples, by a probabilistic
classifier (also known as the discriminator) trained in an ad-
versarial game (Donahue et al., 2016; Dumoulin et al., 2016;
Mescheder et al., 2017; Tran et al., 2017; Huszár, 2017),
or by kernel-based estimators (Shi et al., 2018). The other
direction is to estimate the gradients instead of the objective.
Li & Turner (2018) propose the Stein gradient estimator
for the log density of an implicit distribution. It is based
on a ridge regression that inverts a generalized version of
Stein’s identity (Gorham & Mackey, 2015; Liu et al., 2016).
As argued in their work, this approach is more direct and
avoids probable arbitrarily diverse gradients provided by the
approximate objective. In this paper, we focus on the latter
direction.

Though the Stein gradient estimator has been shown to be a
fast and easy way to obtain gradient estimates for implicit
models. It is still limited by its simple formulation, i.e., the
unjustified choice of both the test function (the kernel feature
mapping) and the regularization scheme (the Frobenius-
norm regularization used in ridge regression). The problem
has deeper implications. For instance, no theoretical results
have been established for the estimator. Moreover, there is
no principled way to obtain gradient estimates at positions
out of the sample points.
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In this paper, we develop a novel gradient estimator for
implicit distributions, which is called the Spectral Stein
Gradient Estimator (SSGE). To approximate the gradient
function of the log density (i.e., ∇x log q(x)), SSGE ex-
pands it in terms of the eigenfunctions of a kernel-based
operator. These eigenfunctions are orthogonal with respect
to the underlying distribution. By setting the test func-
tions in the Stein’s identity to these eigenfunctions, we can
take advantage of their orthogonality to obtain a simple
solution. The eigenfunctions in the solution are then ap-
proximated by the Nyström method (Nyström, 1930; Baker,
1997; Williams & Seeger, 2001). Unlike the Stein gradient
estimator (Li & Turner, 2018), our approach allows for a di-
rect and principled out-of-sample extension. Moreover, we
provide theoretical analysis on the error bound of SSGE and
discuss the bias-variance tradeoff in practice. We also dis-
cuss its effectiveness in reducing the curse of dimensionality
by drawing connections to kernel PCA.

2. Background
In this section we briefly introduce the Nyström method and
the Stein gradient estimator.

2.1. The Nyström Method

The Nyström method originates as a method for approxi-
mating the solution of Fredholm integral equations of the
second kind (Nyström, 1930; Baker, 1997). It was used
by Williams & Seeger (2001) for estimating extensions
of eigenvectors in Gaussian process regression. Specifi-
cally, the following equation for finding the eigenfunctions
{ψj}j≥1, ψj ∈ L2(X , q)1 of the covariance kernel k(x,y)
w.r.t. the probability measure q is considered:∫

k(x,y)ψ(y)q(y)dy = µψ(x). (1)

And there is a constraint that the eigenfunctions {ψj}j≥1
are orthonormal under q:∫

ψi(x)ψj(x)q(x)dx = δij , (2)

where δij = 1[i = j]. Approximating the left side of eq. (1)
with its unbiased Monte Carlo estimate using i.i.d. samples
{x1, . . . ,xM} from q and applying the equation to these
samples, we obtain

1

M
Kψ ≈ µψ, (3)

where K is the Gram matrix: Kij = k(xi,xj), and ψ =[
ψ(x1), . . . , ψ(xM )

]>
. This is an eigenvalue problem for

K. We compute the eigenvectors u1, . . . ,uJ with the J

1L2(X , q) denotes the space of all square-integrable functions
w.r.t. q.

largest eigenvalues λ1 ≥ · · · ≥ λJ for K. Now we have the
solutions of eq. (3) by comparing against Kuj = λjuj :

ψj(x
m) ≈

√
Mujm, m = 1, . . . ,M, (4)

µj ≈
λj
M
. (5)

Note that the scaling factor in eq. (4) is due
to the empirical constraint translated from eq. (2):
1
M

∑M
m=1 ψi(x

m)ψj(x
m) ≈ δij . Baker (1997) shows that

for a fixed kernel k, λj
M converges to µj in the limit as

M →∞.

Plugging these solutions back into eq. (1), we get the
Nyström formula for approximating the value of the jth
eigenfunction at any point x:

ψj(x) ≈ ψ̂j(x) =

√
M

λj

M∑
m=1

ujmk(x,xm). (6)

The Nyström method has been shown to be a thread link-
ing many dimension reduction methods such as kernel
PCA (Schölkopf et al., 1998), multidimensional scaling
(MDS) (Borg & Groenen, 2005), local linear embedding
(LLE) (Roweis & Saul, 2000), Laplacian eigenmaps (Belkin
& Niyogi, 2003), and spectral clustering (Weiss, 1999), uni-
fying their out-of-sample extensions (Bengio et al., 2004a;b;
Burges et al., 2010). We will discuss these connections later.

2.2. Stein’s Identity and Stein Gradient Estimator

Recent developments in Stein discrepancy and its kernelized
extensions (Gorham & Mackey, 2015; Chwialkowski et al.,
2016; Liu et al., 2016; Liu & Wang, 2016) have renewed
the interests in Stein’s method, which is a classic tool in
statistics. Central to these works is an equation that general-
izes the original Stein’s identity (Stein, 1981), shown in the
following theorem.

Theorem 1 (Gorham & Mackey 2015; Liu et al. 2016). As-
sume that q(x) is a continuous differentiable probability den-
sity supported onX ⊂ Rd. h : X → Rd′ is a smooth vector-
valued function h(x) = [h1(x), h2(x), . . . , hd′(x)]

>, and
∀i ∈ 1, . . . , d′, hi is in the Stein class of q, i.e.,∫

x∈X
∇x (hi(x)q(x)) dx = 0. (7)

Then the following identity holds:

Eq[h(x)∇x log q(x)> +∇xh(x)] = 0. (8)

The condition (7) can be easily checked using integration by
parts or divergence theorem. Specifically, when X = Rd,
eq. (7) holds if lim‖x‖→∞ h(x)q(x) = 0; when X is a
compact subset of Rd with piecewise smooth boundary ∂X ,
eq. (7) holds if h(x)q(x) = 0,∀x ∈ ∂X . Here h(x) is



A Spectral Approach to Gradient Estimation for Implicit Distributions

called the test function. We can check that for a RBF kernel
k, and for any fixed x, k(x, ·) and k(·,x) are in the Stein
class of continuous differentiable densities supported on Rd.

Because the expectation in eq. (8) can be approximated by
Monte Carlo estimates, the identity connects ∇x log q(x)
and the samples from q. Inspired by this, Li & Turner (2018)
propose the Stein gradient estimator, which inverts eq. (8)
to obtain estimates of ∇x log q(x) at the sample points.
Below we briefly review their method. Specifically, consider
M i.i.d. samples x1:M drawn from q(x). We define two
matrices H =

[
h(x1), · · · ,h(xM )

]
∈ Rd′×M and G =[

∇x1 log q(x1), · · · ,∇xM log q(xM )
]> ∈ RM×d. Monte

Carlo sampling with eq. (8) shows that

− 1

M
HG ≈ ∇xh, (9)

where ∇xh = 1
M

∑M
m=1∇xmh(xm) ∈ Rd′×d,

∇xmh(xm) = [∇xmh1(xm), . . . ,∇xmhd′(x
m)]
>. Equa-

tion (9) inspires the following ridge regression problem:

argmin
Ĝ∈RM×d

‖∇xh +
1

M
HĜ‖2F +

η

M2
‖Ĝ‖2F ,

where ‖ · ‖2F denotes the Frobenius norm of a matrix and
η > 0 is the regularization coefficient. It has an analytic
solution that

ĜStein = −M(K + ηI)−1H>∇xh, (10)

where K = H>H. By noticing that Kij = h(xi)>h(xj)
and applying the kernel trick, we have Kij = k(xi,xj),
where k : Rd × Rd → R is a positive defi-
nite kernel. Similarly we can show (H>∇xh)ij =
1
M

∑M
m=1∇xmj k(xi,xm). With the kernel trick, the above

derivation implicitly set the test function to be the feature
mapping h : Rd → H,h(x) = k(x, ·), where H is the
Reproducing Kernel Hilbert Space (RKHS) induced by k.

Though introducing the kernel trick enhances the expres-
siveness of the Stein gradient estimator, the choice of the
test function is not well justified. It is unclear whether
eq. (8) holds when the test function is set to the kernel fea-
ture mapping h(x) = k(x, ·), which maps from Rd to H
instead of the common Rd′ . Li & Turner (2018) show that
their approach is equivalent to minimizing a regularized
version of the V-statistics of kernel Stein discrepancy (Liu
et al., 2016), which has proved to be effective in testing
goodness-of-fit. However, it is still unclear whether the test
power is sufficient due to the added Frobenius-norm regu-
larization term. Besides, eq. (10) only gives the gradient
estimates at the sample points. For out-of-sample prediction
at a test point, two choices are proposed in Li & Turner
(2018): one is by adding the test point to the sample points
and re-compute eq. (10), which could be computationally

demanding. We will refer to this out-of-sample extension as
Stein+. The other choice is to refit a parametric estimator (a
linear combination of RBF kernels), which is cheaper but
less accurate. Both approaches assume that the test points
are also sampled from q. However, they are unjustified
when the assumption is not satisfied. Since the latter is an
approximation to the former, we will only compare with
Stein+ in the experiments for out-of-sample predictions.

3. Method
In this section we derive a gradient estimator for implicit
distributions called the Spectral Stein Gradient Estimator
(SSGE). Unlike the previous Stein gradient estimator that
only provides estimates at the sample points, SSGE directly
estimates the gradient function and thus allows simple and
principled out-of-sample predictions. We also provide theo-
retical analysis on the error bound of SSGE.

3.1. Spectral Stein Gradient Estimator

To begin with, let x denote a d-dimensional vector in Rd.
Consider an implicit distribution q(x) supported on X ⊂
Rd, from which we observe M i.i.d. samples x1:M . We de-
note the target gradient function to estimate by g : X → Rd:
g(x) = ∇x log q(x). The ith component of the gradient is
gi(x) = ∇xi log q(x). We assume g1, . . . , gd ∈ L2(X , q).
As introduced in section 2.1, {ψj}j≥1 form an orthonor-
mal basis of L2(X , q). So we can expand gi(x) into the
following spectral series:

gi(x) =

∞∑
j=1

βijψj(x). (11)

Below we will show how to estimate the coefficients βij .
According to Theorem 1, we have the following proposition.
Proposition 1. If k(·, ·) has continuous second order par-
tial derivatives, and both k(x, ·) and k(·,x) are in the Stein
class of q, the following set of equations hold true:

Eq[ψj(x)g(x) +∇xψj(x)] = 0, j = 1, 2 . . . ,∞. (12)

Proof. We only need to prove that ψj(x) is in the Stein
class of q. See Appendix A for details.

Substituting eq. (11) into eq. (12) and using the orthonor-
mality of {ψj}j≥1, we can show that

βij = −Eq∇xiψj(x).

To estimate βij , we need an approximation of ∇xiψj(x).
The key observation is that derivatives can be taken w.r.t.
both sides of eq. (1):

µj∇xiψj(x) = ∇xi
∫
k(x,y)ψj(y)q(y)dy

=

∫
∇xik(x,y)ψj(y)q(y)dy.

(13)
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Monte-Carlo sampling with eq. (13), we have an estimate
of ∇xiψj(x):

∇̂xiψj(x) ≈ 1

µjM

M∑
m=1

∇xik(x,xm)ψj(x
m). (14)

Substituting eqs. (4) and (5) into eq. (14) and comparing
with eq. (6), we can show

∇̂xiψj(x) ≈ ∇xi ψ̂j(x). (15)

Perhaps surprisingly, Equation (15) indicates that∇xi ψ̂j(x)
is a good approximation to ∇xiψj(x)2. In fact, as we shall
see in Theorem 2, the error introduced by Nyström approxi-
mation is negligible with high probability as M →∞.

Now truncating the series expansion to the first J terms and
plugging in the Nyström approximations of {ψj}Jj=1, we
get our estimator:

ĝi(x) =

J∑
j=1

β̂ijψ̂j(x), (16)

β̂ij = − 1

M

M∑
m=1

∇xi ψ̂j(xm), (17)

where ψ̂j is the Nyström approximation of ψj as in Sec-
tion 2.1. We use RBF kernels in all experiments.

Computational Cost The spectral gradient estimator ĝi(x)

depends on β̂ij and ψ̂j(x). To compute them, the computa-
tional bottleneck lies in computing the Gram matrix and its
eigendecomposition, which have complexity O(M2d) and
O(M3), respectively. Therefore the computational cost of
constructing the estimator isO(M3+M2d). For prediction,
given x ∈ Rd, evaluating ĝi(x) has cost O(M(d+ J)). In
comparison, the Stein gradient estimator directly approxi-
mates gradients at the sample points, which involves com-
puting the Gram matrix and its inverse. Thus the overall
complexity is also O(M3 + M2d). Note that SSGE only
requires the J largest eigenvalues and corresponding eigen-
vectors, efficient algorithms (Parlett & Scott, 1979) might
be applied to further reduce its complexity.

3.2. Theoretical Results

Following the derivation in Section 3.1, we analyze the
theoretical properties of the resulting estimator in eqs. (16)
and (17). To be clear, we formally restate the assumptions
that have been made in the derivation.
Assumption 1. k(x, ·) and k(·,x) are in the Stein class of
q.
Assumption 2. gi(x) ∈ L2(X , q), i = 1, . . . , d, i.e.,∫

gi(x)2q(x) dx =

∞∑
j=1

β2
ij ≤ C <∞.

2This does not hold for general functions.

Assumption 3. µ1 > µ2 > · · · > µJ > 0.

Note that Assumption 1 holds for RBF kernels. Assump-
tion 2 is necessary for gi(x)’s being possible to be ex-
panded into the spectral series. We need Assumption 3
since our derivation is based on several well-studied bounds
of Nyström approximation, i.e., Lemmas 4 and 5 in Ap-
pendix B (Sinha & Belkin, 2009; Izbicki et al., 2014). Note
that when this assumption does not hold, we could proceed
as in Rosasco et al. (2010) (Theorem 12) and derive the
error bound in a similar way.

Theorem 2 (Error Bound of SSGE, proof in Appendix B).
Given the above assumptions, the error

∫
|ĝi(x) −

gi(x)|2q(x) dx is bounded by

J2

(
Op

(
1

M

)
+Op

(
C

µJ∆2
JM

))
+

JOp

(
C

µJ∆2
JM

)
+ ‖gi‖2HO(µJ),

(18)

where ∆J = min1≤j≤J |µj − µj+1|, Op is the Big O nota-
tion in probability.

The first three terms in eq. (18) are the sample errors caused
by the Nyström approximation, which we call the estimation
error. It is negligible with high probability asM →∞. The
last term is caused by the bias introduced by the truncation,
which we call the approximation error. From the bound we
can observe a tradeoff between the estimation error and the
approximation error. As an illustration, one may set J to
be as large as possible to reduce the magnitude of µJ and
thus reduce the approximation error, but it will increase the
estimation error at a rate of Op

(
J2

µJ

)
.

For RBF kernels and their corresponding RKHS, smoother
target functions tend to have smaller ‖gi‖2H, and thus a
tighter bound. In general, this indicates that choosing the
appropriate kernel which is suitable to the target gradient
function can improve the performance of the gradient esti-
mator (by leading to a smaller ‖gi‖2H).

Hyperparameter Selection When RBF kernels are used,
SSGE has two free parameters: The kernel bandwidth σ,
and the number of eigenfunctions (J) used in the estimate.
For σ, we use the median heuristic, i.e., we set it to be the
median of pairwise distances between all samples, which
turns out to work well in all experiments. Below we discuss
the criterion for selecting J , which is usually harder.

As the performance of the gradient estimator directly influ-
ences the task where it is used. The optimal choice for tun-
ing J is to apply cross-validation on the specific task. How-
ever, since J is a discrete parameter, one has to manually set
a continuous interval and bin it so that the commonly used
black-box hyperparameter-search methods (e.g., Bayesian
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optimization) are applicable. However, this approach does
not take the magnitude of eigenvalues into consideration.
Observing this, we propose that, instead of directly tuning J ,
we could tune a threshold r̄ for the percentage of remaining
eigenvalues:

J = argmax
J′

rJ′ , s.t. rJ′ =

∑J′

j=1 λj∑M
j′=1 λj′

, rJ′ ≤ r̄.

Note that searching r̄ may still not be easy due to the non-
smooth validation surface. But in experiments we found
that r̄ values in [0.95, 0.99] usually work well.

3.3. Gradient Estimation for Entropy

Above we have derived a gradient estimator for the log
density of an implicit distribution. Now we discuss a use-
ful extension of it. Consider the situation where we need
to optimize the entropy H(q) = −Eq log q of an implicit
distribution qφ(x) w.r.t. its parameters φ. When x is con-
tinuous and can be reparameterized (Kingma & Welling,
2013), e.g., x = f(ε;φ), ε ∼ N (0, I), it can be shown (see
Appendix C) that

∇φH(q) = −Eε∇x log qφ(f(ε;φ))∇φf(ε;φ), (19)

where∇x log qφ(f(ε;φ)) can be easily estimated by SSGE.
As we shall see in experiments, eq. (19) can be used for
variational inference with implicit distributions.

4. Related Work
Our work is closely related to other works on implicit dis-
tributions. Apart from the density-ratio based approaches
introduced in Section 1, we discuss two more directions.

Nonparametric Inference Nonparametric variational in-
ference (VI) methods such as PMD (Dai et al., 2016) and
SVGD (Liu & Wang, 2016) remove the need of parametric
families, they keep a set of particles and gradually adjust
them towards the true posterior. These particles can be
viewed as samples from an implicit distribution. Instead of
directly computing gradients in the sample space like us,
SVGD performs functional gradient descent to transform
the implicit distribution towards the true posterior. Though
elegant, SVGD is limited to KL-divergence based VI prob-
lems, while our approach is generally applicable wherever
gradient estimates are needed for the log density of implicit
distributions.

Kernel Exponential Families and Score Matching Pre-
vious to our work, the problem of estimating gradient func-
tions of intractable log densities has been worked on by
Strathmann et al. (2015); Sutherland et al. (2018). They
identified the problem when developing Hamiltonian Monte
Carlo (HMC) under the settings where higher-order infor-
mation of the target distribution is unavailable. To address
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Figure 1. Gradient estimates of the log density ofN (0, 1).

it, a kernel exponential family (Sriperumbudur et al., 2017)
is fit to samples along the Markov Chain trajectory by score
matching (Hyvärinen, 2005), and then serves as a surrogate
of the target distribution to provide gradient estimates for
HMC. We will compare to them in Section 5.2.

5. Experiments
We evaluate the proposed approach on both toy prob-
lems and real-world examples. The latter includes appli-
cations of SSGE to two widely used inference methods:
Hamiltonian Monte Carlo and variational inference. Code
is available at https://github.com/thjashin/
spectral-stein-grad. Implementations are based
on ZhuSuan (Shi et al., 2017).

5.1. Toy Experiment

As a simple example, we experiment with estimating the
gradient function of a 1-D standard Gaussian distribution.
The target log density is log q(x) = − 1

2 log 2π − 1
2x

2, and
the true gradient function is ∇x log q(x) = −x. We draw
M = 100 i.i.d. samples from q for use in the estimation.
In Figure 1 we plot the gradients estimates produced by
the Stein gradient estimator, its out-of-sample extension
(Stein+) (see Section 2.2), and our approach (SSGE). Since
the original Stein estimator only gives estimates at the sam-
ple points, we plot them as individual points (in red). For
the regularization coefficient η in eq. (10), we searched it
in {0.001, 0.01, 0.1, 1, 10, 100} and plot the best result at
η = 0.1 3. For SSGE, we set J = 6. We can see that de-
spite all three estimators produce rather good approximation
where the samples are taken densely (e.g., in [−2, 2]), the
gradient function estimated by SSGE is notably better at the
places where samples are less dense.

5.2. Gradient-free Hamiltonian Monte Carlo

In this experiment we investigate the usefulness of SSGE in
constructing a gradient-free HMC sampler. We follow the

3The criterion for selecting η is unclear in Li & Turner (2018).

https://github.com/thjashin/spectral-stein-grad
https://github.com/thjashin/spectral-stein-grad
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Figure 2. (a) Dimensions 2 and 7 of the marginal hyperparameter
posterior of Gaussian Process classification on the UCI Glass
dataset; (b) The average acceptance ratios of gradient-free HMC
using SSGE, KMC, and Stein+.

settings in Sejdinovic et al. (2014); Strathmann et al. (2015)
and consider a Gaussian Process classification problem on
the UCI Glass dataset. The goal is to infer the posterior over
hyperparameters under a fully Bayesian treatment. Specifi-
cally, consider a Gaussian process whose joint distribution
is over latent variables f , labels y, and hyperparameters θ:

p(f ,y,θ) = p(θ)p(f |θ)p(y|f), (20)

where f |θ ∼ N(0,Kθ). Kθ is the Gram matrix formed by
the data points x1:N ∈ RD:

(Kθ)ij = exp

{
−

D∑
d=1

|xi,d − xj,d|2
2`2d

}
, (21)

where we define θd = log `2d. The problem to consider is
a binary classification between window and non-window
glasses, so the likelihood is given by a logistic classifier:
p(yi|fi) = 1

1+exp(−yifi) , yi ∈ {−1, 1}. The posterior over
θ is highly nonlinear, as shown in Figure 2a. As pointed
out in previous works (Murray & Adams, 2010; Sejdinovic
et al., 2014), sampling from the posterior of θ is challenging,
e.g., Gibbs sampling often gets stuck due to p(θ|f ,y) is
very sharp. One way to address this problem is the pseudo-
marginal MCMC (Andrieu et al., 2009), through which a
markov chain can be simulated to directly sample from
p(θ|y). Since the likelihood p(y|θ) is intractable, pseudo-
marginal MCMC replaces it with an unbiased Monte Carlo
estimate using importance sampling:

p̂(y|θ) =
1

K

K∑
i=1

p(y|f i)p(f i|θ)

q(f i)
, f1:K ∼ q(f). (22)

In practice q(f) is chosen to be the Laplace approximation
of p(f |y,θ). As for any pseudo-marginal MCMC scheme,
the gradient information of the posterior is not available
and HMC is not suitable. We have to resort to gradient-
free MCMC methods. As mentioned in Section 4, kernel
adaptive Metropolis samplers (Sejdinovic et al., 2014) were

developed and then extended to kernel HMC (KMC) (Strath-
mann et al., 2015). In this experiment we compare the per-
formance of KMC and HMC with gradients estimated by
SSGE and Stein+.

To begin, we run 20 randomly initialized adaptive-
Metropolis samplers for 30k iterations, with the first 10k
samples discarded. We then keep every 400-th sample in
each of the chains, and combine them to get 1k samples.
These samples are treated as the ground truth. Similar to
Sutherland et al. (2018), our experiment assumes the ideal-
ized scenario where a burn-in period for collecting a suffi-
cient number of samples has completed. This is to remove
all the other factors that could have an effect on the com-
parison of acceptance ratios, which then only depends on
the accuracy of the gradient estimation of potentials, i.e.,
−∇θ log p(θ|y). So we fit all three estimators on a random
subset of M = 200 of these samples and repeated 10 times.
For each fitted estimator, we start from a random initial point
from the posterior sketch and run HMC samplers with the
gradient estimates for 5k iterations. To be fair in comparing
the acceptance ratios, no adaptation of HMC parameters can
be used. So we randomly uses between 1 and 10 leapfrog
steps of size chosen uniformly in [0.01, 0.1], and a standard
Gaussian momentum. The kernel bandwidths (σ) in all three
estimators are determined by median heuristics (i.e., set to
the median of the pairwise distances between the M data
points). For Stein+, η = 0.001. For SSGE, r̄ = 0.95.

The average acceptance ratios over 10 runs are plotted in
Figure 2b. We can see that SSGE clearly outperforms Stein+

and is even better than the KMC algorithm, which is spe-
cially designed as a gradient-free HMC algorithm. Though
KMC is carefully designed, its gradients are estimated by
first fitting a kernel exponential family as a surrogate and
then taking derivatives through it, while SSGE is arguably
more direct.

5.3. Variational Inference with Implicit Distributions

As introduced in Section 1, there have been increasing in-
terests in constructing flexible variational posteriors with
implicit distributions. Specifically, for a latent-variable
model p(z,x) where x and z denote observed and latent
variables, respectively, Variational Inference (VI) approx-
imates the posterior p(z|x) by maximizing the following
evidence lower bound (ELBO):

L(x;φ) = Eqφ(z) log p(z,x)− Eqφ(z) log qφ(z), (23)

where qφ(z) is called the variational distribution. The sec-
ond term of eq. (23) is the entropy of q, which is intractable
for implicit distributions. As shown in Section 3.3, SSGE
can be used here for estimating gradients of the entropy
term, thus allowing VI with implicit distributions. Below
we conduct experiments on two examples: Bayesian Neu-
ral Networks (BNN) and Variational Autoencoders (VAE).
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(a) HMC (b) Spectral-Implicit

(c) BBB (d) Spectral-Factorized

Figure 3. Prediction results for the 1-D regression experiment.
Spectral-Implicit and Spectral-Factorized represent using SSGE
to perform VI with implicit posteriors and factorized Gaussian
posteriors, respectively. Shaded areas represent 3 times standard
deviation.

Note that the original Stein gradient estimator can also be
used here. In experiments, we find that despite lack of the-
oretical evidences, the performance of a well-tuned Stein
gradient estimator is very close to SSGE when no out-of-
sample predictions are required. As the emphasis of this
paper is on SSGE, we only focus on verifying the accuracy
of SSGE below.

5.3.1. BAYESIAN NEURAL NETWORKS

We evaluate the predictive ability of BNNs with implicit
variational posteriors trained by SSGE. To visually access
the quality of uncertainty, we choose a 1-D regression
problem (Hernández-Lobato & Adams, 2015; Louizos &
Welling, 2016). Specifically, 20 inputs are randomly sam-
pled from [−4, 4], then the target value y is computed with
y = x3 + εn, εn ∼ N (0, 9). We use a BNN with 1 hidden
layer and 20 units to model the normalized inputs and tar-
gets. We also set the variance of the observation noise to
the true value. We compare SSGE with implicit posteriors,
Hamiltonian Monte Carlo (HMC) (Neal et al., 2011) and
Bayes-by-backprop (BBB) (Blundell et al., 2015). To better
demonstrate SSGE’s gradient estimation effect, we also test
SSGE with a factorized posterior, in comparison to BBB.

We keep 20 chains and run 100k iterations for HMC. All
other methods are trained with 100 samples for 20k iter-
ations using Adam optimizer (Kingma & Ba, 2014). For
SSGE, we set J = 100. The implicit posteriors we use
for weights in both layers are standard normal distributions
transformed by fully connected networks with one hidden
layer of 100 units.

As shown in Fig. 3, HMC, as the golden standard, smoothly
fits the training data and outputs sensible uncertainty esti-

mation. HMC not only produces large uncertainty outside
the data region, its predictive variance also varies even in
regions with training points. This kind of interpolation
behavior is hard to be captured by factorized Gaussian pos-
teriors, as shown in Fig. 3c and 3d. SSGE with implicit
posteriors also has big predictive variances beyond training
points, which implies that the BNN trained by SSGE is not
overfitting, although it underestimates the uncertainty in the
middle region. Also, we observe that SSGE can have simi-
lar interpolation behaviors as HMC (see the rightmost two
points in Fig. 3b). Besides, SSGE with a factorized posterior
has a similar prediction with BBB. Given the network and
the variational posterior are both the same, we can attribute
this similarity to accurate gradient estimation by SSGE.

5.3.2. VARIATIONAL AUTOENCODERS

From the above example we see that SSGE enables vari-
ational posteriors parameterized by implicit distributions.
To demonstrate that it scales to larger models and datasets,
we adopt the settings in Shi et al. (2018) and train a deep
convolutional VAE with implicit variational posteriors (Im-
plicit VAE for short) on the CelebA dataset. As in their
work, the latent dimension is 32, and the network structure
of the decoder is chosen to be the same as DCGAN (Rad-
ford et al., 2015). The observation likelihoods are Gaussian
distributions with trainable data-independent variances. The
implicit posterior is a deep convolutional net symmetric
to the decoder, with Gaussian noises injected into hidden
layers. Full details of the model structures can be found in
Shi et al. (2018).

To examine how accurate the gradient estimates provided
by SSGE are, we conduct experiments under three different
settings: a plain VAE with normal variational posteriors, an
Implicit VAE trained with the entropy term removed from
the ELBO, and an Implicit VAE using SSGE’s gradient es-
timates for the entropy. For SSGE, we set M = 100, and
r̄ = 0.99. In Figures 4a to 4c we show samples randomly
generated from the trained models. We can see that with-
out the entropy term, the Implicit VAE tends to overfit and
produces visually bad generations, while if we retain the
entropy term and use SSGE to estimate its gradients, the
Implicit VAE can produce realistic samples. To quantita-
tively measure the sample quality, we compare the Fréchet
Inception Distance (FID) (Heusel et al., 2017) between real
data and random generations from the models. The re-
sults are shown in Figure 4d. We can see that the Implicit
VAE trained by SSGE converges faster and produces sam-
ples with slightly better quality than the plain VAE. This
is probably due to that implicit posteriors are less likely to
overfit (Shi et al., 2018), and SSGE gives accurate gradients
for optimizing them. Besides the CelebA experiments, we
also tested the models on MNIST dataset and evaluated the
test log likelihoods. See Appendix D for details.
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(a) VAE (b) Implicit VAE, w/o entropy (c) Implicit VAE, Spectral
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Figure 4. (a)-(c) CelebA samples generated by VAE, Implicit VAE trained without the entropy term, and Implicit VAE trained by SSGE;
(d) Fréchet Inception Distances (FID) (Heusel et al., 2017) between random generated images and real images.

6. Discussion
Connection to Kernel PCA As mentioned in Section 2.1,
the Nyström approximation is closely related to Kernel
PCA (Schölkopf et al., 1998) (KPCA), which is a powerful
method for nonlinear dimension reduction. In KPCA, the
input data is first projected to a (usually high-dimensional)
feature space, where PCA is then applied. The operations in
the feature space are handled by the kernel trick. We briefly
review the method below.

Given a positive definite kernel k : X ×X → R, we denote
the induced RKHS byH and its corresponding feature map
by φ : X → H. Let the data to be analyzed be {xi}Mi=1,
xi ∈ X . To simplify the derivation, we first assume the
data to be centered in the feature space. Then the covariance
matrix is formed as C = 1

M

∑M
i=1 φ(xi)φ(xi)>. In general,

PCA requires to solve the following eigenvalue problem4:

Cv = µv. (24)

A key observation of KPCA is that the eigenvectors lie in
the span of the feature vectors, since from eq. (24) we have

v =
1

µM

M∑
i=1

[
φ(xi)>v

]
φ(xi) =

M∑
i=1

αiφ(xi). (25)

Here we use α = [α1, . . . , αM ]> to represent the coeffi-
cients. This implies that instead of directly dealing with
eq. (24) we can consider a set of n projected equations:
φ(xi)>Cv = µφ(xi)>v, i = 1, . . . ,M . Plugging eq. (25)
here and replacing φ(xi)>φ(xj) with k(xi,xj) (the kernel
trick), we get 1

MKKα = µKα, which turns out an eigen-
value problem for K: 1

MKα = µα. Note that this is exactly
the same eigenvalue problem solved in eq. (3). As above, we
denote by u1, . . . ,uJ the eigenvectors of K that correspond
to the J largest eigenvalues λ1 ≥ · · · ≥ λJ , and we have
µj =

λj
M . To determine the αs, we set the eigenvectors v to

have unit lengths: v>v = α>Kα = λα>α = 1. So the

4We reuse some notations from the above sections (e.g., the
eigenvalue µ), and as we shall see, they are closely related.

αs should be normalized to have length 1
λ : αj = 1√

λj
uj .

For a new data point x, KPCA computes the embedding
ξ(x) (the projection onto the first J eigenvectors) as ξ(x) =
[φ(x)>v1, . . . , φ(x)>vJ ]> = [α>1 kx, . . . ,α

>
J kx]>,

where kx = [k(x,x1), . . . , k(x,xM )]>. It was pointed
out by Williams & Seeger (2000) to be equivalent to using
the well understood Nyström approximation. We can see
this by noticing that each component of ξ(x) is identical to
eq. (6) up to a scaling factor:

ξj(x) = α>j kx =

√
λj
M

ψ̂j(x). (26)

Looking back at eq. (16), we can see that SSGE estimates
the gradients by a linear estimator with KPCA embeddings
as input features. As KPCA embeddings are known to au-
tomatically adapt to the geometry of the samples, given a
suitable kernel is chosen, it can reduce the curse of dimen-
sionality when the estimator is applied to high dimensional
spaces, which helps explain the effectiveness of SSGE.

Connection to Manifold-modeling Dimension Reduc-
tion Methods It has been pointed out in previous
works (Williams, 2001; Ham et al., 2004; Bengio et al.,
2004a;b) that many successful manifold-modeling dimen-
sion reduction methods (e.g., MDS, LLE, Laplacian eigen-
maps, and Spectral clustering) can be viewed as KPCA with
different ways of constructing data-dependent kernels. We
believe it is a promising direction to learn a better kernel
from a dataset of samples that could improve the manifold
modeling behavior of KPCA embeddings, thus further im-
proving the gradient estimator.

7. Conclusion
We propose the Spectral Stein Gradient Estimator (SSGE)
for implicit distributions. Unlike previous methods, SSGE
directly estimates the gradient function and thus has a prin-
cipled out-of-sample extension. Future work may include
learning kernels or eigenfunctions in the estimator, as in-
dicated by the error bound as well as the connection to
dimension reduction methods.
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