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Abstract

Both max-margin and Bayesian methods have
been extensively studied in multi-task learning,
but have rarely been considered together. We
present Bayesian max-margin multi-task learn-
ing, which conjoins the two schools of methods,
thus allowing the discriminative max-margin
methods to enjoy the great flexibility of Bayesian
methods on incorporating rich prior information
as well as performing nonparametric Bayesian
feature learning with the latent dimensionality re-
solved from data. We develop Gibbs sampling al-
gorithms by exploring data augmentation to deal
with the non-smooth hinge loss. For nonparamet-
ric models, our algorithms do not need to make
mean-field assumptions or truncated approxima-
tion. Empirical results demonstrate superior per-
formance than competitors in both multi-task
classification and regression.

1. Introduction
Multi-task learning (MTL) (Caruana, 1997; Thrun &
O’Sullivan, 1996) has been widely studied in computer vi-
sion (Zhang et al., 2012), text classification (Zhu et al.,
2013), and bioinformatics (Widmer & Rätsch, 2012). MTL
is particularly good for the scenarios where some tasks are
under sampled. The primary belief of MTL is that solv-
ing multiple potentially correlated tasks together could im-
prove the performance of some (or all) of these tasks by
sharing statistic strength. According to the strategies on
sharing statistics, existing methods can be grouped into two
categories. The first category consists of approaches that
aim to discover the relationships between tasks (Bakker &
Heskes, 2003; Jacob et al., 2008; Xue et al., 2007; Yu et al.,
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2007; Hariharan et al., 2010), while the other one consists
of the approaches that aim to mine the related features or
find a common feature structure shared by all tasks (Ar-
gyriou et al., 2006; Chen et al., 2009; Rai & Daume, 2010;
Obozinski et al., 2010). Recent attempts have been made to
simultaneously estimate task correlations and feature cor-
relations in one unified learning method, under either a
Bayesian or a max-margin framework. Bayesian meth-
ods (Archambeau et al., 2011; Yang et al., 2013) employ
hierarchical structures to model multi-task data and try to
extract both types of correlations by setting proper pri-
ors. Though enjoying great flexibility for incorporating la-
tent variables and performing nonparametric Bayesian in-
ference, the generative nature could make these Bayesian
methods less than sufficient in predictive learning. On
the other hand, the max-margin MTL methods (Zhang &
Schneider, 2010) could also learn task correlations and fea-
ture correlations simultaneously by using a proper regu-
larization over model parameters, under a regularized loss
minimization framework. Though max-margin methods
enjoy the strong discriminative ability, they are usually lack
of the flexibility of Bayesian methods.

One recent work that attempts to bring max-margin learn-
ing and Bayesian multi-task learning together is the multi-
task infinite latent SVM (MT-iLSVM) (Zhu et al., 2014b),
which learns a common projection matrix to share statistics
among multiple tasks. By performing max-margin learn-
ing, it could achieve promising prediction results. It also
applies nonparametric Bayesian methods to automatically
resolve the dimensionality of the projection matrix. How-
ever, MT-iLSVM solely focuses on learning latent features,
while not considering task correlations. Furthermore, for
computational tractability, MT-iLSVM adopts variational
approximation methods with truncated mean-field assump-
tions, which could be too strict to be realistic in practice.

This paper presents a systematical study of Bayesian max-
margin multi-task learning (BM-MTL) for both classifica-
tion and regression. First, we present a generic frame-
work of performing Bayesian max-margin MTL, which can
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use structured priors, e.g., the matrix normal prior (Ar-
chambeau et al., 2011), to jointly estimate task correla-
tions and feature correlations. Second, we extend the
basic BM-MTL framework and present a nonparametric
Bayesian max-margin MTL method (NPBM-MTL), which
can learn latent feature representations and estimate task
correlations, with latent dimensionality automatically re-
solved from data. Finally, for all the Bayesian max-margin
MTL methods, we develop simple Gibbs sampling algo-
rithms by exploring data augmentation techniques (Tanner
& Wong, 1987; Polson & Scott, 2011; Zhu et al., 2014a).
Unlike the truncated variational mean-field methods of MT-
iLSVM, our algorithms for the nonparametric Bayesian
methods do not make any restrictive assumptions and are
truncation free, thus allowing for inference of the true pos-
terior distributions. We empirically study the effectiveness
of our methods and make comparisons with other state-
of-the-art models. Our results on several real data sets
demonstrate superior performance than various competi-
tors in both multi-task classification and regression tasks.

2. Background
We briefly overview Multi-Task SVM and Bayesian MTL
approaches, on which our methods are based.

2.1. Multi-Task SVM and Extensions
Let L be the number of tasks. We denote the multi-task
training set by D = (X,Y) = {{(xil, yil)}Nl

i=1}Ll=1, where
Nl is the number of instances in task l. Each data instance
is a pair (xil, yil) with xil ∈ RD being an input feature vec-
tor and yil being a response variable. Without loss of gen-
erality, we consider binary classification, where yil equals
to +1 if the label of instance i in task l is positive and −1
otherwise. For a linear MTL model, we characterize each
learning task l by a parameter vector ηl ∈ RD. Let η de-
note the D × L matrix formed by concatenating ηl’s of all
the tasks. The prediction of the i-th sample in the l-th task
is given by the sign rule ŷil = sgn(η>l xil), where sgn(x) is
+1 if x ≥ 0 and−1 otherwise. Multi-task SVM (MTSVM)
employs hinge loss as its loss measure for each instance,
i.e., for the i-th sample in task l, the loss is calculated as
max(0, ζil), where ζil = t − yilη

>
l xil with t specifying

the panelty of making a wrong prediction. The objective
function of MTSVM is then defined as

min
η

1

2
Reg(η) + 2C

L∑
l=1

Nl∑
i=1

[
max(0, ζil)

]
, (1)

where Reg(η) is the regularization term over η. A naı̈ve
choice of the regularization is ‖Vec(η)‖2, where Vec(η) is
the vectorization of η with dimension DL × 1. With such
a regularization the model degenerates to a set of single-
task SVMs, one for each task, thus doesn’t share statistics
among tasks. Many efforts have been done to fit this max-

margin framework to multi-task learning problems better
and make good use of hidden correlation information. Pre-
vious work has focused on designing appropriate regular-
ization terms to capture the correlations among tasks and
features. For example, Argyriou et al. (2006) used the
regularization of Tr{η>Ω−1η} to model feature correla-
tions via the feature correlation matrix Ω; Hariharan et al.
(2010) and Zhang & Yeung (2012) used Tr{ηR−1η>} as
regularization to correlate ηl’s together via the task corre-
lation matrix R; and Zhang & Schneider (2010) proposed
to use Tr{Ω−1ηR−1η>} as the regularization term, and
added additional parameters related to |R| and |Ω| to learn
sparse correlations among both tasks and features.

Though powerful on learning discriminative models, all the
aforementioned methods perform point estimation to learn
a single large-margin model by solving a regularized loss
minimization problem. Such a deterministic formulation
could limit the model flexibility. For instance, it lacks
the flexibility of Bayesian methods on incorporating la-
tent variables, leveraging informative priors, or performing
nonparametric inference, as reviewed later.

2.2. Bayesian Multi-task Learning
Due to the great flexibility for incorporating rich priors and
performing nonparametric inference, Bayesian methods
have been widely used for multi-task learning. For exam-
ple, Xue et al. (2007) employed a nonparametric hierarchi-
cal structure in Bayesian framework to automatically ad-
just model complexity and learn the shared statistics among
tasks; Archambeau et al. (2011) assumed a matrix normal
prior over the model parameters with the mean being de-
composed into two latent matrices and with the covari-
ance matrices following an inverse Wishart distribution;
later Yang et al. (2013) extended such approaches with the
covariance matrices of model parameter following a more
complex matrix generalized inverse Gaussian (Barndorff-
Nielsen et al., 1982) prior. Bayesian models allow one to
learn latent structures hiding in the data, and by placing
smart prior distributions like matrix normal over model pa-
rameters, one would be able to infer the task and feature
correlations simply by doing Bayesian inference. However,
such Bayesian models have difficulty to incorporate side in-
formation like discriminative margin constraints and struc-
tural bias, thus may suffer in performance. Finally, under a
similar constrained Bayesian inference framework, Koyejo
& Ghosh (2013) presented a Bayesian MTL method, where
a nuclear norm constraint on the predictive weight matrix
was used to force a low rank solution.

3. Bayesian Max-margin Multi-task Learning
The advantages of max-margin learning and Bayesian
methods could be integrated by bringing them together and
do Bayesian max-margin multi-task learning (BM-MTL).
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We now present a BM-MTL method to jointly estimate task
correlations and feature correlations.

3.1. The Model
As a Bayesian model, we learn a posterior distribution of
the classifier weights, q(η). We adopt the approach of
Gibbs classifiers (McAllester, 2003; Germain et al., 2009)
to account for the uncertainty of the models. Specifically,
if a random sample η is drawn from q(η), we can make
predictions using the same sign rule as in the deterministic
MT-SVM, and measure the goodness of the sampled clas-
sifier using the hinge-loss as a surrogate for the training er-
ror. Gibbs classifiers consider the posterior distribution by
taking the expectation and define the expected hinge loss

R
(
q(η)

)
=

L∑
l=1

Nl∑
i=1

Eq
[

max(0, ζil)
]
, (2)

which is a good surrogate (in fact, an upper bound) for
the expected training error, t

∑L
l=1

∑Nl

i=1 Eq[I(ŷil 6= yil)].
Given a prior distribution over η, p0(η), we define the
Bayesian max-margin multi-task learning (BM-MTL) as
solving the entropy-regularized loss minimization problem

min
q(η)∈P

L
(
q(η)

)
+ 2C · R

(
q(η)

)
, (3)

where L(q(η)) = KL(q(η)‖p0(η)) and P is the probabil-
ity simplex with an appropriate dimension.

We should note that although the entropy-regularized loss
minimization problem looks similar to that of maximum
entropy discrimination (MED) (Jaakkola et al., 1999), this
loss function derived from a Gibbs classifier has rarely been
studied. As we shall see, it will lead to simple Gibbs sam-
pling algorithms by exploring data augmentation. More-
over, in a Bayesian formulation, we have the flexibility to
incorporate a likelihood model if necessary. Let p(D|γ) be
a likelihood parameterized by γ. We can perform regular-
ized Bayesian inference by solving the augmented problem

min
q(η,γ)∈P

L
(
q(η,γ)

)
+ 2C · R

(
q(η)

)
, (4)

where L(q(η,γ)) = KL(q‖p0(η,γ))− Eq[log p(D|γ)].

Let ψ(yil|η, xil) = exp{−2C max(0, ζil)} be the un-
normalized likelihood of yil for the i-th sample in l-th
task. Then solving problem (3) will result in the poste-
rior distribution q(η|D) = p0(η)ψ(Y|η,X)/Γ(D), where
ψ(Y|η,X) =

∏L
l=1

∏Nl

i=1 ψ(yil|η, xil) and Γ(D) is a nor-
malization factor to make q a normalized probability dis-
tribution. This update rule is in a similar form as Bayes’
rule. Such a transformation from max-margin learning to
Bayesian inference results in discriminative models that in-
herit the flexibility of Bayesian methods. Comparing with
standard Bayesian methods, our method has the flexibility
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Figure 1. Graphical models for (a) BM-MTL; (b) NPBM-MTL.

of incorporating rich side-information such as max-margin
posterior regularization, which is hard to be done within
full Bayesian framework.

The regularization term in MTSVM within this Bayesian
formalism could be explained as a prior distribution over
η. The naı̈ve regularization of ‖Vec(η)‖2 corresponds to
a prior of multi-variate normal distribution over Vec(η).
As we have stated, such a regularization (prior) is ignorant
of the fact that η is actually a D × L matrix instead of a
single column vector and results in a covariance of η of size
DL × DL, which is usually prohibitive for modeling and
estimation. To capture the structure of η, matrix normal
prior could be used (Yang et al., 2013; Archambeau et al.,
2011), which assume that the DL×DL covariance matrix
could be decomposed as a Kronecker product Ω ⊗R, and
η follows Vec(η) ∼ ND,L(0,Ω⊗R), i.e.,

p0(η|Ω,R) =
exp

{
− 1

2 Tr(Ω−1ηR−1η>)
}

(2π)DL/2|R|D/2|Ω|L/2
. (5)

Such a prior has the advantage in that it could use de-
composed covariance matrix to model latent correlations
in data, where Ω corresponds to feature correlations and R
corresponds to task correlations respectively, as described
in (Zhang & Schneider, 2010).

The Bayesian framework allows us to view correlation
matrices as random variables and include proper priors
for them. There are many possible choices (Archambeau
et al., 2011; Yang et al., 2013). We adopt the conju-
gate inverse Wishart priors (Mardia et al., 1980), namely,
Ω ∼ IW(Ψ1, ν1) and R ∼ IW(Ψ2, ν2). Then, the pos-
terior probability becomes

q(η,Ω,R|D) ∝ p0(Ω|Ψ1, ν1)p0(R|Ψ2, ν2)

× p0(η|Ω,R)ψ(Y|η,X). (6)

Fig. 1(a) shows the graphical structure of the model.

3.2. Gibbs Sampling with Data Augmentation
Although the expected hinge lossR is hard to deal with, by
using ideas of data augmentation (Tanner & Wong, 1987;
Polson & Scott, 2011) we can express the posterior distri-
bution as a marginal of a higher dimensional distribution
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with augmented variables and then develop a simple Gibbs
sampler. Specifically, the unnormalized likelihood for each
label yil can be expressed as

ψ(yil|η, xil) =

∫ ∞
0

1√
2πλil

exp

{
− (Cζil + λil)

2

2λil

}
dλil,

with the augmented variable λil ∈ (0,∞). This result in-
dicates that the posterior distribution q(η,Ω,R|D) can be
expressed as the marginal of a higher dimensional distri-
bution with the augmented variables λ = {{λil}Nl

i=1}Ll=1,
where the complete posterior distribution is

q(η,Ω,R,λ|D) ∝ p0(Ω)p0(R)p0(η|Ω,R)ψ(Y,λ|η,X)

with ψ(y,λ|η,X) =
∏L
l=1

∏Nl

i=1 ψ(yil, λil|η,X) and
ψ(yil, λil|η,X) = 1√

2πλil
exp{− 1

2λil
(Cζil + λil)

2}. With
the data augmentation representation, we can develop a
simple Gibbs sampler to infer the complete distribution
q(η,Ω,R,λ|D) and thus the target posterior q(η,Ω,R|D)
by dropping λ. The Gibbs sampler iteratively performs the
following steps:

For η: we have conditional distribution:

q(η|Ω,R,λ) ∝ p0(η|Ω,R)ψ(Y,λ|η,X).

Though jointly sampling η will lead to a high-dimensional
Gaussian, we can effectively sample each ηl task-wisely.
This leads to sampling from a low dimensional Gaussian.
Namely, we have the conditional probabilities

q(ηl|Ω,R,λ,η−l) ∝ exp

{
−1

2
Tr{Ω−1ηR−1η>}

}
×

Nl∏
i=1

exp

{
− (Cζil + λil)

2

2λil

}
= N (µl,Σl), (7)

where the posterior covariance matrix and mean are com-
puted as Σl = (

∑Nl

i=1 C
2 xilx>il
λil

+ R−1ll Ω−1)−1 and µl =

Σl(− 1
2

∑
k 6=l R−1lk Ω−1ηk + C

∑Nl

i=1 yil(
Ct
λil

+ 1)xil), re-
spectively. We can easily draw a sample from a D-
dimensional normal distribution, and the inverse can be ro-
bustly done using Cholesky decomposition, anO(D3) pro-
cedure. Thus the sampling could be done efficiently when
D is not very large.

For Ω and R: due to the conjugacy, we have the inverse
Wishart conditional distributions:

q(Ω|R,η,λ) = IW
(
Ψ1 + ηR−1η>, ν1 + L

)
,

q(R|Ω,η,λ) = IW
(
Ψ2 + η>Ω−1η, ν2 +D

)
. (8)

The sampling procedure involves matrix inversions of sizes
D × D and L × L which, again, could be done robustly

with Cholesky decomposition. Thus the inversion would
be efficient when D and L are not very large.

For λ: due to the conditional independence, we can sam-
ple each λil seperately from a generalized inverse Gaussian
distribution (Devroye, 1986)

q(λil|η,Ω,R) ∝ 1√
2πλil

exp

{
− 1

2λil
(Cζil + λil)

2

}
= GIG

(
λil;

1

2
, 1, C2ζ2il

)
. (9)

Therefore, λ−1il follows an inverse Gaussian distribution

q(λ−1il |η,Ω,R) = IG
(
λ−1il ;

1

C|ζil|
, 1

)
(10)

where IG(x; a, b) =
√

b
2πx3 exp

(
− b(x−1)

2

2a2x

)
for a, b > 0.

We can draw a sample from an inverse Gaussian distribu-
tion in constant time (Michael et al., 1976).

4. Nonparametric Bayesian Extensions
We present an extension of the basic framework for non-
parametric Bayesian inference, thus allowing to automati-
cally resolve the model complexity in learning latent fea-
tures for multi-task learning.

4.1. The Model
We again consider the simple linear discriminant function
f(x;ηl) = η>l x and make predictions using the sign rule
for multi-task binary classification. Instead of imposing
a zero-mean prior on η, which provides no structural in-
formation about what model parameters would look like,
we take the suggestions by (Archambeau et al., 2011; Yang
et al., 2013) and impose the structured non-zero mean ma-
trix normal prior

η ∼ ND,L(ZV, I⊗ R),

where both Z and V are latent and Z works as a projec-
tion matrix. Using such a decomposed mean would re-
sort to a low rank approximation of correlation matrix as
in (Archambeau et al., 2011; Yang et al., 2013) and pro-
vide structural information for η. As for the task correla-
tion matrix R, we again assume an inverse Wishart prior
with hyper-parameters Ψ and ν. We should note that the
reason for choosing such a covariance for η, as shall be
seen soon, is that the modeling of the common projection
matrix Z shared by all the tasks is essentially an indirect
modeling of feature correlation matrix Ω. Thus there is
no need to assume another matrix for the same use. The
graphical representation is shown in Figure 1(b). In (Ar-
chambeau et al., 2011; Yang et al., 2013), some Gaussian
hyper-priors are imposed on Z and V, both of which are
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assumed to have a finite and fixed dimension K. However,
since K is an unknown parameter, a model selection pro-
cedure (e.g., cross-validation) is needed to select a good
value of K. We address this issue in our Bayesian max-
margin MTL by exploring the flexibility on nonparametric
inference, where we let Z have an unbounded number of
columns, corresponding to an unbounded latent feature di-
mensionality.

For simplicity, we start with the case where Z has fixed
K finite columns. We impose the the matrix normal prior
for V, V ∼ NK,L(0, I ⊗ R). Then, we can show that the
marginal prior p0(η|Z,R) by integrating out V is

p0(η|Z,R) =
exp

{
− 1

2 Tr{R−1η>(I− ZMZ>)η}
}

(2π)DL/2|R|D/2|I + Z>Z|L/2
,

where M = (I+Z>Z)−1. For Z, without loss of generality,
we assume it is a binary matrix, i.e., each entry is 0 or 1. For
the finite case, a simple prior is the Beta-Bernoulli prior,
that is, each column k is associated with a parameter πk ∼
Beta(α/K, 1) and the entries in column k are i.i.d, namely,
zik ∼ Bernoulli(πk).

We can generalize the above process to let Z have an
infinite number of columns. The infinite generalization
of the Beta-Bernoulli prior is the hierarchical Beta pro-
cess (Thibaux & Jordan, 2007) (also known as Indian buffet
process, IBP (Griffiths & Ghahramani, 2005)). Although Z
is allowed to have an infinite number of columns, it would
have a finite number of non-zero, or active, columns with
probability 1 under the IBP prior. We denote the matrix
formed by combining these active columns as Z+. The
column number of Z+ is denoted as K+, corresponding
to learned latent feature dimensionality. Then, with the in-
finite limit of K, the marginal prior becomes

p0(η|Z,R) =
exp

{
− 1

2 Tr{R−1η>Q−1η}
}

(2π)DL/2|R|D/2|I + Z>+Z+|L/2
,

where we let Q = (I − Z+(I + Z>+Z+)−1Z>+)−1 for sim-
plicity of notations. We should note that, for all the terms
related to η, by substituting Q with Ω we will get ex-
actly the same conditional probability as in the parametric
case, indicating that modeling the common projection ma-
trix Z is essentially modeling the feature correlation matrix.
That’s why we force parts of the covariance in the prior of
η to be identity, or else it would be redundant.

With the sampled η, we can similarly measure the training
error. We again adopt the hinge loss as a surrogate and take
the expectation to account for the uncertainty of η. This
leads to the optimization problem

min
q(η,Z,R)∈P

L
(
q(η,Z,R)

)
+ 2C · R

(
q(η)

)
, (11)

where L(q(η,Z,R)) = KL(q‖p0(η,Z,R)).

4.2. Gibbs Sampling with Data Augmentation
By applying the same data augmentation techniques, we
are able to obtain the augmented posterior distribution

q(η,Z,R,λ) ∝ p0(Z)p0(R)p0(η|Z,R)ψ(Y,λ|η,X),

from which we can develop a Gibbs sampler to draw sam-
ples. Specifically, the sampling probabilities for η, λ and
R are exactly the same as before except that we replace Ω
in the original probabilities by Q.

For the binary matrix Z, we do the sampling entry-wisely.
For the existing column k, we sample zdk via

p(zdk = 1|Z−(dk),η,R) ∝ mk − zdk
D

p(η|Z,R), (12)

wheremk is the number of non-zero entries in the k-th col-
umn of Z. Note that if there exists no non-zero entries ex-
cept zdk, the sampler would directly remove this column.
A number of new columns would be sampled via

p(Knew) ∝ Poisson
(
Knew,

α

D

)
p(η|Znew,R), (13)

where Znew is obtained by appending Knew columns of ed
to Z, where ed is a 0-vector except the d-th entry being 1.

5. Multi-Task Regression
The above techniques could be generalized to tackle multi-
task regression problems, where the response variable yil
for each instance xil takes real values. For the i-th instance
in the l-th task, we consider the linear prediction rule,
yil = η>l xil. One widely used margin-based loss measure
is the ε-insensitive loss Rε(η) =

∑
il max(0, |∆il| − ε)

for support vector regression (Smola & Schölkopf, 2004),
where ∆il = yil − η>l xil is the margin. To do Bayesian
max-margin learning, we define the expected ε-intensive
loss as Rε(q(η)) =

∑
il Eq(max(0, |∆il| − ε)). Then we

define BM-MTL regression model as solving the entropy-
regularized loss minimization problem

min
q(η)∈P

L
(
q(η)

)
+ 2C · Rε

(
q(η)

)
.

The resulting posterior probability follows the form as in
Eq. (6), with the pseudo-likelihood being ψ(Y|η,X) ∝∏L
l=1

∏Nl

i=1 exp{−2C max(0, |∆il| − ε)}.

By noting that max(0, |x| − ε) = max(0, x − ε) +
max(0,−x − ε), we can do similar data augmentation
and express the unnormalized likelihood for each instance
(xil, yil) as

ψ(yil|η,xil) =

∫ ∞
0

∫ ∞
0

ψ(yil, λil, ωil|η, xil)dλildωil,

where ψ(yil, λil, ωil|η, xil) = 1√
2πλil

exp{− 1
2λil

(λil +

C(∆il− ε))2}× 1√
2πωil

exp{− 1
2ωil

(ωil−C(∆il + ε))2},
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with the augmented variables λ = {{λil}Nl
i=1}Ll=1 and

ω = {{ωil}Nl
i=1}Ll=1. Then, the target posterior distribution

q(η,Ω,R) is the marginal of the complete posterior

q(η,Ω,R,λ,ω)∝p0(Ω)p0(R)p0(η|Ω,R)ψ(Y,λ,ω|η,X),

where ψ(y,λ,ω|η,X) =
∏
l

∏
i ψ(yil, λil, ωil|η, xil).

Following similar derivations as in the classification mod-
els, the Gibbs sampler iteratively performs the steps:

For η: again we can employ an effective sampling of each
ηl task-wisely. With the matrix normal prior on η, the con-
ditional probability is still Gaussian:

q(ηl|Ω,R,λ,η−l) ∝ N (µl,Σl), (14)

where the posterior covariance matrix and mean are com-
puted as Σl = (

∑
i C

2ρilxix>i + R−1ll Ω−1)−1 and µl =
Σl(− 1

2

∑
k 6=l R−1lk Ω−1ηk +

∑
i C

2(yilρil − εσil)xi) with
ρil = ( 1

λil
+ 1

ωil
) and σil = ( 1

λil
− 1

ωil
).

For λ and ω: the conditional distribution for both sets of
augmented variables are still inverse Gaussian:

q(λ−1il |η,Ω,R) = IG
(
λ−1il ;

1

C|∆il − ε|
, 1

)
,

q(ω−1il |η,Ω,R) = IG
(
ω−1il ;

1

C|∆il + ε|
, 1

)
. (15)

The sampling probabilities for Ω and R are exactly the
same as Eq. (8) in the classification case. We could futher
derive the sampling probabilities for NPBM-MTL model
by substituting Ω with Q in sampling distributions of
the parametric regression case, together with the sampling
probability of Z following Eq. (12) and Eq. (13).

6. Experiments
We present empirical studies for both multi-task classifica-
tion and multi-task regression.

6.1. Multi-Task Classification
6.1.1. DATASETS, METHODS AND SETUPS

We use four multi-label datasets that are publicly avail-
able1. Table 1 summarizes their statistics. For multi-label
classification, we formulate it as a multi-task learning prob-
lem, where each task is a binary classifier determining
whether an instance has a particular label.

We compare with various baselines, including LR (Inde-
pendent Logistic Regression), MTL-C (Clustered Multi-
task Learning) (Jacob et al., 2008), MTL-F (Multi-
task Feature Learning) (Argyriou et al., 2006) and MT-
iLSVM (Multi-task infinite latent SVMs) (Zhu et al.,

1http://mulan.sourceforge.net/datasets.
html

Table 1. Statistics of various datasets, where “Avg-labels” stands
for the average number of labels per instance.

DATASETS NUM SAMPLES L D AVG-LABELS

EMOTIONS 593 6 72 1.869
CAL500 502 174 68 26.044
SCENE 2,407 6 294 1.074
YEAST 2,417 14 103 4.237

2011). MTL-C could learn clusters of different tasks
to capture the task correlations. MTL-F learns a low-
dimensional representation shared across a set of related
tasks, while MT-iLSVM learns an infinite dimensional fea-
ture representation. Both MTL-F and MT-iLSVM are es-
sentially learning the feature correlations. In BM-MTL, we
have the flexibility to learn the correlation matrices or sim-
ply set them to some fixed matrices. There are also var-
ious choices for hyper-parameters Ψ1 and Ψ2 in inverse
Wishart priors. We either set R or Ω to be fixed identity or
sample them with Ψ1 or Ψ2 being identity, yielding four
different configurations of BM-MTL listed below:

• (I-Ω&I-R) We fix both Ω and R to be identity.

• (Ω&I-R) We fix R to be identity and learn Ω with Ψ1

being identity.

• (I-Ω&R) We fix Ω to be identity and learn R with Ψ2

being identity.

• (Ω&R) We learn both Ω and R with Ψ1 and Ψ2 being
identities.

Finally, for the nonparametric NPBM-MTL, we learn both
Z and R with Ψ being identity. The regularization param-
eter C is chosen from [10−3, 103] using 5-fold cross vali-
dation. We use the F1-score as the performance measure,
which accounts for label bias in the datasets. To avoid the
condition that the sampled Ω−1 and R−1 are too large or
close to zero, we divide the sampled matrices by a constant
number and force the diagonal entries to be at least one.

6.1.2. RESULTS AND ANALYSIS

Table 2 shows the mean F1-scores and standard deviation
(in parentheses) obtained from runs on 5 random splits
of each dataset, where each row corresponds to a model
and each column corresponds to a dataset. Our random
splits are obtained following the datasets’ original training-
testing split ratios, which are provided along with the data.

We observe that among the four BM-MTL models with var-
ious configurations, the one with (Ω&R) provides consis-
tently promising results — it either offers the best perfor-
mance or gives a competitive one. This shows the benefits
brought by simultaneously estimating task correlations and
feature correlations. As for the two non-parametric meth-
ods, NPBM-MTL obtains significant improvements over
MT-iLSVM by modeling task correlations and relieving

http://mulan.sourceforge.net/datasets.html
http://mulan.sourceforge.net/datasets.html
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Table 2. Results for different models on the four datasets. Competitive results are shown in bold, and the best one is marked with “*”.

MODELS F1(%) F1(%) F1(%) F1(%)

EMOTIONS CAL500 SCENE YEAST
LR 54.83 (1.63) 32.05 (1.63) 61.65 (1.45) 61.44 (0.92)
MTL-C 63.50 (1.67) 33.51 (1.39) 64.98 (0.66) 61.86 (0.69)
MTL-F 64.51 (1.10) 34.01 (1.47) 64.23 (0.89) 62.66 (0.55)

BM-MTL(I-Ω&I-R) 64.16 (1.19) 34.65 (1.06) 65.85 (0.78) 63.75 (0.57)
BM-MTL(Ω&I-R) 65.22 (1.34) 34.91 (1.05) 65.97 (0.70) 64.20 (0.59)
BM-MTL(I-Ω&R) 64.97 (1.37) 35.07 (1.22) 66.30 (0.70) 64.16 (0.53)
BM-MTL(Ω&R) 65.67 (1.32)* 35.54 (1.09) 66.33 (0.70) 64.36 (0.58)*

MT-ILSVM 62.27(2.25) 32.20(1.09) 62.27(2.46) 61.81(0.60)
NPBM-MTL(Z&R) 65.53 (1.34) 35.67 (0.69)* 66.85 (0.55)* 64.21 (0.44)

the truncated mean-field assumption made by MT-iLSVM,
which only estimates the feature correlations. Overall, both
BM-MTL and NPBM-MTL could significantly improve
the performance over existing competitors2, mainly due to
the advantages brought by conjoining Bayesian methods
and max-margin learning as well as the joint estimation of
task correlations and feature correlations.

We also compare with the methods in (Archambeau et al.,
2011). Since their code is not available, we compare
with the reported accuracy on the yeast and scene datasets.
Our NPBM-MTL achieves an accuracy of 80.01 (0.06)
on yeast, slightly better than the reported accuracy of
79.88 (0.17) in (Archambeau et al., 2011), and gives com-
petitive accuracy of 88.95 (0.07) on scene where the re-
ported result is 88.97 (0.34). Our model could not only
give stabler performance, but also free users from man-
ually tuning the latent feature dimensionality, contrast to
methods in (Archambeau et al., 2011).

6.2. Multi-Task Regression
6.2.1. DATASETS, METHODS AND SETUPS

We use the public School dataset, which consists of the ex-
amination records of 15,362 students from 139 secondary
schools in years 1985, 1986 and 1987. The dataset has
been used to study the effectiveness of schools. It has
been used extensively to evaluate multi-task learning meth-
ods (Bakker & Heskes, 2003; Zhang & Yeung, 2012),
where the goal of the task is to predict the exam scores
of students from different schools based on four student-
dependent features and four school-dependent features. To
make a fair comparison, we follow the same setup de-
scribed in (Bakker & Heskes, 2003) and use the same 10
random splits of the data to do the training and testing. The
average number of students included in training set is about
80 per school, while the number in testing set is about 30.

We compare with the state-of-the-art results of
BMTL (Bayesian Multi-task Learning) (Bakker & Heskes,

2We performed the 2-tailed t-test. For BM-MLT, the p-values
over all the existing methods on all the datasets are less than
0.027; similarly for NPBM-MTL.

Table 3. Experimental results for different models on School
dataset. PEV stands for the percentage of explained variance.

BASELINES PEV(%) MODEL PEV(%)

STL 23.5 (1.9) BM-MTL(I-Ω&I-R) 31.12 (1.02)
BMTL 29.5 (0.4) BM-MTL(Ω&I-R) 31.21 (1.02)
MTGP 29.2 (1.6) BM-MTL(I-Ω&R) 31.54 (1.04)
MTRL 29.9 (1.8) BM-MTL(Ω&R) 31.56 (1.09)
MT-ILSVM 31.13 (1.15) NPBM-MTL(Z&R) 31.86 (1.00)

2003), MTGP (Multi-task Gaussian Processes) (Bonilla
et al., 2007), MTRL (Convex Multi-task Relationship
Learning) (Zhang & Yeung, 2012), STL (Single Task
Learning) as reported in (Bonilla et al., 2007; Zhang &
Yeung, 2012) and the MT-iLSVM regression model (Zhu
et al., 2011). We empirically set ε to be 0.001. The
hyper-parameter of the IBP prior of Z (i.e., α) is fixed at
5 in this experiment, and we will return to investigate the
sensitivity over this parameter in Section 6.3.2. We search
the regularization parameter C in the range of [0.1,10]
with 5-fold cross validation.

For performance measure, we use percentage of explained
variance (PEV) (Bakker & Heskes, 2003). PEV is defined
as the total variance of the data minus the sum-squared er-
ror on the test set as a percentage of the total variance.

6.2.2. RESULTS AND ANALYSIS

Table 3 shows the results. We can see that both BM-MTL
and NPBM-MTL could work very well on regression tasks.
For the four configurations of BM-MTL, the hybrid learn-
ing of Ω and R again yields the best performance. Al-
though all these four configurations could outperform other
state-of-the-art methods, the variances are large compared
to some of the baselines. While for NPBM-MTL, it not
only gives the best performance, but also enjoys a small
variance. This may result from the modeling of latent
features — when the original features are redundant and
noisy, the learned latent feature dimensionality would be
low, which could work as a refiner of data noise and result
in simple and effective models. In Section 6.3.2, we will
see that the learned latent feature dimensionality is low on
School, which gives evidence to our statement.
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Figure 2. Prediction performance w.r.t the number of itera-
tions (i.e., burn-in steps) on (a) yeast and (b) School datasets.
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Figure 3. Impact of α on (a) learned latent feature dimensions and
(b) performance of NPBM-MTL.

6.3. More Discussions
6.3.1. BURN-IN STEPS

We analyze the effects of the number of burn-in steps on
the performance for both multi-task classification and re-
gression problems. For classification, we choose the yeast
dataset as an example, and for regression we choose one of
the 10 random splits of the school data. Figure 2 presents
the performance changes of both the parametric BM-MTL
and nonparametric NPBM-MTL with respect to the num-
ber of burn-in steps. We can observe that all our methods
converge quickly. For example, on both datasets, we need
about 10 burn-in steps to get stable prediction performance.

6.3.2. SENSITIVITY ANALYSIS AND LATENT FEATURES

Since the initialization of Z follows an IBP, the number of
new columns added to Z follows Poisson(αi ) when initial-
izing the i-th row of Z, where α is the IBP hyper-parameter.
Thus the initial latent dimensions of Z would be differ-
ent if using different α values, resulting in initial latent di-
mensions that may be far from the actual one. To analyze
whether NPBM-MTL is sensitive to such an initialization,
we analyze the influence of α on both the learned feature
dimensionality and prediction performance on the School
dataset. We set α to be 2[0:4]. Figure 3 shows the results.

We can see that even though the initial dimensions vary a
lot with different α, with no more than 10 iterations, all the
NPBM-MTL models with different α values converge to a
similar dimension, which is about 15. Meanwhile, the pre-
diction performance gradually improves until the sampling
procedure converges and the latent feature dimensionality
settles down. This shows that NPBM-MTL is able to con-

Table 4. Learned latent feature dimensionality K+ on different
datasets. D is the original feature dimensionality.

EMOTIONS CAL500 SCENE YEAST SCHOOL
K+ 57.8 (2.0) 4.4 (0.5) 48.2 (1.9) 4.8 (0.8) 14.8 (1.1)
D 72 68 294 103 28

verge quickly and is stable against different choices of α.

We also observe in Table 4 that the inferred latent fea-
ture dimensions are generally much smaller than the orig-
inal feature dimensions. For example, the original fea-
ture dimensionality in the School dataset is nearly 30, but
the learned latent feature dimensionality is only about 15.
On most datasets, the learned K+ is relatively small com-
pared to D, thus enjoying a denoising effect and resulting
in stabler performance (except on EMOTIONS, whose K+

is close to D, and the performance on EMOTIONS, as can
be seen from Table 2, is not that stable). The low ratio of
K+/D indicates that usually data has redundant features,
and by applying our non-parametric method we would be
able to learn the “true” feature dimensionality automati-
cally instead of setting them manually in the model.

7. Conclusions and Future Work
We present Bayesian max-margin multi-task learning,
which conjoins the max-margin learning with Bayesian for-
malism and allows discriminative max-margin models to
enjoy the great flexibility of Bayesian methods on incorpo-
rating rich prior information and performing nonparametric
Bayesian inference to learn latent features or structures as
well as the latent feature dimensionality. We present sim-
ple Gibbs sampling algorithms by exploring data augmen-
tation techniques. Our algorithms are truncation-free and
assumption-free when applied to nonparametric Bayesian
models. Experimental results demonstrate promising pre-
diction performance over various competitors.

Bayesian max-margin models for multi-task learning could
be further extended. For example, both BM-MTL and
NPBM-MTL may be expensive in training when the feature
dimension is huge, because the sampling of weight matri-
ces would involve large matrix inversion. To tackle such
a problem, feature-dimension reduction techniques may be
used. Another interesting direction is to selectively share
information among tasks (Kumar & III, 2012), which may
be beneficial especially when we have many tasks. In the-
ory, we can consider the selective sharing structure by for-
mulating it via some prior. We leave these for future work.
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