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Abstract

To deal with the low qualities of web workers in crowdsourc-
ing, many unsupervised label aggregation methods have been
investigated but most of them provide inconsistent perfor-
mance. In this paper, we explore the learning from crowds
with selective verification problem. In addition to the noisy
responses from the crowds, it also collects the ground truths
for a well-chosen subset of tasks as the reference, then aggre-
gates the redundant responses based on the patterns provided
by both the supervised and unsupervised signal. To improve
the labeling efficiency, we propose the EBM selecting strategy
for choosing the verification subset, which is based on the
loss error minimization. Specifically, we first establish the ex-
pected loss error given the semi-supervised learning estimate,
then find the subset that minimizes this selecting criterion.
We do extensive empirical comparisons on both synthetic and
real-world datasets to show the benefits of this new learning
setting as well as our proposal.

Introduction

How to collect a massive scale of high-quality labels quickly?
This question frequently appears when building modern ar-
tificial intelligence agents, where the interminable data ac-
quiring procedure is often a bottleneck (Deng et al. 2009). To
schedule this manual work efficiently, crowdsourcing plat-
forms, such as Amazon Mechanical Turks (AMT), provide a
way to distribute micro-tasks to a large group of web workers,
so the tasks can be done much faster and cheaper than expert
labeling (Snow et al. 2008). However, due to the different
backgrounds of humans, responses of the crowds may con-
tain substantial errors. Among existing attempts to improve
the quality of crowdsourced data, a large proportion of meth-
ods suggest labeling each task by multiple workers, and then
infer the underlying truths based on the patterns within the
redundant responses. This inference problem is known as
learning from crowds.

There has been abundant literature for noisy label ag-
gregation methods, which date back to the intuitive ma-
jority voting method that just chooses the majority opin-
ions of workers. Dawid and Skene (1979) proposed a gen-
erative model, which uses confusion matrices to describe
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the workers’ behaviors and an EM algorithm for learn-
ing its parameters. Recently, researchers have developed
many advanced methods, which make different assump-
tions on human behaviors (Jagabathula, Subramanian, and
Venkataraman 2014; Li and Yu 2014; Tian and Zhu 2015a;
Wauthier and Jordan 2011; Welinder et al. 2010; Zhou et
al. 2012), task difficulties (Whitehill et al. 2009), and label
structures (Tian and Zhu 2015b; Welinder et al. 2010), or
have different inference methods (Liu, Peng, and Ihler 2013;
Zhang et al. 2016). Although each method can achieve good
performance on several benchmark datasets, some recent
comparisons have shown a disappointing fact that the supe-
riority of most methods is not consistent (Hung et al. 2013;
Sheshadri and Lease 2013; Zheng et al. 2017). Their perfor-
mance may drop down when the model assumptions do not
hold. Since the applicable situations of methods are not clear,
there still exists a gap between label aggregation methods
and real crowdsourcing applications.

From our perspective, the model assumption is one of the
key points that influence the aggregating accuracy, and com-
plex assumptions could be violated by certain datasets. One
possible solution towards building robust label aggregation
methods is to introduce oracle verification directly to reduce
the influence of invalid assumptions. If we select suitable ver-
ification tasks, comparing the responses of web workers with
the ground truths on the selected tasks can help us understand
the workers’ behaviors and do better label aggregation.

Based on the above idea, we focus on an approach we
call learning from crowds with selective verification (Hung
et al. 2015). This approach requires two kinds of labels, the
crowdsourced labels and the truths for a well-chosen por-
tion of tasks. After querying the crowds, we analyze the
responses and select the most valuable verification tasks.
Then we further collect the ground truths from the oracle
for this subset of tasks. Finally based on the patterns dis-
covered from both the noisy crowdsourced labels and the
ground truths, we infer the truths of the rest tasks. In this
way, the potential mismatches of model assumptions can be
complemented by the verification step. The two key learning
problems of this approach are: (1) how to combine the oracle
labels and the crowdsourced responses to infer the ground
truths? (2) how to select a most valuable verification subset?
We solve the first problem through a flexible transductive
semi-supervised learning approach (Zhu, Ghahramani, and
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Lafferty 2003), which combines the unsupervised and the
supervised estimators into a joint objective (see problem (3)).
To solve the second problem, we explore different active
learning methods, especially the error bound minimization
techniques (Chaudhuri et al. 2015; Gu, Zhang, and Han 2014;
Gu et al. 2012), which select the supervised subset by mini-
mizing an error bound for the expected log-likelihood given
the estimated parameters. Previous work on this topic only
focuses on supervised learning settings, and we extend this
method to the semi-supervised learning setting.

Learning from crowds with selective verification can also
be viewed as a combination of the postprocessing and pre-
processing crowdsourcing approaches. The postprocessing
approach collects noisy labels from multiple workers and
then infers the truths. The preprocessing approach first does
qualification tests on workers, then only the qualified workers
are allowed to participate in the regular tasks. Commercial
crowd labeling platforms often use both approaches. For ex-
ample, when publishing labeling tasks, AMT provides an
option of only hiring annotators with an acceptance rate of
higher than 95% in previous tasks, which is a preprocessing
filter. Then it also suggests duplicating each task multiple
times and provides aggregating results, which is a postpro-
cessing approach. Currently, these methods are treated as
orthogonal treatments. Our work conjoins them into a uni-
fied semi-supervised learning framework. Selecting suitable
tests for pure preprocessing approaches is usually not easy.
Through minimizing an expected loss error of the joint model,
the postprocessing can help the preprocessing find the best
tasks for the qualification tests.

In summary, our main contributions are as follows. First,
we build the active transductive semi-supervised learning
framework for crowdsourcing, which has potential to con-
sistently provide high-quality labels. Then, we propose the
EBM selective verification strategy through minimizing an
expected loss error on the semi-supervised learning setting. It
can be independently used on any semi-supervised learning
framework. Finally, we do extensive empirical comparisons
to show the benefits of our proposal.

Related Work

The main task of learning from crowds is to improve
the data quality. As stated above, there are two main ap-
proaches. Preprocessing: These methods focus on annota-
tor filters. They tend to evaluate the expertise of annotators
through some extra qualification tests, and then only the re-
liable annotators will be employed for the major labeling
tasks (Jagabathula, Subramanian, and Venkataraman 2014;
Shah and Zhou 2015). One defect is that their labeling qual-
ities are susceptive to the tasks selected for the qualifica-
tion tests, and it’s usually hard to find the best verifica-
tion tasks. Postprocessing: These methods typically label
each task multiple times and then infer worker behaviors
as well as the truth of each task from the redundant re-
sponses. For example, most previous methods model the
user behaviors directly without considering the inner struc-
tures and relations among the items (Dawid and Skene 1979;
Raykar et al. 2010; Wang and Zhou 2016; Zhang et al. 2016;

Zhou et al. 2012). Some works discover latent representa-
tions of items (Welinder et al. 2010), annotators (Venanzi
et al. 2014) and labels (Tian and Zhu 2015b). The success
of these postprocessing methods relies on the assumption
that most annotators behave consistently and give true an-
swers, and the methods may perform inconsistently on dif-
ferent trials when this does not hold (Hung et al. 2013;
Sheshadri and Lease 2013; Zheng et al. 2017).

Existing methods for combining crowdsourced labels and
the truths explore statistical or graph methods (Khattak and
Salleb-Aouissi 2016). Tang and Lease (2011) directly in-
ject the truths into the confusion matrix model during the
EM updates. When training classifiers, a common choice
is to regard the oracle as a special worker (Hu et al. 2014;
Kajino et al. 2012). Uncertainty based methods were ex-
plored to find the most problematic tasks (Hung et al. 2015).
Different from above-mentioned works, we formulate the
hybrid crowd-expert setting as a flexible transductive semi-
supervised learning problem. Based on this model, we pro-
pose the selective verification strategy via expected loss error
minimization, which is coupled with our learning objective.

From the learning aspect, our solution relates to semi-
supervised learning and active learning. Semi-supervised
learning (SSL) is a problem where we have features for
all training instances, but only have labels for a small por-
tion of instances. There are two kinds of SSL problems,
that is, inductive learning and transductive learning. The
former aims to train a classifier to be used on future test-
ing data, while the latter (Zhu and Goldberg 2009) aims
to learn the labels of the unlabeled instances in the dataset.
Classic methods include self-training, co-training, transduc-
tive SVM (Joachims 1999), and graph-based methods (Zhu,
Ghahramani, and Lafferty 2003). Generative models can de-
scribe the generating process of both features and known
labels, recent techniques such as semi-supervised deep gen-
erative models have been proposed (Kingma et al. 2014).
Our problem can be regarded as an example of the trans-
ductive SSL for generative models. Active learning (AL)
focuses on selecting a most valuable subset of data to an-
notate in order to reduce the labeling cost (Settles 2010;
Yang and Loog 2016). Pool-based AL usually designs crite-
ria to measure the importance of instances in the dataset.
Such as that based on uncertainty (Settles 2010), the es-
timate’s variance (Wang, Yu, and Singh 2016), etc. The
error bound minimization method (Chaudhuri et al. 2015;
Gu, Zhang, and Han 2014; Gu et al. 2012) selects the subset
by minimizing the expected estimating error bound. This
method can handle the dependency among instances for
batch-mode AL. Previously it focuses on the pure super-
vised learning settings. In this work, we extend it to semi-
supervised learning.

The Model
In this section, we introduce the model for learning from
crowds with selective verification. We base our method on
the classical Dawid-Skene (DS) model, which is relatively
simple and captures the common issues appearing in many
other models. Technically, in order to connect the unsuper-
vised DS model with our semi-supervised learning setting,
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we show the relationship between DS and the softmax re-
gression problem. After that, we propose the transductive
semi-supervised learning formulation, which jointly models
both the crowdsourced labels and the oracle label. To find a
most valuable verification subset, we then establish the ex-
pected loss error, and this value is decided by the verification
subset. So we can find the best subset by minimizing this
criterion. The optimization algorithms for the EBM strategy
are discussed in the next section.

Notation and Problem Formulation

We first define our notations and problem formulation. Specif-
ically, we consider categorical labels and leave other more
complex label structures to future work. Assume there are
N tasks, M annotators and D classes indexed by i, j and
d respectively. Each task i has an unknown ground truth
yi ∈ [D], where [D] := {1, . . . , D}. During labeling, we
have multiple workers providing labels to a same task. We
use matrix X ∈ {0, 1}N×M×D to denote the crowdsourced
responses, and each element xijd = 1 when item i is labeled
by worker j into category d, otherwise xijd = 0. Note that
workers are not required to respond to all tasks. The goal of
learning from crowds is to infer the ground truths y given the
crowdsourced responses X .

To enhance the labeling quality, we query for oracle ver-
ification. In addition to the crowdsourced labels, we select
a subset of tasks L ⊂ X , where X is the collection of all
items, and query the oracle for their ground truths. Our goal
on learning from crowds with selective verification is to find
the most informative subset L, then infer the ground truths
of the rest unlabeled tasks yX\L, based on the crowdsourced
responses X and the ground truths yL.

Supervised Dawid-Skene Estimator as Softmax
Regression

To introduce oracle verification into the learning from crowds
problem, we first consider the parameter estimation for the
DS model under the fully supervised setting. In this part, we
present that the supervised DS model is closely related to the
softmax regression, whose statistical properties are important
for constructing the selective verification strategy.

The DS model assumes that the performance of each
worker is consistent across tasks with the same ground truth.
The decision behavior of worker j is measured by a confusion
matrix φj . Each element φjkd ∈ [0, 1] denotes the probability
that worker j gives label d to a task whose true label is k, so∑D

d=1 φjkd = 1 : j ∈ [M ], k ∈ [D]. π ∈ [0, 1]D is the prior
on the ground truths and

∑D
d=1 πd = 1. Given observations

X , we can estimate the parameters Φ = {φj : j ∈ [M ]}
and π by maximum likelihood estimation (MLE) as

Φ̂, π̂ = argmax
Φ,π

log p(X|Φ,π)

= argmax
Φ,π

N∑
i=1

log

⎛
⎝

D∑
k=1

πk

M∏
j=1

D∏
d=1

φ
xijd

jkd

⎞
⎠. (1)

Although non-convex, we can find a local maxi-
mum by an expectation-maximization (EM) algo-

rithm. After converging, we predict the ground
truths as ŷi = argmaxk∈[D] log p(yi = k,X|Φ,π) =∑M

j=1

∑D
d=1 xijd log φjkd + log πk. Since this discrim-

inative function is linear to X , by substitution, we see
that p(yi|X,Φ,π) conforms to a softmax distribution.
Specifically, for k ∈ [D − 1], we have

log
p(yi = k|X,Φ,π)

p(yi = D|X,Φ,π)
=

M∑
j=1

D∑
d=1

xijd log
φjkd

φjDd
+ log

πk

πD
.

We denote vectors xi = [x�
i1, . . . ,x

�
iM , 1]�,

wjk =
[
log

φjk1

φjD1
, . . . , log

φjkD

φjDD

]�
, wk =

[w�
1k, . . . ,w

�
Mk, log

πk

πD
]�, and W = [w�

1 , . . . ,w
�
D−1]

�.
They give the softmax regression model

p(yi = k|xi,W ) =

⎧⎨
⎩

exp(w�
k xi)

1+
∑D−1

s=1 exp(w�
s xi)

k ∈ [D − 1]
1

1+
∑D−1

s=1 exp(w�
s xi)

k = D
.

(2)
Under the supervised learning setting, we are given not

only the crowdsourced labels X , but also the truths y from
an oracle. Then the estimation problem for Ŵ under the
DS estimator can be solved by softmax regression with the
discriminative function defined in Eq. (2). Comparing the
generative approach with the softmax regression, since the
latter ignores considering p(X|W ), its solution is not always
equivalent to the maximum joint-likelihood estimation. How-
ever, it brings significant benefits for constructing a selective
verification strategy, which will be discussed later.1

Semi-supervised Softmax Regression Estimator for
Learning from Crowds

Above we formulate the DS estimator under the supervised
setting as a softmax regression. However, for the learning
from crowds with verification, we have ground truths yL
only for a small subset of tasks L. So we need to combine
the unsupervised estimator with the supervised estimator,
which is a semi-supervised learning problem. According to
the generative nature, the parameter estimation problem can
be given by

Ŵ = argmax
Φ,π

log p(X,yL|Φ,π)

= argmax
Φ,π

log p(X|Φ,π) + log p(yL|XL,Φ,π).

This objective function is divided into an unsupervised part
and a supervised part. The unsupervised part is same as
Eq. (1), while the supervised part can be formulated by the
softmax regression just given in Eq. (2). Since the unsuper-
vised learning problem (1) often stuck in local minima, it’s

1When we have Ŵ , we can recover a unique set of parameters
{Φ̂, π̂} from Ŵ by introducing the distribution constraints that∑

k∈[D] πk = 1 and
∑

d∈[D] φjkd = 1 : j ∈ [M ], k ∈ [D]. To
ensure that the solutions are probabilities, we need further constrain
that parameters in Φ̂ are positive.
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hard to analyze the error of its results after introducing the or-
acle labels. To make the selective verification problem easier
for computation and analysis, here we introduce an approxi-
mation for problem (1), and propose a new semi-supervised
problem for crowdsourcing.

During each iteration of the EM algorithm for solving
problem (1), we establish a lower bound on the marginal
likelihood by introducing the posterior distribution of the un-
known truths as q(y). We iteratively update q(y) and {Φ,π}.
After converging, the solution we find is {Φ̂Unsup, π̂Unsup},
and p(y|X, Φ̂Unsup, π̂Unsup) is the corresponding posterior
distribution. Here we have changed the notation for the unsu-
pervised estimate to distinguish it from the semi-supervised
estimate. Moreover, we denote ŴUnsup as the vector com-
posed by {Φ̂Unsup, π̂Unsup} in the way we introduced in
above subsection. Then we have
ŴUnsup = argmax

W
Ep(y|X,ŴUnsup) [log p(y|X,W )].

When the EM algorithm for the unsupervised estimator is
well initialized and has enough crowdsourced labels, its es-
timate ŴUnsup should be similar to the true underlying
parameter W ∗, so we approximately assume that ŴUnsup

is identical to W ∗ during analysis for the simplicity of anal-
ysis and learning. The effect of this approximation will be
analyzed empirically in the experiment section. Then we can
use this cross entropy objective, instead of Eq. (1), to denote
the belief from the unsupervised model in the joint learning
problem. In the new learning problem, we also ignore the
positive constraints for Φ, so we can optimize W over an
unconstrained parameter space, which is more flexible.

Based on this idea, we define
U(W ) = −N · Ex∼X ,y∼p(y|x,ŴUnsup)[log p(y|x,W )],

L(W ,L) = −B · Ex∼L,y∼p(y|x,Ŵ ∗)[log p(y|x,W )],

where W ∗ is the unknown underlying optimal parameter to
generate the observations2 and B = |L|. The scalar constants
are introduced to balance the influence of each sample. Our
semi-supervised learning problem is defined as

ŴL = argmin
W

G(W ,L) = U(W ) + λ · L(W ,L), (3)

where λ is a hyperparameter to balance the supervised and
unsupervised losses, it can be solved by gradient descent
methods.

Since this semi-supervised estimator considers the ver-
ification information, its estimate should be more precise
compared with the estimates of the pure unsupervised esti-
mators. In the next part, we formulate the expected loss error
of problem (3) given its estimate Ŵ to explicitly show the
model’s superiority. More importantly, the expected loss error
gives us a criterion to select the best verification subset. We
will discuss it in the following parts.

Loss Error Analysis

Given the estimate based on the crowdsourced labels for
N tasks and the ground truths for B tasks, we now com-

2There could exist several equivalent global optima. W ∗ denotes
the one that closest to ŴUnsup.

W* 

Loss Error: 

Subset Loss: Full Set Loss: 

* - 

Figure 1: Illustration for the loss error.

pute the expected transductive learning loss error of our
model. Similar error bounds have been established for linear
regression and logistic regression (Chaudhuri et al. 2015;
Gu, Zhang, and Han 2014; Gu et al. 2012). Here we ex-
tend their results to the semi-supervised learning problem for
crowdsourcing in Eq. (3).

Since different verification subset L induces different loss
G(W ,L), the estimate ŴL found based on it will have dif-
ferent quality. Intuitively, the best loss among them is the
one that the verification information can represent the overall
shape of the full dataset, which is given by G(W ,X ), this
loss function will give us the optimal estimate W ∗. However,
it cannot be optimized since most items in X are not verified.
So we define the loss error caused by the verification sub-
set L as G(ŴL,X ) − G(W ∗,X ), and we define the best
verification subset as the one that minimizes this loss error.

Now we compute the expectation of this loss er-
ror E[G(ŴL,X )−G(W ∗,X )]. This value relies
on the Hessian of the negative likelihood function
−∂2 log p(y|x,W )/∂W 2. Since our estimator is a general-
ized linear model (GLM), it’s easy to show that its Hessian
is only a function of x and W , but not related to y. We use
I(x,W ) to denote this value. When the second-moment
of the covariance matrix E[xx�] exists and is positive
definite, the expectation of I(x,W ) is strictly convex with
respect to W (Reverdy and Leonard 2016). With Lemma
1 of Chaudhuri et al. (Chaudhuri et al. 2015), we give the
following proposition about the expected loss error.
Proposition 1. Define IL(W ) := Ex∼L[I(x,W )]
and IX (W ) := Ex∼X [I(x,W )], the expected
loss error of the semi-supervised estimate
E[G(ŴL,X )−G(W ∗,X )] with respect to B
ground truths sampled from L is upper bounded by
O
((

1 + λB
N

)
tr
((

IX (W ∗) + λB
N IL(W ∗)

)−1
IX (W ∗)

))
.

Here tr(·) denotes the trace of a matrix. For clarity, we put
the proof in the appendix. When B is fixed, the above propo-
sition states that the expected loss error is actually controlled
by tr

(
(IX (W ∗) + λB

N IL(W ∗))
−1

IX (W ∗)
)

. So we can
find the L that minimizes this criterion to make the semi-
supervised learning estimate more precise. This gives us a se-
lective verification strategy for crowdsourcing. The algorithm
to achieve this goal will be discussed in the next section.
Remark 1. If B = 0, the semi-supervised setting reduces
to the unsupervised setting without verification. For fair-
ness, we reserve the term with B in the one-sample loss of
the unsupervised setting, so the expected loss error for this
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setting is O(1 + (λB/N)). Proposition 1 implies that intro-
ducing verification can reduce the expected loss error. To
see this, we denote A = IX (W ∗) + λB

N IL(W ∗). We have
tr(A−1IX (W ∗)) = tr(I) − λB

N tr(A−1/2IL(W ∗)A−1/2).
Since both A and IL(W ∗) are positive definite matri-
ces, tr(A−1/2IL(W ∗)A−1/2) > 0. Then we have (1 +
(λB/N))tr(A−1IX (W ∗)) < 1 + (λB/N).

The Algorithm

We have presented our transductive semi-supervised learning
model for crowdsourcing and the corresponding expected
loss error, which can be used as a subset selecting criterion.
In this section, we discuss the algorithm for minimizing this
criterion as well as the overall learning pipeline.

Error Bound Minimization (EBM) Strategy

Now we introduce our error bound minimization (EBM)
strategy. To select a best subset of tasks for query-
ing the truths, we optimize L to minimize the value
tr((NIX (W ∗) + λBIL(W ∗))−1

IX (W ∗)), which con-
trols the expected loss error. To make this minimization prob-
lem tractable to solve, we first introduce two implementation
details. Since the true parameter W ∗ is unknown, according
to the assumption we made when deriving the strategy, we use
ŴUnsup instead. During analysis, we assume that the covari-
ance matrix E[xx�] is positive definite. However, in some
situation, the features composed by the sparse crowdsourced
labels may not be positive definite, so the error does not exist.
To deal with this, we first use the principal component analy-
sis (PCA) to find the eigenvalues of the original covariance
matrix and project the features into a new space, then we
remove the dimensions that correspond to zero eigenvalues.
So the reduced covariance matrix of the remained features is
positive definite. We compute the necessary statistical values
using these new features.

To represent L, we use a distribution characterized by
parameters {ai : i ∈ [N ]}, where Bai denotes the proba-
bility of that task i is in L. These parameters are defined
on the (N − 1)-simplex, which is a convex set ΔN−1 =
{∑i∈[N ] ai = 1, 0 ≤ ai ≤ 1 : i ∈ [N ]}. To learn the
parameters a, we define the following objective function L:

L = (NIX (W ∗) + λB
∑
i∈[N ]

[aiI(xi,W
∗)])

−1
IX (W ∗),

and we solve the following optimization problem:

min
a∈ΔN−1

tr (L). (4)

This problem can be solved by the gradient descent
method on the probability simplex (Byrne and Girolami
2014). Specifically, the gradient with respect to ai is
λtr (I(xi,W

∗)M), where M = V IX (W ∗)V and V =

(NIX (W ∗) + λB
∑

i∈[N ][aiI(xi,W
∗)])−1. For each up-

date, we first project this gradient into the subspace that con-
tains the probability simplex. Then if the next state exceeds
the simplex boundaries, we reflect it back to the feasible re-
gion. After converging, the optimal distribution is given by

â. Then we select the B tasks that correspond to the largest
âi values to give the verification subset L.
Remark 2. The goal of our paper is to propose a selective
verification strategy for crowdsourcing, which can work ro-
bustly on most noise types. Since complex models rely on
complex assumptions and thus will fail if the assumptions are
invalid, we derived our strategy from the DS model which
makes minimum assumptions and thus more robust. More-
over, almost all state-of-the-art label aggregation methods
are partly based on the DS model, so it’s possible to derive
exact model-specific strategies based on similar techniques.

Although the EBM strategy is derived from the DS model,
it can be independently used on any aggregation model. For
example, we can use any unsupervised model to estimate an
initial y, then select a verification subset with the EBM strat-
egy, and finally, update the results by any (semi-)supervised
aggregation model. Our experiments with the EM-based semi-
supervised DS model will empirically demonstrate the effec-
tiveness of the EBM strategy in different settings.

Learning Pipeline

With the above techniques, we are ready to present the com-
plete pipeline of learning from crowds with selective veri-
fication. At the beginning, we query the crowds about the
tasks we care and collect the responses X . Then we run EM
algorithm for the unsupervised DS estimator in problem (1)
to learn the parameter estimate ŴUnsup. After that, if the
covariance matrix of the features is not positive definite, we
reduce the feature dimension by PCA, which removes the
dimensions that correspond to zero eigenvalues. Then to learn
the best verification subset L, the expected loss error given
the semi-supervised estimate is characterized by Eq. (4). We
minimize this error with the gradient descent method on the
probability simplex to find the optimal parameter â, and se-
lect the subset L based on them. Finally, after querying the
oracle, we learn the crowdsourcing parameter Ŵ by solving
problem (3), which is a softmax regression. The estimated
truths for the unlabeled tasks are given by Eq. (2).

Usually, we suggest selecting all the verification tasks at
the same epoch, so that these tasks can be distributed to
a group of experts through crowdsourcing. However, the
EBM strategy can also be extended to multi-epochs mode.
Specifically, after the t-th epoch of verification finished, we
can use the current estimate Ŵt to select the verification tasks
for the next epoch. This mode could be more precise than the
single-epoch mode with the same total number of verification
tasks since the estimates become closer to the W ∗ after
several epochs. But since the tasks are not paralleled, it could
be less efficient.

Empirical Results

We conduct experiments on both synthetic and real-world
datasets to evaluate the benefits of oracle verification, as well
as to show the efficacy of our selecting strategy.

Synthetic Datasets

We generate synthetic datasets with N = 1, 000 tasks, which
are averagely assigned with D = 5 kinds of ground truths.
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Figure 2: Prediction accuracies of different strategies on synthetic datasets. The horizontal axis denotes the number of tasks for
verification, while the vertical axis denotes the prediction accuracy. Row A compares results of strategies with different λ. Row
B compares the results of strategies induced by ŴUnsup with different qualities. The accuracy axes are clipped for clarity.

M = 25 workers are simulated with random confusion ma-
trices. When sampling each worker’s confusion matrix, for
each simulated worker, we first pick a random matrix with
elements sampled from [0, 1]. Then we add it with a 0.1 ∗ I
diagonal matrix to simulate the superiority of truths. Finally,
we normalize it as the confusion matrix. This trick simulates
the common assumption that workers always have a larger
chance to give correct answers than wrong answers. Then
crowdsourced labels are generated according to the ground
truths and the confusion matrices.

For all experiments, we use the semi-supervised learning
method proposed in Eq. (3), which is general and simple. We
compare the Error Bound Minimization (EBM) selective
verification strategy proposed in above sections with two
simple and intuitive methods. Random (RAN): This strategy
randomly selects B tasks with equal chances for verifica-
tion. Prediction Uncertainty (PU): The uncertainty based
methods are popular for active learning (Hung et al. 2015;
Khattak and Salleb-Aouissi 2016), here we compute the un-
certainties based on the predicted distributions on y given
by the unsupervised DS model. The information entropy of
each distribution is used to represent the importance of a task.
We also compare the semi-supervised methods with the basic
unsupervised Dawid-Skene (uDS) method.

Performance Comparison. We conducted a series of ex-
periments with different verification subset sizes B and bal-
ance hyperparameters λ. Specifically, we vary B in the range
{40, 80, 120, 160, 200}, which is enough to show the
changing trends of the performance. Each λ is selected in
{0.5, 1, 2, 4}. For each setting, the average results on 5
randomly generated datasets are shown in the first row of
Fig. 2. Since the crowdsourced labels are generated following
the DS model, the unsupervised method can achieve a good

average accuracy of 0.9012. Meanwhile, after introducing
the verification, the performance further increases. For all se-
lecting strategies, a larger verification subset size B leads to
a higher prediction accuracy. The figures show that the EBM
strategy can achieve higher accuracies than the uncertainty
method and the random method in most cases. We conduct
pairwise t-test on all the performance pairs between EBM
and the other two strategies, results show that the difference
is significant with p < 5 × 10−8. We think an important
reason to explain this superiority is that EBM considers the
semi-supervised property of the learning framework.

Different sub-figures in the first row of Fig. 2 plot the
performance with different λ. They show that in the tested
range, the prediction accuracies slightly decrease when λ
grows. Apparently, when λ reduce to 0, the semi-supervised
methods degenerated to the unsupervised version, whose pre-
diction accuracy is relatively low. So we can find an optimal
λ for each dataset by validating. Since the changes are not
remarkable, we just fix λ = 1 for following experiments.

We notice that the prediction accuracy of EBM is still
lower than the perfect strategy, which only selects verifica-
tion tasks that are predicted incorrectly by the unsupervised
model. But since it’s almost impossible to achieve this perfect
performance, the consistent superiority over the baselines is
sufficient to show the significance of this method. Moreover,
in many tasks that are sensitive to the data quality, such as
medical tasks, even one percent of improvement is important
for the applications.

Approximation Analysis. During the loss error analysis,
we use the unsupervised estimate ŴUnsup to approximate
the optimal parameter W ∗, which may influence the select-
ing performance of the strategy. Here we empirically show
the effect. To test the approximation for W ∗ with different
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Table 1: Prediction accuracy (%) on three real-world datasets.

BLUEBIRDS AGES WEBSEARCH

UDS 88.9 66.7 81.5
ME 91.7 68.9 88.9

CROWDSVM 89.6 67.0 92.0

SEMI-
SUPERVISED
METHODS

B RAN PU EBM B RAN PU EBM B RAN PU EBM
5 89.0 89.8 90.7 50 68.4 71.6 71.2 100 87.3 89.0 87.4

10 88.5 90.7 90.7 100 70.1 73.2 74.8 200 89.0 91.3 91.1
15 89.4 93.4 94.4 150 71.6 76.1 77.0 300 90.0 93.1 94.0

20 89.7 92.6 93.5 200 73.7 77.8 80.4 400 91.2 94.4 95.1

25 91.0 94.4 97.2 250 75.6 78.2 82.6 500 92.0 94.4 95.4

Table 2: Prediction accuracies (%) with EM-based semi-supervised learning methods (Tang and Lease 2011).

BLUEBIRDS AGES WEBSEARCH

B RAN-EM PU-EM EBM-EM B RAN-EM PU-EM EBM-EM B RAN-EM PU-EM EBM-EM
5 88.7 88.0 88.9 50 68.4 68.8 69.0 100 82.4 83.6 84.2

10 89.4 89.8 89.8 100 70.3 71.2 72.0 200 83.4 84.8 85.7

15 90.2 90.7 91.7 150 71.6 72.4 74.8 300 84.6 86.2 87.1

20 91.1 91.7 92.6 200 73.7 73.8 77.1 400 85.2 87.6 88.4

25 91.6 93.5 93.5 250 75.0 74.4 79.1 500 86.4 88.9 89.3

qualities, we fix a synthetic dataset, and run an unsupervised
DS model with training iterations (Iter) varies from 2 to 5,
then each time we can get a different estimate ŴUnsup with
different qualities, and the corresponding unsupervised pre-
diction accuracy varies from 0.709 to 0.902. We test the se-
lecting strategies with different ŴUnsup, and the prediction
accuracies from different settings are plotted in the second
row of Fig. 2. It shows that better ŴUnsup leads to a better
prediction accuracy. But even with a relatively bad ŴUnsup

that the theoretical results do not hold, EBM selecting strat-
egy is still better than the uncertainty and random strategies
in most cases. This result demonstrates the efficacy of the
proposed algorithm.

Real-World Datasets

We also conduct experiments on three widely used real-world
datasets: Bluebirds (Welinder et al. 2010): There are 2 breeds
among 108 bluebird pictures, and each image is labeled by
all 39 workers. 4,214 labels are collected in total. Ages (Han
and Jain 2014): 165 workers are asked to estimate the ages
for 1,002 face images. The final estimates are discretized into
7 bins, and the dataset consists of 10,020 labels in total. Web
Search (Zhou et al. 2012): 15,567 responses are collected on
the relevance rating for 2,665 query-URL pairs. 177 workers
were involved and each response scales from 1 to 5. We
include another two state-of-the-art unsupervised models
during comparing, the Minimax Entropy (ME) (Zhou et al.
2012) and the CrwodSVM (Tian and Zhu 2015a).

Results presented in Tab. 1 show that for all datasets and
strategies, more oracle verification tasks lead to better overall
accuracy, which is as we expected. The semi-supervised meth-
ods are better than the state-of-the-art unsupervised methods
by given a reasonably small amount of verification labels. In

most cases, the EBM selecting strategy is better than base-
lines, and when selecting more verification tasks, the benefits
become more significant. We think this is because, with a
small subset, the value of oracle verification mainly focuses
on individual tasks. However, a large verification subset can
construct a summary for all tasks, so all unlabeled tasks share
the benefits. Thus EBM can show its advantages.

As we stated, the selective verification strategy can be
independently used on other semi-supervised models. So
we compare the proposed strategies on the EM-based semi-
supervised model (Tang and Lease 2011). Results are shown
in Tab. 2. The performance of EM-based model is usually
lower than the softmax-based method. It’s possibly due to
the local optima issue of the EM algorithm. The accuracies
achieved by EBM is better than those of other strategies in
most cases. It again demonstrates the benefits of our proposal.

Conclusions

We propose an active semi-supervised learning framework for
crowdsourcing with verification. We establish the expected
loss error and propose the EBM selective verification strategy.
The empirical results demonstrate that the oracle verification
can help to improve the label aggregation performance, and
the EBM strategy is better than baseline strategies on sev-
eral datasets. In the future, this method can be extended to
crowdsourcing for more complex data types. Improvements
on unsupervised learning from crowds methods can also be
combined into our proposal.
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