
Towards Training Probabilistic Topic Models on
Neuromorphic Multi-Chip Systems

Zihao Xiao, Jianfei Chen, Jun Zhu∗
Dept. of Comp. Sci. & Tech., TNList Lab, State Key Lab for Intell. Tech. & Sys.

Center for Bio-Inspired Computing Research, Tsinghua University, Beijing, 100084, China
{xiaozh15, chenjian14}@mails.tsinghua.edu.cn, dcszj@tsinghua.edu.cn

Abstract

Probabilistic topic models are popular unsupervised learn-
ing methods, including probabilistic latent semantic index-
ing (pLSI) and latent Dirichlet allocation (LDA). By now,
their training is implemented on general purpose comput-
ers (GPCs), which are flexible in programming but energy-
consuming. Towards low-energy implementations, this pa-
per investigates their training on an emerging hardware tech-
nology called the neuromorphic multi-chip systems (NMSs).
NMSs are very effective for a family of algorithms called
spiking neural networks (SNNs). We present three SNNs to
train topic models. The first SNN is a batch algorithm com-
bining the conventional collapsed Gibbs sampling (CGS) al-
gorithm and an inference SNN to train LDA. The other two
SNNs are online algorithms targeting at both energy- and
storage-limited environments. The two online algorithms are
equivalent with training LDA by using maximum-a-posterior
estimation and maximizing the semi-collapsed likelihood,
respectively. They use novel, tailored ordinary differential
equations for stochastic optimization. We simulate the new
algorithms and show that they are comparable with the GPC
algorithms, while being suitable for NMS implementation.
We also propose an extension to train pLSI and a method to
prune the network to obey the limited fan-in of some NMSs.

1 Introduction

Topic models have been widely used to discover latent se-
mantic structures from a large corpus of text documents or
images in a bag-of-words format (Sivic et al. 2005). The
most popular models are probabilistic Latent Semantic In-
dexing (pLSI) (Hofmann 1999) and its Bayesian formulation
of Latent Dirichlet Allocation (LDA) (Blei, Ng, and Jordan
2003). On mobile applications, LDA is a robust Bayesian
model that is suitable to learn from small, noisy data, e.g.,
images, texts and context logs (Bao et al. 2012). More-
over, some researchers have reported that learning LDA
with a hybrid architecture consisting of mobile devices and
servers reduces costs on the server end, as well as the re-
sponse times on the mobile end (Robinson and Li 2015). On
servers, much recent progress has been made on develop-
ing efficient algorithms to learn a large number of topics on
massive-scale datasets (Wang et al. 2014; Chen et al. 2016;

∗corresponding author.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Yuan et al. 2015). However, all these algorithms are im-
plemented on general purpose computers (GPCs), which
are powerful in computing and flexible in programming but
energy-consuming.

Neuromorphic multi-chip systems (NMSs) represent an
emerging hardware technology for low-energy implementa-
tions of spiking neural networks (SNNs). SNNs were orig-
inally studied to understand the computation in the brain,
where a neuron communicates with other neurons via volt-
age spikes. Different from GPCs, NMSs have some special
designs, making it highly nontrivial to implement an ordi-
nary leaning algorithm. First, there are dedicated comput-
ing units calculating a weighted sum of the inputs and trig-
gering spikes accordingly. Second, NMSs use distributed
memory (Merolla et al. 2014), and the on-chip memory is
typically limited (e.g., 52MB for TruthNorth (Merolla et
al. 2014) and 128MB for SpiNNaker (Furber et al. 2014)).
When a SNN is large, its neurons and model parameters
(e.g., synaptic weights) must reside on several chips. As
the inter-chip communication is only efficient for spikes by
using the AER protocol (Mahowald 1994), parameter com-
munication is either impossible or inefficient. To extend the
storage size, a NMS can be integrated with an external mem-
ory (O’Connor et al. 2013) to store some infrequently ac-
cessed data. But in many scenarios where low-energy com-
puting is required, the external memory can also be limited
(e.g., on a mobile phone). Thus, it is important to consider
the limited memory issue when implementing new models.

For topic models, existing learning algorithms do not
satisfy the basic computation and communication designs
of NMSs; thus cannot be directly implemented on NMSs.
For the popular collapsed Gibbs sampling (CGS) (Griffiths
and Steyvers 2004), the update of a model parameter (i.e.,
a count) only depends on its latest value, without need-
ing parameter communication. But the sampling operation
in CGS is not implemented by SNN dynamics compatible
with NMSs. When the limited external memory is consid-
ered, CGS is undesirable because it stores the whole cor-
pus and all topic assignments. Moreover, though the exist-
ing online or stochastic algorithms are memory-efficient,
they require intensive parameter communications, i.e., the
update of one parameter depends on the exact value of an-
other parameter. Specifically, the variational inference (VI)
methods (Blei, Ng, and Jordan 2003; Hoffman et al. 2013;

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

6459

Broderick et al. 2013) have mutual dependency between the
local parameters and global ones during learning; and the
stochastic gradient MCMC (SGMCMC) (Patterson and Teh
2013) also has strong coupling between different dimensions
when computing the log-likelihood gradient as it has a nor-
malization term.

In this paper, we aim to fill up the gap between exiting al-
gorithms for topic models (particularly LDA and pLSI) and
the special requirements of NMSs by designing novel algo-
rithms suitable for NMS implementation. We draw inspira-
tions from the work on the NMS implementation of multi-
nomial mixtures (Nessler et al. 2013), where an online SNN
algorithm is designed to meet all the design requirements of
NMSs. We significantly extend this work by presenting three
new SNNs to learn topic models, which are much more com-
plicated than mixture models by introducing more random
variables and Bayesian priors.

The proposed SNNs introduce an additional document
layer and additional connections to represent the documents
and their topic-mixing proportions. The first SNN is a SNN
implementation of CGS by leveraging its nice locality prop-
erty. The second SNN applies the theory behind the online
SNN algorithm in (Nessler et al. 2013) (i.e., ordinary dif-
ferential equation (ODE) and its stochastic approximation)
to solve a conceived optimization problem that is equiva-
lent to the Maximum-a-Posteriori (MAP) problem of LDA.
The third SNN solves a conceived optimization problem that
is equivalent to maximizing the semi-collapsed likelihood
of LDA. It is a hybrid of the former two networks that has
a CGS component to sample the local latent variables, and
an optimization component to update the global parameters.
Empirical results show that our online SNN algorithms are
comparable with existing GPC algorithms while they have
the advantage of being suitable for NMS implementation.

In the appendix, we propose a SNN implementation of
training pLSI as a special case of LDA. And we also propose
a network pruning scheme to satisfy the limited fan-in in
some NMS designs, e.g., TruthNorth (Merolla et al. 2014).

2 Preliminary of Topic Models

For clarity, we focus on Latent Dirichlet Allocation
(LDA) (Blei, Ng, and Jordan 2003). All our techniques can
be applied to pLSI, a special case of LDA. We defer the de-
tails to Appendix.

Latent Dirichlet Allocation

Consider a corpus W � {wd}Dd=1 with D documents and
V unique words in its vocabulary. wd � (wd1, ..., wdNd

)
denotes document d with Nd words and w ∈ {1, ..., V } de-
notes the occurrence of one word. LDA assumes a generative
process for the corpus W as follows:

for each document d = 1, ..., D,

draw a topic mixing proportion θd ∼ Dir(λ);
for each position in the document, i = 1, ..., Nd,

draw a topic assignment zdi ∼ Multi(θd);
draw a word wdi ∼ Multi(φzdi

),

where θd is a K-dimensional topic-mixing proportion vec-
tor of document d; λ is the hyper-parameter of the Dirich-
let prior; K is the pre-specified number of topics; φk is
a V -dimensional topic distribution vector for topic k; and
Multi(·) and Dir(·) denotes the Multinomial distribution and
the Dirichlet distribution respectively. We will use zd �
(zd1, ..., zdNd

) to denote the collection of topic assignments
for document d, and use the notations Z � {zd}Dd=1, Φ �
{φk}Kk=1,Θ � {θd}Dd=1 in the sequel.

In this paper, we focus on two parameter estimation meth-
ods for LDA: the Maximum-a-Posteriori (MAP) estimation
and the Maximum-likelihood (ML) estimation on the semi-
collapsed distribution. The MAP training has proven effec-
tive in (Asuncion et al. 2009; Chen et al. 2016)1. While
MAP is a point-estimate, using the semi-collapsed distri-
bution provides a better parameter estimation on Φ by in-
tegrating out the latent variable Θ (Patterson and Teh 2013;
Griffiths and Steyvers 2004). In the following, we extend the
MAP and ML problems from the batch setting to the online
setting, which is explored in this paper.

MAP: The MAP problem in the batch setting is to max-
imize log p(Θ;W,Φ,λ), which is a summation of the log-
likelihood log p(W;Φ,Θ) and the log-prior log p(Θ|λ).
According to the i.i.d. assumptions, the log-likelihood can
be re-written as

log p(W;Φ,Θ) =

D∑
d=1

V∑
w=1

Nwd log p(w|d;Φ,Θ),

where Nwd is the number of times that a word w occurs in
document d. Let π(w,d) denote the empirical distribution of
the co-occurrence of word w and document d, we have

log p(W;Φ,Θ) = N

D∑
d=1

V∑
w=1

Nwd

N
log p(w|d;Φ,Θ)

= NEπ(w,d)

[
log p(w|d;Φ,Θ)

]
, (1)

where N =
∑D

d=1

∑V
w=1 Nwd is the total number of to-

kens in the corpus. Furthermore, as the prior distributions
of θd’s are mutually independent, the log-prior term can be
re-written as

log p(Θ|λ)=
D∑

d=1

log p(θd|λ)=NEπ(w,d)

[1

Nd
log p(θd|λ)

]
.

With the above derivations, the MAP problem becomes

max
Φ,Θ

Eπ(w,d)

[
log p(w|d;Φ,Θ) +

1

Nd
log p(θd|λ)

]
. (2)

In the new formulation of Eq. (2), π(w, d) is not limited to
the empirical distribution of a fixed corpus. Instead, it can
also be the unknown environment distribution representing
the underlying probability of the co-occurrence of word w
and document d. As long as we can draw samples (e.g., data
comes in a stream), an unbiased estimate of the objective can
be constructed.

ML on the semi-collapsed distribution: Leveraging
the semi-collapsed distribution can attain a better pa-
rameter estimation on Φ. Specifically, we consider max-
imizing the semi-collapsed likelihood p(W;Φ,λ) =∫
p(W|Θ;Φ)p(Θ;λ)dΘ, where Θ is integrated out.

1Strictly speaking, they use a smoothed LDA described next.

6460

Using the evidence lower bound (ELBO), the logarithm
of this semi-collapsed likelihood can be re-written as

log p(W|Φ,ϕ) = Ep(Z|W;Φ,λ) log p(W|Z;Φ) + C (3)

where C denotes a constant w.r.t. Φ. Detailed derivation of
this equality is shown in Appendix ??. This transformation
allows us to leverage the many i.i.d. structures in LDA:
log p(W|Φ,ϕ) =DEπ(d)Ep(zd|wd;Φ,λ) log p(wd|zd;Φ) + C,

= DEπ(d)

V∑
w=1

K∑
z=1

Ep(zd|wd;Φ,λ)[Cd,z,w] log p(w|z;Φ) + C,

where π(d) denotes the empirical distribution of documents;
Cd,z,w denotes the number of words w assigned topic z in
document d. The first equality is from the i.i.d. documents,
and the second is from the i.i.d. words given topics. Overall,
the ML problem on the semi-collapsed likelihood is

max
Φ

Eπ(d)Ep(zd|wd;Φ,λ)[Cd,z,w] log p(w|z;Φ), (4)

where π(d) can be extended to represent the unknown envi-
ronment distribution where only its samples are accessible.

We use Gibbs sampling to approximately infer the semi-
collapsed posterior distribution p(zd|wd;Φ,λ) in Eq. (4).
Gibbs sampling iteratively performs the following steps until
convergence (Patterson and Teh 2013):

1. Uniformly sample a token wdi from document d
2. Sample its topic assignment zdi from the local conditional

distribution:
p(zdi = z|z¬di

d ,wd;Φ,λ) ∝ φzw · (C¬di
z,d + λz), (5)

where Cz,d is the count of times that topic z is assigned to
any token in document d; the superscript ¬di means that the
i position in document d is eliminated from the counts or
variable collections. In this paper, we call this Gibbs sam-
pling as semi-CGS.

Note that the corpus size D is not required in problems
(2) and (4). This is different from the stochastic methods
(Hoffman et al. 2013; Patterson and Teh 2013) which need to
know D. As a result, formulation (2) can be used in stream-
ing data settings, as explored in this paper.

The reason for omitting D is that we don’t define priors
on the global parameter Φ. This is the case that our online
SNN algorithms, under the hardware constraints, can only
deal with at present. Although no prior for Φ might slightly
harm the generalization performance in comparison with the
smoothed LDA introduced below, this vanilla LDA model is
originally used in (Blei, Ng, and Jordan 2003).

Smoothed LDA and collapsed Gibbs sampling

The smoothed LDA further defines a Dirichlet prior for the
topic distributions φk upon a LDA to improve the general-
ization performance:

φk ∼ Dir(ϕ), k = 1, ...,K.

A popular algorithm to train the smoothed LDA is Collapsed
Gibbs Sampling (CGS) (Griffiths and Steyvers 2004). CGS
is a batch algorithm that uses Gibbs sampling to sample
from the collapsed posterior distribution p(Z|W,λ,ϕ) and
the inference can have a high accuracy. CGS iteratively per-
forms the following steps until convergence:

word layer xα document layer xβ

topic layer h

b

Mα
Mβ

Figure 1: SNN architecture

Topic model Network Relation
variables variables

z h z = z∗ ↔ hz′ = I(z
′
= z∗), ∀z′

w xα w = w∗ ↔ xα
w′ = I(w

′
= w∗), ∀w′

d xβ d = d∗ ↔ xβ

d′ = I(d
′
= d∗), ∀d′

(a) for all SNNs
C¬di

w,z + ϕw Mα
zw C¬di

w,z + ϕw = expMα
zw

C¬di
z,d + λz Mβ

zd C¬di
z,d + λz = expMβ

zd

C¬di
·,z + ϕ̄ bz C¬di

·,z + ϕ̄ = exp bz
(b) for SpikeCGS (when resampling)

φzw Mα
zw φzw ∝ expMα

zw

θdz Mβ
zd θdz ∝ expMβ

zd
(c) for SpikeLDA

φzw Mα
zw φzw ∝ expMα

zw

C¬di
z,d + λz Mβ

zd C¬di
z,d + λz = expMβ

zd

(d) for semi-SpikeLDA

Table 1: Re-parametrization, where I(·) represents the indi-
cator function.

1. Uniformly sample a token wdi from the corpus.

2. Sample its topic assignment zdi from the local conditional
distribution:

p(zdi=z|Z¬di,W;λ,ϕ)∝ C¬di
wdi,z+ϕwdi

C¬di·,z +ϕ̄
·(C¬di

z,d +λz), (6)

where Cw,z is the count of times that word w is assigned to
topic z, C·,z =

∑V
w=1 Cw,z; ϕ̄ =

∑V
w=1 ϕw.

3 The SNN Algorithms

We now introduce our SNN algorithms to train LDA. First,
the network architecture and activation method are intro-
duced to encode the word, the topic and the document. Then
we present a SNN implementation of CGS, and two online
SNN algorithms to solve problem (2) and (4) respectively.

Network architecture

The proposed neural network architecture is shown in Fig. 1.
There are two observable layers (the word and the docu-
ment) and one latent layer (the topic). The three layers use
one-hot representations to encode a word, a document and a
topic respectively; see Tab. 1(a). The latent layer is fully con-
nected by the observable layers, where M � {Mα,Mβ}
denotes all synaptic weights. In the SpikeCGS algorithm
(see Tab. 1(b)), there are self-excitations b in the latent layer.

6461

Algorithm 1 Sample the topic assignment ẑ for a token
(w, d)

1: function INFERENCEDYNAMICS(w, d)
2: Set xα

w′ = I(w = w′), ∀w′;xβ
d′ = I(d = d′), ∀d′

3: while no latent neuron trigger a spike yet do
4: for latent neuron z=1, ...K, asynchronously do

5: uz = Mα
z· · xα +Mβ

z· · xβ

6: fire spikes using the rate exp(uz)
7: end for
8: end while
9: return index of the fired neuron, ẑ

10: end function

Activation method

Suppose a token (w, d) is observed. The corresponding neu-
rons in the observable layers are clamped and excited fol-
lowing the one-hot encoding (Tab. 1(a)). Then the neurons
in the latent layer trigger their spikes following Poisson pro-
cesses asynchronously until any latent neuron succeeds in
firing a spike. Specifically, the zth latent neuron calculates
the input from the precedent layer uz=Mα

z· ·xα+Mβ
z· ·xβ2,

and fires spikes following an inhomogeneous Poisson pro-
cess of rate exp(uz). If the zth latent neuron fires a spike,
then hz = 1 and topic z is sampled; otherwise hz = 0. This
uses the one-hot encoding as well (Tab. 1(a)). Alg. 1 sum-
marizes this activation dynamics. This activation dynamics
was previously used in (Nessler et al. 2013), and they prove
that the sample, i.e. the output ẑ in Alg. 1, is a sample from
a softmax distribution p(z|·)∝exp(uz).

The SNN implementation of CGS

CGS has the good locality property that the update of a count
only depends on its latest value, without intensive parame-
ter communication. This satisfies the communication con-
straints of NMSs. However, it does not sample the topic as-
signment, i.e. Eq. (6), using SNN dynamics. We solve this
problem by using the SNN dynamics Alg. 1.

Suppose a token wdi is sampled in an iteration of CGS and
now its topic assignment should be resampled from Eq. (6).
If we represent the word wdi, its document d and its topic
assignment using the spiking neurons via Tab. 1(a), the con-
ditional distribution to sample from is equivalent with

p(hz=1|·)∝ C¬di
wdi,z+ϕwdi

C¬di·,z +ϕ̄
·(C¬di

z,d +λz), ∀z,

on the SNN. If the network parameters relate to the counts
via Tab. 1(b), the conditional distribution becomes

p(hz = 1|·) ∝ exp(Mα
zwdi

+Mβ
zd − bz), ∀z, (7)

which can be implemented by the activation method Alg. 1.
Because Mzw and Mzd have one-to-one correspondence
with the counts, the locality property of CGS is inherited.
The SNN implementation of CGS is called SpikeCGS and
is summarized in Alg. 2.

2When there is self-excitation, uz = Mα
z· ·xα+Mβ

z· ·xβ −bz .

Algorithm 2 SpikeCGS, where τ1(x) = log(expx− 1) and
τ2(x) = log(expx+ 1).

Require: A corpus
1: Initialization: Using the initialization method in CGS.

And then initialize the network parameters as:

Mα
zw = log(Cw,z + λw), ∀w, z;

Mβ
zd = log(Cz,d + ϕz), ∀d, z; bz = log(C·,z + λ̄), ∀z

2: repeat
3: Uniformly sample a token w := wdi from the cor-

pus, and let z′ denote its last topic assignment.
4: Negative phase: neurons xα

w, x
β
d and hz′ fire spikes

and the connections between them are updated:

Mα
z′w = τ1(M

α
z′w), Mβ

z′d = τ1(M
β
z′d), bz′ =τ1(bz′)

5: Resample: z = INFERENCEDYNAMICS(w, d)
6: Positive phase:

Mα
zw = τ2(M

α
zw), Mβ

zd = τ2(M
β
zd), bz =τ2(bz)

7: until A pre-specified number of iterations is reached.

Using the relations between the network parameters and
the counts in Tab. 1(b), one can easily prove that line 4 corre-
sponds to eliminating the current token from the counts, and
line 6 corresponds to updating the counts according to the re-
sampling result, similar as a regular implementation of CGS.
Obviously, the updates in lines 4 and 6 require no parame-
ter communication. The positive-negative phases are simi-
lar with the construction-reconstruction phases in (Neftci et
al. 2014), where they propose an event-driven CD algorithm
that uses SNN dynamics to train RBM. They argue that one
can use global signals to modulate the two learning phases
on NMSs. We fill in the gap between CGS and a NMS imple-
mentation by using a SNN dynamics to resample the topic,
i.e. line 5.

Online learning SNN: MAP

SpikeCGS is a SNN implementation of CGS. It should store
the whole corpus and all topic assignments, which is un-
desirable on a storage-limited environment. To improve the
memory efficiency, we propose online algorithms.

In this section, we propose an online SNN algorithm that
does stochastic optimization for problem (2). As it is based
on optimization instead of sampling, new tools are required
to formalize the algorithm. First a probabilistic model for the
SNN variables is defined. And then a conceived optimization
problem on this probabilistic model is proposed and shown
to be equivalent with problem (2). Lastly, the optimizer to
the conceived problem that is suitable for SNN implementa-
tion is proposed and analyzed.

Define a probabilistic model A probabilistic model on
the SNN is defined in Def. 3.1. It describes a joint distribu-
tion on the word layer xα and hidden topic layer h given
the document layer xβ . To simplify notations, we define
ζ(x)=

∑J
j=1 exp(xj), where J is the dimensionality of x.

6462

Definition 3.1. A distribution of the network variables is
defined as:

p(xα
w = 1, hz = 1|xβ

d = 1;M)

= exp
[
Mα

z· · xα +Mβ
z· · xβ −A(Mα

z·,M
β
·d)

]
, (8)

where A(Mα
z·,M

β
·d) = log(ζ(Mα

z·)) + log(ζ(Mβ
·d)) is the

log-partition function to ensure normalization. Note that
xα,xβ ,h are one-hot vectors.

Before formalizing the learning problem, we show
that Eq. (8) is closely related to the LDA likelihood
p(w, z|d;Φ,Θ).
Lemma 3.2. (Proof in Appendix ??) If the following condi-
tions holds,

1. ζ(Mα
z·) = 1, ∀z and ζ(Mβ

·d) = κ, ∀d, where κ is some
constant;

2. the variables and parameters are related by Tab. 1(a,c);
then Eq. (8) equals the complete likelihood that a word w in
document d is assigned the topic z in LDA:

p(xα
w=1, hz=1|xβ

d =1;M) = p(w, z|d;Φ,Θ), (9)

Moreover, the conditional distribution of the topic assign-
ment for a token is:

p(hz = 1|xα,xβ ;M) ∝ exp(uz), ∀z, (10)

where uz = Mα
z· · xα +Mβ

z· · xβ is the weighted sum of the
input xα,xβ .

One consequence of Lemma 3.2 is that one can use Alg. 1
to draw samples from the posterior Eq. (10).

Conceived learning problem A constrained optimization
problem is defined in Def. 3.3 to fit the model Eq. (8) to
streaming tokens (w, d) from an unknown environment dis-
tribution π(w, d). And then we show this conceived problem
is equivalent with the LDA problem (2) in Lemma 3.4.
Definition 3.3. A SpikeLDA problem is defined as:

max
M

Eπ(w,d)

[
logp(xα

w=1|xβ
d =1;M)+

1

Nd
log p(Mβ

·d;λ)
]
,

s.t. ζ(Mα
z·) = 1, ∀z, ζ(Mβ

·d) = κ, ∀d, (11)

where p(xα
w = 1|xβ

d = 1;M) is the marginal distribution
with the latent topic layer variable hz summed out. The prior
is defined as:

p(Mβ
·d;λ) =

K∏
z=1

p(Mβ
zd;λz), ∀d,

p(exp(Mβ
zd);λz) = Gamma((λz − 1), 1), ∀d, z, (12)

and Gamma(·, ·) is the Gamma distribution.

The objective function consists of the marginal likeli-
hood and the prior defined for the network connections Mβ .
The problem is defined on some normalization manifold
where using independent Gamma’s is equivalent with using
a Dirichlet (Aitchison 1986). Now we show the conceived
learning problem is equivalent with problem (2), the MAP
problem of LDA.

Lemma 3.4. (Proof in Appendix ??) The SpikeLDA prob-
lem, Def. 3.3, is equivalent to the LDA problem (2), when
κ=

∑K
z=1(ϕz−1); ∀z, ϕz≥0 and using the parameter rela-

tions in Tab. 1(c).

In a related work, Nessler et al. (2013) conceive a con-
strained optimization problem on their SNN, which is equiv-
alent with the online MLE of multinomial mixture (MM),
and we denote it as the SpikeMM problem. It is novel for
SpikeLDA to extend from D = 1 to D > 1 and incorporate
the prior by modifying the constraints and the objective si-
multaneously. The idea of independent Gamma prior is criti-
cal for designing the optimizer suitable for NMS implemen-
tation, i.e., without intensive parameter communication.

Optimization method A traditional way to train latent
variable models in the online setting is the stochastic gra-
dient EM (Cappe and Moulines 2009). But to compute the
gradient for the topic models requires intensive parameter
communication (Patterson and Teh 2013), which is ineffi-
cient for NMS implementation. Alternatively, we devise new
stochastic optimization methods based on ”mean-limit” or-
dinary differential equation (ML-ODE). Here we briefly in-
troduce how this method works in general.

Suppose a stochastic parameter update rule

M(t+ 1) ← M(t) + ηtg(M(t)), (13)

where t denotes the discrete time, g(M) is a noisy update
direction, and ηt is the step size. The ML-ODE of this update
rule is defined as

ML-ODE:
d

ds
M(s) = E

[
g
(
M(s)

)]
, (14)

where s denotes the continuous time. If all trajectories of the
ML-ODE converge and the set of stable convergence points
is the same as the set of local optima of an optimization
problem, then we say that this ML-ODE solves the prob-
lem. Moreover, if the stepsizes in Eq. (13) satisfy the Robin-
Monro condition

∑∞
t=1 ηt=∞,

∑∞
t=1 η

2
t <∞, Kushner and

Yin (2003) show that all sequences {M(t)}∞t=1 converge
and the stochastic update rule Eq. (13) can solve the opti-
mization problem as well. For instance, stochastic gradient
EM (Cappe and Moulines 2009) is a special case where g(·)
is chosen to be the gradient.

A stochastic parameter update rule is helpful when one
can only deal with samples from some distributions to ap-
proximate the expectation in Eq. (14), such as when deal-
ing with the unknown environment π(w, d) and when using
SNN dynamics Alg. 1 to stochastically infer the topics.

The proposed online optimization algorithm is summa-
rized in Alg. 3. At each iteration (line 2), a single token is
sampled (line 3) and a latent topic assignment is sampled
(line 4). Once the sampling is finished, the corresponding
synaptic weights are updated (line 5). In the following, we
prove that the algorithm solves the SpikeLDA problem (11).

Theorem 3.5. (Proof in Appendix ??) In Alg. 3 the ML-ODE
of the update rule Eq. (15) solve the SpikeLDA problem (11).
So does the stochastic update rule Eq. (15). This algorithm
is called the SpikeLDA algorithm.

6463

Algorithm 3 The online ed-SpikeLDA algorithm

Require: A corpus
Require: The step sizes ηt obey

∑
t ηt = ∞,

∑
t η

2
t < ∞

1: Randomly initialize M.
2: repeat

3: Uniformly sample a token w � wdi from the corpus
4: Inference: z = INFERENCEDYNAMICS(w, d)
5: Learning:

Mα
zw ← Mα

zw + ηthz (xα
w exp(−Mα

zw)− 1), ∀w, z,
Mβ

zd ← Mβ
zd + ηtx

β
d

[
(hz +

λz − 1

Nd
) exp(−Mβ

zd)

− 1

κ
− 1

Nd

]
, ∀d, z. (15)

6: until A pre-specified number of iterations is reached.

We briefly explain how the theorem is proved and leave
the details to the appendix. A particle M starts at a randomly
position in the parameter space. The ML-ODE characterizes
the particle’s temporal dynamics in the space. The particle
undergoing our ML-ODE experience two successive phases.
In the first phase, M is driven monotonically3 to the mani-
fold defined by the normalization constraints. In the second
phase, M travels on the manifold with d

dsM equals the nat-
ural gradient, until it reaches a local maximum.

Remark 1: Locality It is obvious that the update of a
synapse Mα

zd only locally depends on itself, its pre-synaptic
neuron xα

w and post-synaptic neuron hz; and so does Mβ
zd.

This locality behavior is called STDP in neuroscience and is
suitable for NMS implementation.

In the related work, Nessler (2013) propose an optimizer
to solve their SpikeMM problem. The stochastic update rule
for Mα in our SpikeLDA is the same as theirs, but that for
Mβ is a novel design. It is inspired by the many indepen-
dent structures of the Dirichlet distribution, particularly its
relation with the Gamma distribution (Aitchison 1986). The
difficulty in designing the algorithm is the co-design of (1) a
new problem equivalent with the original one (Lemma 3.4),
and a update rule that (2) has a good local structure to im-
plement on SNN and (3) the sequence {M(t)}∞t=1 converges
to the manifold defined by the constrains and the local opti-
mum simultaneously (Thm. 3.5).

Remark 2: Scalability In SpikeLDA, synaptic weights
are updated once a latent neuron triggers a spike event. This
is called event-driven update, which has the advantage of re-
ducing energy consumption (Merolla et al. 2014). However,
the estimated stochastic update direction is noisy if only one
latent sample is used, resulting in very slow convergence.
To develop a scalable algorithm, we replace event-driven
update by delayed update. But delayed update might intro-
duce energy overhead to maintain the intermediate results.
We call the event-driven version as ed-SpikeLDA, and the
delayed update one as du-SpikeLDA.

3The monotonicity is defined in the proof.

Specifically, du-SpikeLDA processes a mini-batch of to-
kens before the parameters update once. First, it stochas-
tically infers the topic assignments like ed-SpikeLDA, but
maintains the samples until the whole mini-batch is pro-
cessed. Then the parameters are updated using the average
of results from this mini-batch, resulting in an unbiased es-
timate of Eq. (15) of less variance.

Remark 3: pLSI pLSI is a special case of LDA. We pro-
pose an ed-SpikePLSI algorithm as a direct extension of ed-
SpikeLDA to train pLSI in the Appendix.

Online learning SNN : ML on semi-collapsed
distribution

The SpikeLDA does point estimate in the joint space of
{Φ,Θ}. When delayed update is used, we can propose an-
other learning algorithm where the local parameter Θ is in-
tegrated out, to provide a better parameter estimation.

Conceived learning problem This new algorithm op-
timizes the semi-collapsed likelihood Eq. (4). We re-
parameterize it to a constrained optimization problem on the
SNN, which resembles how SpikeLDA is developed.
Lemma 3.6. (Proof in Appendix) A semi-SpikeLDA problem
is defined as:

max
Mα

Eπ(d)Ep(zd|wd;Mα,Mβ)
[Cd,z,w] log p(x

α
w = 1|hz = 1;M

α
),

s.t. ζ(M
α
z·) = 1, ∀z. (16)

The semi-SpikeLDA problem is equivalent to the LDA prob-
lem (4), when using the parameter relations in Tab. 1(d).

At each iteration, this SNN algorithm subsamples a mini-
batch D̂ of documents, performs semi-CGS on the topic as-
signments, and then optimizes the global parameters. The
implementation of semi-CGS mimics SpikeCGS and the im-
plementation of optimization mimics SpikeLDA. So the new
algorithm is a hybrid of these two. We outline how the semi-
CGS and the optimization are implemented on SNN below,
and leave the complete algorithm Alg. ?? in the Appendix.

semi-CGS At each iteration, suppose a token wdi is sam-
pled and its topic assignment should be resampled from
Eq. (5). If we represent the word wdi, its document d and its
topic assignment z using the network variables via Tab. 1(a),
the conditional distribution to sample from is

p(hz=1|·) ∝ φzw · (C¬di
z,d + λz), ∀z

on the SNN. Furthermore, if the network parameters relate
to the parameters and counts via Tab. 1(d), the conditional
distribution becomes

p(hz = 1|·) ∝ exp(Mα
zwdi

+Mβ
zd), ∀z. (17)

Then the SNN implementation of semi-CGS is similar with
SpikeCGS by using Alg. 1 to sample the topic assignment,
and the negative and positive phases to eliminate and update
the counts represented by Mβ . During this procedure, we
collect some statistics: N̂z,w denotes the number of times a
word w is assigned topic z within T iterations on the mini-
batch D̂, and N̂z �

∑V
w=1 N̂z,w.

6464

KOS

0.01(1.01) 0.05(1.05)

λ(λ+1)

1600

1800

1900
1950
2000

2100

p
er

p
le

x
it

y
20NG

0.01(1.01) 0.05(1.05)

λ(λ+1)

5000

5800

Enron

0.01(1.01) 0.05(1.05) 0.1(1.1)

λ(λ+1)

2000

2200

2400

3100
ed-SpikeLDA(ours)

ed-SpikePLSI(ours)

CGS

Figure 2: Impact of λ. Small datasets. In the x-axis, λ(1 +
λ) means λ is for CGS and λ + 1 is for ed-SpikeLDA; ed-
SpikePLSI has no λ to tune. K = 200.

KOS

0 50 100

iteration

1500

2000

4000

p
er

p
le

x
it

y

20NG

0 15 50 100

iteration

5000

10000

15000
ed-SpikeLDA(ours)

ed-SpikePLSI(ours)

CGS

Figure 3: Convergence speed. Small datasets. K = 200. Er-
ror bars are small and omitted.

Optimization After collecting the statistics, Mα is up-
dated as

Mα
zw← Mα

zw+ηt
1

|D̂|T
[
N̂z,w exp(−Mα

zw)−N̂z

]
, ∀w, z, (18)

It is the same as Eq. (15) of SpikeLDA, except that the for-
mer uses an empirical average over samples (delayed up-
date) and the latter uses only one sample (event-driven).

The following theorem shows that the semi-SpikeLDA al-
gorithm solves the semi-SpikeLDA problem (16). The main
idea of the proof is the same as Thm. 3.5.

Theorem 3.7. (Proof in Appendix ??) In Alg. ??, the ML-
ODE of the update rule Eq. (18) solves the semi-SpikeLDA
problem (16). So does the stochastic update rule Eq. (18).
This algorithm is called the semi-SpikeLDA algorithm.

4 Experiments

In the experiment, we assess (1) the generalization perfor-
mance and (2) the discriminative power of the learned doc-
ument representations of the proposed online SNN algo-
rithms. Because SpikeCGS is an implementation of CGS,
we don’t particularly do experiments on it. All algorithms
are simulated on GPCs. Evaluating and optimizing their run-
time performance on NMSs will be a future work.

The datasets are KOS, Enron, NIPS, 20NG and Pubmed.
The NIPS results and statistics of the datasets are summa-
rized in the appendix.

The baselines are GPC algorithms to train smoothed
LDA, including CGS (Griffiths and Steyvers 2004), stochas-
tic VI (Hoffman et al. 2013) and SGMCMC (Patterson and
Teh 2013). We use symmetric Dirichlet prior, λ = λ1 and
ϕ = ϕ1. λ and ϕ are offset by +0.5 for VI and +1 for

(a) NYTimes

0 0.5 1 1.5

λ

4500

5000

5500

6000

p
er

p
le

x
it

y

(b) Pubmed

0 0.5 1 1.5

λ

3000

4000

5000

6000

7000
SVI

SGMCMC

semi-SpikeLDA(ours)

du-SpikeLDA(ours)

Figure 4: Impact of λ. Large datasets. Iterations number:
3000 for NYTimes, 5000 for Pubmed. K = 50.

(a) NYTimes

0 1000 2000 3000

Iteration

4500

5500

6500

7500

8500

p
er

p
le

x
it

y

(b) Pubmed

0 1000 2000 3000 4000 5000

Iteration

4000

5000

6000

7000

10000
SVI

SGMCMC

semi-SpikeLDA(ours)

du-SpikeLDA(ours)

Figure 5: Convergence results. Large datasets. K = 50.

MAP, including our SpikeLDA. To evaluate the generaliza-
tion performance, we use fold-in method to calculating per-
plexity following (Asuncion et al. 2009). Specifically, for
the baselines, VI-based methods use the alternative estimate
which generally reports lower perplexity; CGS and SGM-
CMC use only one sample as estimate. For our new SNN
models, the weights Mα,Mβ are first converted to Φ,Θ
following Tab. 1, which is then used to calculate the per-
plexity following (Asuncion et al. 2009) or train classifiers.

All results are averaged from 3 different runs of the algo-
rithms. More details of the experiments are in the Appendix.

Perplexity results

On small datasets where the ed-SpikeLDA can handle in an
acceptable time, we compare convergence speeds and the fi-
nal perplexities of ed-SpikePLSI and ed-SpikeLDA. Fig. 2
shows the final perplexities with varying hyper-parameter
λ. The ed-SpikePLSI usually finds good solutions. But ed-
SpikeLDA can outperform it by tuning its hyper-parameter
λ as observed in the Enron experiment. Moreover, Fig. 3
compares the convergence speeds under the hyper-parameter
setting when they converge to similar results.

On larger datasets, we compare the delayed update algo-
rithms, du-SpikeLDA and semi-SpikeLDA, with some ex-
isting stochastic algorithms. Fig. 4 shows that the SNN al-
gorithms find similar solutions with the baseline methods
after a fixed number of iterations of training. The semi-
SpikeLDA is less sensitive to hyper-parameters than du-
SpikeLDA and competitive with SVI and SGMCMC. Fig. 5
moreover shows the convergence behaviors of different al-
gorithms under the hyper-parameter settings when they con-
verge to similar results. Our SNN algorithms perform rea-

6465

sonably while they are suitable for NMS implementations.

Discriminative results

We examine the discriminative ability of the learnt latent
representations on 20NG (see Tab. 2). The latent representa-
tions of the training documents are used as features to build
a binary/multi-class SVM classifier. As in (Zhu, Ahmed, and
Xing 2012), the binary classification is to distinguish groups
alt.athesism and talk.religion.misc. We use the LIBLINEAR
tool-kit (Fan et al. 2008) and choose the L2-regularized L1-
loss with C = 1 to build the SVM. We set λ = 0.05 for
CGS and λ = 1.05 for ed-SpikeLDA. The network outputs
useful representations for discrimination.

Binary Mutli-class
CGS 72.8± 3.8 63.5± 0.2

ed-SpikeLDA 72.5± 2.4 57.6± 3.3

Table 2: Classification accuracy on 20NG.

5 Conclusions and Future work

We propose three SNN algorithms to train LDA, which are
competitive to the GPC algorithms in generalization perfor-
mance and discriminative power. The first one is a batch
algorithm based on CGS. The second one is an online al-
gorithm based on optimization. The last one is a hybrid of
the former two algorithms, but uses delayed update. A fu-
ture work is to assess the algorithms on real NMSs. As the
first step, we propose a network pruning method for ed-
SpikeLDA in the Appendix.

6 Acknowledgements

This work is supported by the National NSF of China (Nos.
61620106010, 61621136008, 61332007). We thank Nan
Jiang for helpful discussions.

References
Aitchison, J. 1986. The statistical analysis of compositional data.
Journal of the Royal Statistical Society. Series B (Methodological)
44(2):139–177.
Asuncion, A.; Welling, M.; Smyth, P.; and Teh, Y. W. 2009. On
smoothing and inference for topic models. In Proceedings of the
Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.
Arlington, Virginia, United States: AUAI Press.
Bao, T.; Cao, H.; Chen, E.; Tian, J.; and Xiong, H. 2012. An un-
supervised approach to modeling personalized contexts of mobile
users. Knowledge and Information Systems 31(2):345–370.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirichlet
allocation. Journal of Machine Learning Research 3:993–1022.
Boyd, S., and Vandenberghe, L. 2004. Convex optimization. Cam-
bridge university press.
Broderick, T.; Boyd, N.; Wibisono, A.; Wilson, A. C.; and Jordan,
M. I. 2013. Streaming variational bayes. In Proceedings of the
26th International Conference on Neural Information Processing
Systems. Curran Associates, Inc.
Cappe, O., and Moulines, E. 2009. On-line expectation-
maximization algorithm for latent data models. Journal of the
Royal Statistical Society: Series B (Statistical Methodology) 71(3).

Chen, J.; Li, K.; Zhu, J.; and Chen, W. 2016. Warplda: a cache ef-
ficient o(1) algorithm for latent dirichlet allocation. In Proc. VLDB
Endow. VLDB Endowment.
Fan, R.-E.; Chang, K.-W.; Hsieh, C.-J.; Wang, X.-R.; and Lin, C.-J.
2008. Liblinear: A library for large linear classification. Journal of
Machine Learning Research 9:1871–1876.
Furber, S. B.; Galluppi, F.; Temple, S.; and Plana, L. A. 2014. The
spinnaker project. Proceedings of the IEEE 102(5):652–665.
Griffiths, T. L., and Steyvers, M. 2004. Finding scientific topics.
Proceedings of the National Academy of Sciences 101:5228–5235.
Hoffman, M. D.; Blei, D. M.; Wang, C.; and Paisley, J. W. 2013.
Stochastic variational inference. Journal of Machine Learning Re-
search 7:1303–1347.
Hofmann, T. 1999. Probabilistic latent semantic indexing. In SI-
GIR Forum. New York, NY, USA: ACM.
Kushner, H., and Yin, G. 2003. Stochastic approximation and
recursive algorithms. Springer New York.
Mahowald, M. 1994. An analog VLSI system for stereoscopic
vision. Springer Science & Business Media.
Merolla, P. A.; Arthur, J. V.; Alvarez-Icaza, R.; Cassidy, A. S.;
Sawada, J.; Akopyan, F.; Jackson, B. L.; Imam, N.; Guo, C.; Naka-
mura, Y.; et al. 2014. A million spiking-neuron integrated cir-
cuit with a scalable communication network and interface. Science
345(6197):668–673.
Neftci, E.; Das, S.; Pedroni, B.; Kreutz-Delgado, K.; and Cauwen-
berghs, G. 2014. Event-driven contrastive divergence for spiking
neuromorphic systems. Frontiers in Neuroscience 7:272.
Nessler, B.; Pfeiffer, M.; Buesing, L.; and Maass, W. 2013.
Bayesian computation emerges in generic cortical microcircuits
through spike-timing-dependent plasticity. PLoS Comput Biol
9(4):e1003037.
O’Connor, P.; Neil, D.; Liu, S.-C.; Delbruck, T.; and Pfeiffer, M.
2013. Real-time classification and sensor fusion with a spiking
deep belief network. Frontiers in Neuroscience 7:178.
Patterson, S., and Teh, Y. W. 2013. Stochastic gradient rieman-
nian langevin dynamics on the probability simplex. In Advances
in Neural Information Processing Systems 26. Curran Associates,
Inc.
Robinson, J. W., and Li, A. Q. 2015. Fast latent variable models
for inference and visualization on mobile devices. arXiv preprint
arXiv:1510.07035.
Sivic, J.; Russell, B. C.; Efros, A. A.; Zisserman, A.; and Free-
man, W. T. 2005. Discovering object categories in image collec-
tions. Technical report, Computer Science and Artificial Intelli-
gence Laboratory, MIT, Cambridge, MA.
Wang, Y.; Zhao, X.; Sun, Z.; Yan, H.; Wang, L.; Jin, Z.; Wang, L.;
et al. 2014. Towards topic modeling for big data. ACM Transac-
tions on Intelligent Systems and Technology 9(4).
Yuan, J.; Gao, F.; Ho, Q.; Dai, W.; Wei, J.; Zheng, X.; Xing, E. P.;
Liu, T.-Y.; and Ma, W.-Y. 2015. Lightlda: Big topic models on
modest compute clusters. In Proceedings of the 24th International
Conference on World Wide Web. International World Wide Web
Conferences Steering Committee.
Zeiler, M. D. 2012. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701.
Zhu, J.; Ahmed, A.; and Xing, E. P. 2012. Medlda: maximum
margin supervised topic models. Journal of Machine Learning Re-
search 13:2237–2278.

6466

