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Abstract

Learning-from-crowds aims to design proper aggregation strategies to infer the
unknown true labels from the noisy labels provided by ordinary web workers.
This paper presents max-margin majority voting (M3V) to improve the discrimi-
native ability of majority voting and further presents a Bayesian generalization to
incorporate the flexibility of generative methods on modeling noisy observations
with worker confusion matrices. We formulate the joint learning as a regularized
Bayesian inference problem, where the posterior regularization is derived by max-
imizing the margin between the aggregated score of a potential true label and that
of any alternative label. Our Bayesian model naturally covers the Dawid-Skene
estimator and M3V. Empirical results demonstrate that our methods are competi-
tive, often achieving better results than state-of-the-art estimators.

1 Introduction

Many learning tasks require labeling large datasets. Though reliable, it is often too expensive and
time-consuming to collect labels from domain experts or well-trained workers. Recently, online
crowdsourcing platforms have dramatically decreased the labeling cost by dividing the workload
into small parts, then distributing micro-tasks to a crowd of ordinary web workers [17, 20]. However,
the labeling accuracy of web workers could be lower than expected due to their various backgrounds
or lack of knowledge. To improve the accuracy, it is usually suggested to label every task multiple
times by different workers, then the redundant labels can provide hints on resolving the true labels.

Much progress has been made in designing effective aggregation mechanisms to infer the true labels
from noisy observations. From a modeling perspective, existing work includes both generative ap-
proaches and discriminative approaches. A generative method builds a flexible probabilistic model
for generating the noisy observations conditioned on the unknown true labels and some behavior
assumptions, with examples of the Dawid-Skene (DS) estimator [5], the minimax entropy (Entropy)
estimator1 [24, 25], and their variants. In contrast, a discriminative approach does not model the ob-
servations; it directly identifies the true labels via some aggregation rules. Examples include major-
ity voting and the weighted majority voting that takes worker reliability into consideration [10, 11].

In this paper, we present a max-margin formulation of the most popular majority voting estimator to
improve its discriminative ability, and further present a Bayesian generalization that conjoins the ad-
vantages of both generative and discriminative approaches. The max-margin majority voting (M3V)
directly maximizes the margin between the aggregated score of a potential true label and that of any
alternative label, and the Bayesian model consists of a flexible probabilistic model to generate the
noisy observations by conditioning on the unknown true labels. We adopt the same approach as the

1A maximum entropy estimator can be understood as a dual of the MLE of a probabilistic model [6].
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classical Dawid-Skene estimator to build the probabilistic model by considering worker confusion
matrices, though many other generative models are also possible. Then, we strongly couple the
generative model and M3V by formulating a joint learning problem under the regularized Bayesian
inference (RegBayes) [27] framework, where the posterior regularization [7] enforces a large mar-
gin between the potential true label and any alternative label. Naturally, our Bayesian model covers
both the David-Skene estimator and M3V as special cases by setting the regularization parameter to
its extreme values (i.e., 0 or∞). We investigate two choices on defining the max-margin posterior
regularization: (1) an averaging model with a variational inference algorithm; and (2) a Gibbs model
with a Gibbs sampler under a data augmentation formulation. The averaging version can be seen
as an extension to the MLE learner of Dawid-Skene model. Experiments on real datasets suggest
that max-margin learning can significantly improve the accuracy of majority voting, and that our
Bayesian estimators are competitive, often achieving better results than state-of-the-art estimators
on true label estimation tasks.

2 Preliminary

We consider the label aggregation problem with a dataset consisting of M items (e.g., pictures or
paragraphs). Each item i has an unknown true label yi ∈ [D], where [D] := {1, . . . , D}. The task
ti is to label item i. In crowdsourcing, we have N workers assigning labels to these items. Each
worker may only label a part of the dataset. Let Ii ⊆ [N ] denote the workers who have done task
ti. We use xij to denote the label of ti provided by worker j, xi to denote the labels provided to
task ti, and X is the collection of these worker labels, which is an incomplete matrix. The goal of
learning-from-crowds is to estimate the true labels of items from the noisy observationsX .

2.1 Majority Voting Estimator

Majority voting (MV) is arguably the simplest method. It posits that for every task the true label is
always most commonly given. Thus, it selects the most frequent label for each task as its true label,
by solving the problem:

ŷi = argmax
d∈[D]

N∑
j=1

I(xij = d),∀i ∈ [M ], (1)

where I(·) is an indicator function. It equals to 1 whenever the predicate is true, otherwise it equals to
0. Previous work has extended this method to weighted majority voting (WMV) by putting different
weights on workers to measure worker reliability [10, 11].

2.2 Dawid-Skene Estimator

The method of Dawid and Skene [5] is a generative approach by considering worker confusability.
It posits that the performance of a worker is consistent across different tasks, as measured by a
confusion matrix whose diagonal entries denote the probability of assigning correct labels while off-
diagonal entries denote the probability of making specific mistakes to label items in one category as
another. Formally, let φj be the confusion matrix of worker j. Then, φjkd denotes the probability
that worker j assigns label d to an item whose true label is k. Under the basic assumption that
workers finish each task independently, the likelihood of observed labels can be expressed as

p(X|Φ,y) =

M∏
i=1

N∏
j=1

D∏
d,k=1

φjkd
ni
jkd =

N∏
j=1

D∏
d,k=1

φjkd
njkd , (2)

where nijkd = I(xij = d, yi = k), and njkd =
∑M
i=1 n

i
jkd is the number of tasks with true label k

but being labeled to d by worker j.

The unknown labels and parameters can be estimated by maximum-likelihood estimation (MLE),
{ŷ, Φ̂} = argmaxy,Φ log p(X|Φ,y), via an expectation-maximization (EM) algorithm that itera-
tively updates the true labels y and the parameters Φ. The learning procedure is often initialized
by majority voting to avoid bad local optima. If we assume some structure of the confusion matrix,
various variants of the DS estimator have been studied, including the homogenous DS model [15]
and the class-conditional DS model [11]. We can also put a prior over worker confusion matrices
and transform the inference into a standard inference problem in graphical models [12]. Recently,
spectral methods have also been applied to better initialize the DS model [23].
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3 Max-Margin Majority Voting
Majority voting is a discriminative model that directly finds the most likely label for each item.
In this section, we present max-margin majority voting (M3V), a novel extension of (weighted)
majority voting with a new notion of margin (named crowdsourcing margin).

3.1 Geometric Interpretation of Crowdsourcing Margin
𝑥𝑖2

𝑥𝑖1

𝒈 𝒙𝑖 , 1 : (𝟎, 𝟏)𝑻

𝒈 𝒙𝑖 , 2 : (𝟎, 𝟎)𝑻 𝒈 𝒙𝑖 , 3 : (𝟏, 𝟎)𝑻

Figure 1: A geometric interpretation of the crowd-
sourcing margin.

Let g(xi, d) be a N -dimensional vector, with
the element j equaling to I(j ∈ Ii, xij = d).
Then, the estimation of the vanilla majority vot-
ing in Eq. (1) can be formulated as finding so-
lutions {yi}i∈[M ] that satisfy the following con-
straints:

1>Ng(xi, yi)− 1>Ng(xi, d) ≥ 0, ∀i, d, (3)
where 1N is the N -dimensional all-one vector
and 1>Ng(xi, k) is the aggregated score of the
potential true label k for task ti. By using the
all-one vector, the aggregated score has an intu-
itive interpretation — it denotes the number of
workers who have labeled ti as class k.

Apparently, the all-one vector treats all workers equally, which may be unrealistic in practice due
to the various backgrounds of the workers. By simply choosing what the majority of workers agree
on, the vanilla MV is prone to errors when many workers give low quality labels. One way to tackle
this problem is to take worker reliability into consideration. Let η denote the worker weights. When
these values are known, we can get the aggregated score η>g(xi, k) of a weighted majority voting
(WMV), and estimate the true labels by the rule: ŷi = argmaxd∈[D] η

>g(xi, d). Thus, reliable
workers contribute more to the decisions.

Geometrically, g(xi, d) is a point in the N -dimensional space for each task ti. The aggregated
score 1>Ng(xi, d) measures the distance (up to a constant scaling) from this point to the hyperplane
1>Nx = 0. So the MV estimator actually finds a point that has the largest distance to that hyperplane
for each task, and the decision boundary of majority voting is another hyperplane 1>Nx−b = 0 which
separates the point g(xi, ŷi) from the other points g(xi, k), k 6= ŷi. By introducing the worker
weights η, we relax the constraint of the all-one vector to allow for more flexible decision boundaries
η>x−b = 0. All the possible decision boundaries with the same orientation are equivalent. Inspired
by the generalized notion of margin in multi-class SVM [4], we define the crowdsourcing margin as
the minimal difference between the aggregated score of the potential true label and the aggregated
scores of other alternative labels. Then, one reasonable choice of the best hyperplane (i.e. η) is the
one that represents the largest margin between the potential true label and other alternatives.

Fig. 1 provides an illustration of the crowdsourcing margin for WMV with D = 3 and N = 2,
where each axis represents the label of a worker. Assume that both workers provide labels 3 and 1
to item i. Then, the vectors g(xi, y), y ∈ [3] are three points in the 2D plane. Given the worker
weights η, the estimated label should be 1, since g(xi, 1) has the largest distance to line P0. Line P1

and line P2 are two boundaries that separate g(xi, 1) and other points. The margin is the distance
between them. In this case, g(xi, 1) and g(xi, 3) are support vectors that decide the margin.

3.2 Max-Margin Majority Voting Estimator

Let ` be the minimum margin between the potential true label and all other alternatives. We define
the max-margin majority voting (M3V) as solving the constrained optimization problem to estimate
the true labels y and weights η:

inf
η,y

1

2
‖η‖22 (4)

s. t. :η>g∆
i (d) ≥ `∆i (d),∀i ∈ [M ], d ∈ [D],

where g∆
i (d) := g(xi, yi) − g(xi, d) 2 and `∆i (d) = `I(yi 6= d). And in practice, the worker

labels are often linearly inseparable by a single hyperplane. Therefore, we relax the hard constraints
2The offset b is canceled out in the margin constraints.
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by introducing non-negative slack variables {ξi}Mi=1, one for each task, and define the soft-margin
max-margin majority voting as

inf
ξi≥0,η,y

1

2
‖η‖22 + c

∑
i

ξi (5)

s. t. :η>g∆
i (d) ≥ `∆i (d)− ξi,∀i ∈ [M ], d ∈ [D],

where c is a positive regularization parameter and `− ξi is the soft-margin for task ti. The value of
ξi reflects the difficulty of task ti — a small ξi suggests a large discriminant margin, indicating that
the task is easy with a rare chance to make mistakes; while a large ξi suggests that the task is hard
with a higher chance to make mistakes. Note that our max-margin majority voting is significantly
different from the unsupervised SVMs (or max-margin clustering) [21], which aims to assign cluster
labels to the data points by maximizing some different notion of margin with balance constraints to
avoid trivial solutions. Our M3V does not need such balance constraints.

Albeit not jointly convex, problem (5) can be solved by iteratively updating η and y to find a local
optimum. For η, the solution can be derived as η =

∑M
i=1

∑D
d=1 ω

d
i g

∆
i (d) by the fact that the

subproblem is convex. The parameters ω are obtained by solving the dual problem

sup
0≤ωd

i≤c
−1

2
η>η +

∑
i

∑
d

ωdi `
∆
i (d), (6)

which is exactly the QP dual problem in standard SVM [4]. So it can be efficiently solved by well-
developed SVM solvers like LIBSVM [2]. For updating y, we define (x)+ := max(0, x), and then
it is a weighted majority voting with a margin gap constraint:

ŷi = argmax
yi∈[D]

(
−c max

d∈[D]

(
`∆i (d)− η̂>g∆

i (d)
)

+

)
, (7)

Overall, the algorithm is a max-margin iterative weighted majority voting (MM-IWMV). Comparing
with the iterative weighted majority voting (IWMV) [11], which tends to maximize the expected gap
of the aggregated scores under the Homogenous DS model, our M3V directly maximizes the data
specified margin without further assumption on data model. Empirically, as we shall see, our M3V
could have more powerful discriminative ability with better accuracy than IWMV.

4 Bayesian Max-Margin Estimator

With the intuitive and simple max-margin principle, we now present a more sophisticated Bayesian
max-margin estimator, which conjoins the discriminative ability of M3V and the flexibility of the
generative DS estimator. Though slightly more complicated in learning and inference, the Bayesian
models retain the intuitive simplicity of M3V and the flexibility of DS, as explained below.

4.1 Model Definition

We adopt the same DS model to generate observations conditioned on confusion matrices, with the
full likelihood in Eq. (2). We further impose a prior p0(Φ,η) for Bayesian inference. Assuming that
the true labels y are given, we aim to get the target posterior p(Φ,η|X,y), which can be obtained
by solving an optimization problem:

inf
q(Φ,η)

L (q(Φ,η);y) , (8)

where L(q;y) := KL(q‖p0(Φ,η)) − Eq[log p(X|Φ,y)] measures the Kullback-Leibler (KL) di-
vergence between a desired post-data posterior q and the original Bayesian posterior, and p0(Φ,η)
is the prior, often factorized as p0(Φ)p0(η). As we shall see, this Bayesian DS estimator often leads
to better performance than the vanilla DS.

Then, we explore the ideas of regularized Bayesian inference (RegBayes) [27] to incorporate
max-margin majority voting constraints as posterior regularization on problem (8), and define the
Bayesian max-margin estimator (denoted by CrowdSVM) as solving:

inf
ξi≥0,q∈P,y

L(q(Φ,η);y) + c ·
∑
i

ξi (9)

s. t. :Eq[η>g∆
i (d)] ≥ `∆i (d)− ξi,∀i ∈ [M ], d ∈ [D],
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whereP is the probabilistic simplex, and we take expectation over q to define the margin constraints.
Such posterior constraints will influence the estimates of y and Φ to get better aggregation, as we
shall see. We use a Dirichlet prior on worker confusion matrices, φmk|α ∼ Dir(α), and a spherical
Gaussian prior on η, η ∼ N (0, vI). By absorbing the slack variables, CrowdSVM solves the
equivalent unconstrained problem:

inf
q∈P,y

L(q(Φ,η);y) + c · Rm(q(Φ,η);y), (10)

whereRm(q;y)=
∑M
i=1maxDd=1

(
`∆i (d)−Eq[η>g∆

i (d)]
)

+
is the posterior regularization.

Remark 1. From the above definition, we can see that both the Bayesian DS estimator and the max-
margin majority voting are special cases of CrowdSVM. Specifically, when c → 0, it is equivalent
to the DS model. If we set v = v′/c for some positive parameter v′, then when c → ∞ CrowdSVM
reduces to the max-margin majority voting.

4.2 Variational Inference

Algorithm 1: The CrowdSVM algorithm
1. Initialize y by majority voting.
while Not converge do

2. For each worker j and category k:
q(φjk)← Dir(njk +α).

3. Solve the dual problem (11).
4. For each item i: ŷi ← argmaxyi∈[D] f(yi,xi; q).

end

Since it is intractable to directly solve
problem (9) or (10), we introduce
the structured mean-field assumption
on the post-data posterior, q(Φ,η) =
q(Φ)q(η), and solve the problem by
alternating minimization as outlined in
Alg. 1. The algorithm iteratively per-
forms the following steps until a local
optimum is reached:

Infer q(Φ): Fixing the distribution q(η) and the true labels y, the problem in Eq. (9) turns to a
standard Bayesian inference problem with the closed-form solution: q∗(Φ) ∝ p0(Φ)p(X|Φ,y).
Since the prior is a Dirichlet distribution, the inferred distribution is also Dirichlet, q∗(φjk) =
Dir(njk +α), where njk is a D-dimensional vector with element d being njkd.

Infer q(η) and solve for ω: Fixing the distribution q(Φ) and the true labels y, we opti-
mize Eq. (9) over q(η), which is also convex. We can derive the optimal solution: q∗(η) ∝
p0(η) exp

(
η>
∑
i

∑
d ω

d
i g

∆
i (d)

)
, where ω = {ωdi } are Lagrange multipliers. With the normal

prior, p0(η) = N (0, vI), the posterior is a normal distribution: q∗(η) = N (µ, vI) , whose mean
is µ = v

∑M
i=1

∑D
d=1 ω

d
i g

∆
i (d). Then the parameters ω are obtained by solving the dual problem

sup
0≤ωd

i≤c
− 1

2v
µ>µ+

∑
i

∑
d

ωdi `
∆
i (d), (11)

which is same as the problem (6) in max-margin majority voting.

Infer y: Fixing the distributions of Φ and η at their optimum q∗, we find y by solving problem
(10). To make the prediction more efficient, we approximate the distribution q∗(Φ) by a Dirac delta
mass δ(Φ− Φ̂), where Φ̂ is the mean of q∗(Φ). Then since all tasks are independent, we can derive
the discriminant function of yi as

f(yi,xi; q
∗) = log p(xi|Φ̂,yi)− c max

d∈[D]

(
(`∆i (d)− µ̂>g∆

i (d))+

)
, (12)

where µ̂ is the mean of q∗(η). Then we can make predictions by maximize this function.

Apparently, the discriminant function (12) represents a strong coupling between the generative
model and the discriminative margin constraints. Therefore, CrowdSVM jointly considers these
two factors when estimating true labels. We also note that the estimation rule used here reduces to
the rule (7) of MM-IWMV by simply setting c =∞.

5 Gibbs CrowdSVM Estimator

CrowdSVM adopts an averaging model to define the posterior constraints in problem (9). Here, we
further provide an alternative strategy which leads to a full Bayesian model with a Gibbs sampler.
The resulting Gibbs-CrowdSVM does not need to make the mean-field assumption.
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5.1 Model Definition
Suppose the target posterior q(Φ,η) is given, we perform the max-margin majority voting by draw-
ing a random sample η. This leads to the crowdsourcing hinge-loss

R(η,y) =

M∑
i=1

max
d∈[D]

(
`∆i (d)− η>g∆

i (d)
)

+
, (13)

which is a function of η. Since η are random, we define the overall hinge-loss as the expectation over
q(η), that is,R′m(q(Φ,η);y) = Eq [R(η,y)]. Due to the convexity of max function, the expected
loss is in fact an upper bound of the average loss, i.e., R′m(q(Φ,η);y) ≥ Rm(q(Φ,η);y). Dif-
fering from CrowdSVM, we also treat the hidden true labels y as random variables with a uniform
prior. Then we define Gibbs-CrowdSVM as solving the problem:

inf
q∈P

L
(
q(Φ,η,y)

)
+ Eq

[
M∑
i=1

2c(ζisi)+

]
, (14)

where ζid = `∆i (d)− η>g∆
i (d), si = argmaxd 6=yi ζid, and the factor 2 is introduced for simplicity.

Data Augmentation In order to build an efficient Gibbs sampler for this problem, we derive the
posterior distribution with the data augmentation [3, 26] for the max-margin regularization term.
We let ψ(yi|xi,η) = exp(−2c(ζisi)+) to represent the regularizer. According to the equality:
ψ(yi|xi,η) =

∫∞
0
ψ(yi, λi|xi,η)dλi, where ψ(yi, λi|xi,η) = (2πλi)

− 1
2 exp( −1

2λi
(λi + cζisi)

2) is
a (unnormalized) joint distribution of yi and the augmented variable λi [14], the posterior of Gibbs-
CrowdSVM can be expressed as the marginal of a higher dimensional distribution, i.e., q(Φ,η,y) =∫
q(Φ,η,y,λ)dλ, where

q(Φ,η,y,λ) ∝ p0(Φ,η,y)

M∏
i=1

p(xi|Φ, yi)ψ(yi, λi|xi,η). (15)

Putting the last two terms together, we can view q(Φ,η,y,λ) as a standard Bayesian posterior, but
with the unnormalized likelihood p̃(xi, λi|Φ,η, yi) ∝ p(xi|Φ, yi)ψ(yi, λi|xi,η), which jointly
considers the noisy observations and the large margin discrimination between the potential true
labels and alternatives.

5.2 Posterior Inference
With the augmented representation, we can do Gibbs sampling to infer the posterior distribution
q(Φ,η,y,λ) and thus q(Φ,η,y) by discarding λ. The conditional distributions for {Φ,η,λ,y}
are derived in Appendix A. Note that when sample λ from the inverse Gaussian distribution, a fast
sampling algorithm [13] can be applied withO(1) time complexity. And for the hidden variables y,
we initially set them as the results of majority voting. After removing burn-in samples, we use their
most frequent values of as the final outputs.

6 Experiments
We now present experimental results to demonstrate the strong discriminative ability of max-margin
majority voting and the promise of our Bayesian models, by comparing with various strong com-
petitors on multiple real datasets.

6.1 Datasets and Setups

We use four real world crowd labeling datasets as summarized in Table 1. Web Search [24]: 177
workers are asked to rate a set of 2,665 query-URL pairs on a relevance rating scale from 1 to 5.
Each task is labeled by 6 workers on average. In total 15,567 labels are collected. Age [8]: It
consists of 10,020 labels of age estimations for 1,002 face images. Each image was labeled by 10
workers. And there are 165 workers involved in these tasks. The final estimations are discretized
into 7 bins. Bluebirds [19]: It consists of 108 bluebird pictures. There are 2 breeds among all the
images, and each image is labeled by all 39 workers. 4,214 labels in total. Flowers [18]: It contains
2,366 binary labels for a dataset with 200 flower pictures. Each worker is asked to answer whether
the flower in picture is peach flower. 36 workers participate in these tasks.
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Table 1: Datasets Overview.

DATASET LABELS ITEMS WORKERS

WEB SEARCH 15,567 2,665 177
AGE 10,020 1,002 165

BLUEBIRDS 4,214 108 39
FLOWERS 2,366 200 36

We compare M3V, as well as its Bayesian ex-
tensions CrowdSVM and Gibbs-CrowdSVM,
with various baselines, including majority vot-
ing (MV), iterative weighted majority voting
(IWMV) [11], the Dawid-Skene (DS) estima-
tor [5], and the minimax entropy (Entropy) es-
timator [25]. For Entropy estimator, we use the implementation provided by the authors, and show
both the performances of its multiclass version (Entropy (M)) and the ordinal version (Entropy (O)).
All the estimators that require an iterative updating are initialized by majority voting to avoid bad lo-
cal minima. All experiments were conducted on a PC with Intel Core i5 3.00GHz CPU and 12.00GB
RAM.

6.2 Model Selection

Due to the special property of crowdsourcing, we cannot simply split the training data into multiple
folds to cross-validate the hyperparameters by using accuracy as the selection criterion, which may
bias to over-optimistic models. Instead, we adopt the likelihood p(X|Φ̂, ŷ) as the criterion to select
parameters, which is indirectly related to our evaluation criterion (i.e., accuracy). Specifically, we
test multiple values of c and `, and select the value that produces a model with the maximal likelihood
on the given dataset. This method ensures us to select model without any prior knowledge on the
true labels. For the special case of M3V, we fix the learned true labels y after training the model
with certain parameters, and learn confusion matrices that optimize the full likelihood in Eq. (2).

Note that the likelihood-based cross-validation strategy [25] is not suitable for CrowdSVM, because
this strategy uses marginal likelihood p(X|Φ) to select model and ignores the label information
of y, through which the effect of constraints is passed for CrowdSVM. If we use this strategy on
CrowdSVM, it will tend to optimize the generative component without considering the discriminant
constraints, thus resulting in c→ 0, which is a trivial solution for model selection.

6.3 Experimental Results

We first test our estimators on the task of estimating true labels. For CrowdSVM, we set α = 1
and v = 1 for all experiments, since we find that the results are insensitive to them. For
M3V, CrowdSVM and Gibbs-CrowdSVM, the regularization parameters (c, `) are selected from
c = 2ˆ[−8 : 0] and ` = [1, 3, 5] by the method in Sec. 6.2. As for Gibbs-CrowdSVM, we generate
50 samples in each run and discard the first 10 samples as burn-in steps, which are sufficiently large
to reach convergence of the likelihood. The reported error rate is the average over 5 runs.

Table 2 presents the error rates of various estimators. We group the comparisons into three parts:

I. All the MV, IWMV and M3V are purely discriminative estimators. We can see that our M3V
produces consistently lower error rates on all the four datasets compared with the vanilla MV
and IWMV, which show the effectiveness of max-margin principle for crowdsourcing;

II. This part analyzes the effects of prior and max-margin regularization on improving the DS
model. We can see that DS+Prior is better than the vanilla DS model on the two larger datasets
by using a Dirichlet prior. Furthermore, CrowdSVM consistently improves the performance of
DS+Prior by considering the max-margin constraints, again demonstrating the effectiveness of
max-margin learning;

III. This part compares our Gibbs-CrowdSVM estimator to the state-of-the-art minimax entropy es-
timators. We can see that Gibbs-CrowdSVM performs better than CrowdSVM on Web-Search,
Age and Flowers datasets, while worse on the small Bluebuirds dataset. And it is comparable
to the minimax entropy estimators, sometimes better with faster running speed as shown in
Fig. 2 and explained below. Note that we only test Entropy (O) on two ordinal datasets, since
this method is specifically designed for ordinal labels, while not always effective.

Fig. 2 summarizes the training time and error rates after each iteration for all estimators on the
largest Web-Search dataset. It shows that the discriminative methods (e.g., IWMV and M3V)
run fast but converge to high error rates. Compared to the minimax entropy estimator, CrowdSVM is
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Table 2: Error-rates (%) of different estimators on four datasets.

METHODS WEB SEARCH AGE BLUEBIRDS FLOWERS

MV 26.90 34.88 24.07 22.00
I IWMV 15.04 34.53 27.78 19.00

M3V 12.74 33.33 20.37 13.50

DS 16.92 39.62 10.19 13.00
II DS+PRIOR 13.26 34.53 10.19 13.50

CROWDSVM 9.42 33.33 10.19 13.50

ENTROPY (M) 11.10 31.14 8.33 13.00
III ENTROPY (O) 10.40 37.32 − −

G-CROWDSVM 7.99± 0.26 32.98± 0.36 10.37±0.41 12.10± 1.07

100 101 102

0.10

0.14

0.18

Time (Seconds)
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Figure 2: Error rates per iteration of various esti-
mators on the web search dataset.

computationally more efficient and also con-
verges to a lower error rate. Gibbs-CrowdSVM
runs slower than CrowdSVM since it needs to
compute the inversion of matrices. The per-
formance of the DS estimator seems mediocre
— its estimation error rate is large and slowly
increases when it runs longer. Perhaps this is
partly because the DS estimator cannot make
good use of the initial knowledge provided by
majority voting.

We further investigate the effectiveness of the
generative component and the discriminative
component of CrowdSVM again on the largest
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Figure 3: NLLs and ERs when separately test the
generative and discriminative components.

Web-Search dataset. For the generative part, we
compared CrowdSVM (c = 0.125, ` = 3) with
DS and M3V (c = 0.125, ` = 3). Fig. 3(a)
compares the negative log likelihoods (NLL) of
these models, computed with Eq. (2). For M3V,
we fix its estimated true labels and find the con-
fusion matrices to optimize the likelihood. The
results show that CrowdSVM achieves a lower
NLL than DS; this suggests that by incorporat-
ing M3V constraints, CrowdSVM finds a better
solution of the true labels as well as the confu-
sion matrices than that found by the original EM algorithm. For the discriminative part, we use the
mean of worker weights µ̂ to estimate the true labels as yi = argmaxd∈[D] µ̂

>g(xi, d), and show
the error rates in Fig. 3(b). Apparently, the weights learned by CrowdSVM are also better than those
learned by the other MV estimators. Overall, these results suggest that CrowdSVM can achieve a
good balance between the generative modeling and the discriminative prediction.

7 Conclusions and Future Work
We present a simple and intuitive max-margin majority voting estimator for learning-from-crowds
as well as its Bayesian extension that conjoins the generative modeling and discriminative predic-
tion. By formulating as a regularized Bayesian inference problem, our methods naturally cover the
classical Dawid-Skene estimator. Empirical results demonstrate the effectiveness of our methods.

Our model is flexible to fit specific complicated application scenarios [22]. One seminal feature of
Bayesian methods is their sequential updating. We can extend our Bayesian estimators to the online
setting where the crowdsourcing labels are collected in a stream and more tasks are distributed. We
have some preliminary results as shown in Appendix B. It would also be interesting to investigate
more on active learning, such as selecting reliable workers to reduce costs [9].
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Max-Margin Majority Voting for Learning from Crowds
Supplementary Materials

A Posterior Inference for Gibbs-CrowdSVM Estimator

Sample Φ: The posterior of Φ is similar as in CrowdSVM. We can derive that q(φmk|y) =
Dir(φmk|nmk +α), which is also a Dirichlet distribution.

Sample η: Given its prior p0(η) = N (η; 0, vI), we can show that the posterior is also a nor-
mal distribution, q(η|y,λ) = N (η;µ,Σ), whose mean is µ = Σ

(
c2
∑
i ( 1
c + `λ−1

i )g∆
i (si)

)
and

covariance matrix is Σ =
(

1
vI + c2

∑
i

1
λi
g∆
i (si)g

∆
i (si)

>
)−1

.

Sampleλ: The conditional distribution of the augmented variablesλ is q(λ|η,y) =
∏
i q(λi|η, yi),

where q(λi|η, yi) = GIG(λi;− 1
2 , 1, c

2(` − η>g∆
i (si))

2) is a generalized inverse Gaussian distri-
bution. Thus, its inverse value follows an inverse Gaussian distribution

p(λ−1
i |η, yi)=IG

(
λ−1
i ; |c(`− η>g∆

i (si))|
−1
, 1
)
, (16)

from which we can draw samples efficiently [13], with O(1) time complexity.

Sample y: Finally, for the true labels we can derive that each single variable yi follows a multino-
mial distribution:

q(yi = d|Φ,η, λi) ∝ p̃(xi, λi|Φ,η, yi = d). (17)

With the conditional distributions, we iterate the above steps for a number of rounds to take samples
from the posterior. In our experiments, we initially set y as the result of majority voting. After
removing burn-in samples, we use the most frequent value of y as the final outputs.

B Online Learning from Crowds

We further extend our methods to an interesting new setting of online learning-from-crowds, where
the crowdsourcing labels are collected in a stream as more tasks are distributed over the crowd-
sourcing platforms. This setting is useful for many applications [1] that require a timely response,
for which we cannot simply wait for collecting all the data before learning a model. We demonstrate
that our online models can immediately estimate the true labels of current tasks, without caching all
historical worker labels.

One seminal feature of Bayesian methods is their sequential updating. We now briefly discuss
an extension of our Bayesian max-margin estimator to the interesting setting of online learning-
from-crowds, where workers continue labeling the tasks that come in a stream. This setting is
of interest in the case where the data are generated in a stream and our model needs to respond
rapidly to provide reliable answers for further decisions. For example, a never-ending-learning
system [1] may continue generating some suspicious facts that call for human labels in order to
justify their confidence. In this case, an online learning-from-crowds model would be useful to
quickly collect the crowd labels and estimate the true answers. Another scenario is the incremental
learning for real-time applications, such as fraud protection, target marketing and intrusion detection,
in which the underlying data distribution is likely to change. They require to update models with the
sequentially arriving data to keep the prediction results accurate. Thus collecting new labels quickly
and accurately is important to them.

Below, we present the online CrowdSVM estimator and the online Gibbs-CrowdSVM estimator,
which are the extensions for CrowdSVM and Gibbs-CrowdSVM.

B.1 Online CrowdSVM Estimator

We consider the online setting where a mini-batch of tasks, Bt, are distributed to the workers for
labeling, and the goal is to estimate the true labels of these tasks from the observations Xt. We
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assume that the set of workers does not change3. Let qt−1(Φ,η) be the inferred posterior after
seeing the (t-1)th mini-batch. Then, given the new mini-batch of tasks Bt, we define the online
CrowdSVM as solving:

inf
ξi≥0,qt,yt

Lt (qt(Φ,η);yt) + c ·
∑
i∈Bt

ξi (18)

s. t. : Eqt [η>g∆
i (d)] ≥ `∆i (d)− ξi,∀i ∈ Bt, d ∈ [D],

where Lt(qt;yt) = KL [qt‖qt−1] − Eqt [log p(Xt|Φ,yt)] . If we ignore the crowdsourcing margin
constraints (e.g., setting c = 0), solving the problem gives exactly the same posterior as doing
the standard sequential Bayesian updating. By considering the extra margin constraints, our work
represents an application of the streaming RegBayes [16] theory to online learning-from-crowds.

Variational Inference. To solve the problem, we introduce the mean-field assumption qt(Φ,η) =
qt(Φ)qt(η), and develop an iterative procedure that alternatively updates each factor distribution:

Update qt(Φ): Fixing the distribution qt(η) and true labels y, the optimal solution has the closed-
form: q∗t (Φ) ∝ qt−1(Φ)p(Xt|Φ,yt). Since the prior p0(Φ) is a Dirichlet distribution, by induction
the inferred distribution at each round is also Dirichlet: q∗t (φjk) = Dir(ntjk + α), where ntjkd =

n
(t−1)
jkd +

∑
i∈Bt

I(yi = k, xij = d) with the initial condition that n0
jkd = 0.

Update qt(η): Given the distribution qt(Φ) and true labels y, this substep involves solving:

inf
ξi≥0,qt(η)

KL [qt(η)‖qt−1(η)] + c ·
∑
i∈Bt

ξi (19)

s. t. :Eqt [η>g∆
i (d)] ≥ `∆i (d)− ξi,∀i ∈ Bt, d ∈ [D].

Letω be the Lagrange multipliers. The solution is q∗t (η) ∝ qt−1(η) exp
(∑

i∈Bt

∑
d ω

d
i η
>g∆

i (d)
)
.

When the prior p0(η) is normal, by induction this posterior is also a normal distribution q∗t (η) =
N (µt, vI), where the mean is sequentially updated as µt = µt−1 +

∑
i∈Bt

∑
d ω

d
i g

∆
i (d) with

the initial condition µ0 = 0. Plugging the normal distributions qt and qt−1 into problem (19) and
absorbing the slacking variables, we can show that the optimal µt is the solution of the following
convex problem:

inf
µ

||µ− µt−1||2

2v
+ c

∑
i∈Bt

∑
d

(
`∆i (d)− µ>g∆

i (d)
)

+
,

which can be solved by a (sub)-gradient descent method.

Update labels yt: Given the distribution qt(Φ,η), the problem of updating labels is exactly the
same as in the batch CrowdSVM. So we can use the same discriminant function to find the best label
estimation of each task in the current mini-batch.

In summary, when a new mini-batch of tasks comes, we iterate the above steps until converge, and
get the estimated true labels at the final iteration.

B.2 Online Gibbs-CrowdSVM Estimator

Similar as the Gibbs-CrowdSVM estimator, we use the expected loss for posterior regularization to
replace the average loss of the online CrowdSVM estimator. When given the new mini-batch of
tasks Bt, this replacement leads to online Gibbs-CrowdSVM problem:

inf
q∈P
Lt(qt(Φ,η,yt)) + Eq

[∑
i∈Bt

2c(ζisi)+

]
, (20)

where Lt(qt) = KL
[
qt‖qt−1

]
− Eqt

[
log p(Xt|Φ,yt)

]
, and ζid = `∆i (d) − η>g∆

i (d), si =
argmaxd 6=yi ζid. Note here we treat the true labels yt as variables rather than parameters.

3This is reasonable sine we can simply define the set containing all web workers. If some workers were not
active, the algorithm will simply ignore them.
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To solve the online Gibbs-CrowdSVM problem, we introduce the mean-field assumption that
qt(Φ,η,yt) = qt(Φ,η)q0(yt). And we include the augmented variables λt to explain the con-
straints. The optimal post-data posterior with augmented variables after processing t mini-batches
is derived as

qt(Φ,η,yt,λt) ∝ q0(yt)qt−1(Φ,η)p(Xt|Φ,yt)
∏
i∈Bt

ψ(yi, λi|xi,η). (21)

Posterior inference. When t-th mini-batch of tasks comes, we do Gibbs sampling to infer the
post-data posterior distribution in Eq. (21). The main steps are detailed as follows.

Sample global variables: Fixing all other variables, the conditional distribution of Φ is

qt(φmk|yt) ∝ qt−1(φmk)p(Xt|Φ,yt). (22)

Similar as in the batch Gibbs-CrowdSVM, we can derive that qt(φmk|yt) = Dir(φmk|ntmk + α).
Given p0(η) = N (η; 0, vI), the conditional distribution for η is

qt(η|yt,λt) ∝ qt−1(η)
∏
i∈Bt

ψ(yi, λi|xi,η), (23)

which can be further derived as qt(η|yt,λt) = N (η;µt,Σt). The distribution mean is µt =
B−1
t At and the covariance matrix is Σt = B−1

t , where A0 = 0 and B0 = 1
vI . The updating rules

for these two notations are

At =At−1 + c2
∑
i∈Bt

(
1

c
+ `λ−1

i )g∆
i (si), (24)

Bt =Bt−1 + c2
∑
i∈Bt

λ−1
i g

∆
i (si)g

∆
i (si)

>
. (25)

Sample local variables: Fix the global variables Φ and η, the sampling procedure for the local
variables λt and yt is the same as that of the batch Gibbs-CrowdSVM in Eq. (16) and (17).

B.3 Results in Online Learning

We test the online CrowdSVM on the web search dataset, which was split into a number of mini-
batches. The regularization parameters are selected by the same method used for batch CrowdSVM.
Since the data doesn’t have specific ordering, we shuffle the mini-batches for 10 times and report the
average results. For baselines, we compare with the online DS estimator, which is in fact a special
case of our online CrowdSVM by simply setting c = 0.
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Figure 4: Overall error rates of online CrowdSVM estimator with different mini-batch sizes.

CrowdSVM. Fig. 4 summarizes the overall error rates of CrowdSVM with different mini-batch
sizes. We can see that when the mini-batch size increases, the overall error rate decreases. This
is reasonable since larger mini-batches contain more information on the interrelationship between
workers and tasks. Furthermore, the performance of batch CrowdSVM provides a lower bound for
the performance of online estimators.

We further investigate the effectiveness of online estimators during the learning process. After
processing each mini-batch, we fix the distribution q(Φ,η), and estimate the true labels of the full
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Figure 5: Online performances of different learning methods with various mini-batch sizes.

dataset. Fig. 5 shows the estimation error rates, with various mini-batch sizes. We also train a
batch CrowdSVM on all the passed data after processing each mini-batch, whose performance acts
as a lower bound of online CrowdSVM’s error rates. Firstly, we can see that the error rates of all
estimators decrease when processed more data, this result shows that the online learners can truly
pass information through the time. Secondly, the curve of online CrowdSVM is very close to the
lower bound curve, suggesting the effectiveness of this estimator. Finally, the results again support
our observation that the online estimator’s performance will improve along with the mini-batch size
increasing.

Gibbs-CrowdSVM. We investigate the effectiveness of online Gibbs-CrowdSVM on the web search
dataset. Fig. 6(a) shows the overall error rates of online Gibbs-CrowdSVM with different mini-batch
sizes. The results show that the error rate of online Gibbs-CrowdSVM decreases as the estimator
processes more data.
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Figure 6: (a) Performances of online Gibbs-CrowdSVM with various mini-batch sizes. (b) Overall
error rates of online Gibbs-CrowdSVM with different mini-batch sizes.

Fig. 6(b) shows the performance of the online Gibbs-CrowdSVM with different mini-batch sizes.
Different lines in this figure show the error rates of online estimators with different mini-batch sizes.
Comparison with the performance of the online CrowdSVM in Fig. 5 and Fig. 4 shows that online
Gibbs-CrowdSVM performs worse than the variational version when the mini-batch size is small,
perhaps because the Gibbs sampler on these small mini-batches of tasks possesses more uncertainty
(i.e., high variance) than the variational inference algorithm.
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