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Abstract

Interpretability of deep neural networks (DNNs) is es-

sential since it enables users to understand the overall

strengths and weaknesses of the models, conveys an un-

derstanding of how the models will behave in the future,

and how to diagnose and correct potential problems. How-

ever, it is challenging to reason about what a DNN actually

does due to its opaque or black-box nature. To address this

issue, we propose a novel technique to improve the inter-

pretability of DNNs by leveraging the rich semantic infor-

mation embedded in human descriptions. By concentrating

on the video captioning task, we first extract a set of se-

mantically meaningful topics from the human descriptions

that cover a wide range of visual concepts, and integrate

them into the model with an interpretive loss. We then pro-

pose a prediction difference maximization algorithm to in-

terpret the learned features of each neuron. Experimental

results demonstrate its effectiveness in video captioning us-

ing the interpretable features, which can also be transferred

to video action recognition. By clearly understanding the

learned features, users can easily revise false predictions

via a human-in-the-loop procedure.

1. Introduction

Deep Neural Networks (DNNs) have demonstrated state-

of-the-art and sometimes human-competitive performance

in numerous vision-related tasks [19], including image

classification [18, 30], object detection [14, 28] and im-

age/video captioning [33, 34]. With such success, DNNs

have been integrated into various intelligent systems as a

key component, e.g., autonomous car [16, 5], medical im-
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Figure 1. An overview of our interpretation system (bottom) com-

pared with an opaque system (top). An opaque system often learns

abstract and incomprehensible features. Human users have to ac-

cept the decisions from the system passively, but are unable to

understand the rationale of the decisions and interact with it. To

address this issue, we incorporate topics embedded in human de-

scriptions as semantic information, to improve interpretability of

DNNs during the learning process. The learned features of each

neuron can be associated with a topic (e.g., topic “road” with top

related words like road, street, and drive can interpret the learned

features of the blue neuron). With the aids of these interpretable

features, human users can easily visualize and interact with the

system, which allows a human-in-the-loop learning procedure.

age analysis [15], financial investment [1], etc. The high-

performance of DNNs highly lies on the fact that they often

stack tens of or even hundreds of nonlinear layers, and en-

code knowledge as numerical weights of various node-to-

node connections.

Although DNNs offer tremendous benefits to various ap-

plications, they are often treated as “black box” models be-

cause of their highly nonlinear functions and unclear work-

ing mechanism [3]. Without a clear understanding of what

a given neuron in the complex models has learned and how

it interacts with others, the development of better models

typically relies on trial-and-error [37]. Furthermore, the ef-

fectiveness of DNNs is partly limited by its inabilities to ex-
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plain the reasons behind the decisions or actions to human

users. It is far from enough to provide eventual outcomes

to the users especially for highly regulated environments,

since they may also need to understand the rationale of the

decisions. For example, a driver of an autonomous car is

eager to recognize why obstacles are reported so that he/she

can decide whether to trust it; and radiologists also require

a clearly interpretable outcome from the system such that

they can integrate the decision with their standard guide-

line when they make diagnosis. As an extreme case in [24],

a DNN can be easily fooled, i.e., it is possible to produce

images that DNNs believe to be recognizable objects with

nearly certain confidence but are completely unrecogniz-

able to humans. In summary, the counter-intuitive prop-

erties and the black-box nature of DNNs make it almost

impossible for one to reason about what they do, foreseen

what they will do, and fix the errors when potential prob-

lems are detected. Therefore, it is imperative to develop sys-

tems with good interpretability, which is an essential prop-

erty for users to clearly understand, appropriately trust, and

effectively interact with the systems.

Recently, many research efforts have been devoted to

interpreting hidden features of DNNs [12, 25, 38, 37],

and have made several steps towards interpretability, e.g.,

the de-convolutional networks [37] to visualize the layers

of convolutional networks, and the activation maximiza-

tion [12] to associate semantic concepts with neurons of

a CNN. A few attempts have also been made to explore

the effectiveness of various gates and connections of re-

current neural networks (RNNs) [10, 17]. Interpretability

also bring us some benefits like weakly supervised detec-

tion [39]. However, these works often focus on analyzing

relatively simple architectures such as AlexNet [18] for im-

age classification. There still lack interpretation techniques

for more complex architectures that integrates both CNN

and RNN, in which the learned features are difficult to in-

terpret and visualize. More importantly, these methods per-

form interpretation and visualization after the training pro-

cess. It means that they can only explain a given model,

but are unable to learn an interpretable model. Such a de-

coupling between learning and interpretation makes it ex-

tremely hard (if possible at all) to get humans to interact

with the models (e.g., correct errors).

In this paper, we address the above limitations by pre-

senting a method that incorporates the interpretability of

hidden features as an essential part during the learning pro-

cess. A key component of our method is to measure the in-

terpretability and properly regularize the learning. Instead

of pursuing a generic solution, we concentrate our attention

on the video captioning task [32], for which DNNs have

proven effective on learning highly predictive features while

the interpretability remains an issue as other DNNs do. In

this task, we leverage the provided text descriptions, which

include rich information, to guide the learning. We first ex-

tract a set of semantically meaningful topics from the cor-

pus, which cover a wide range of visual concepts including

objects, actions, relationships and even the mood or status

of objects, therefore suitable to represent semantic informa-

tion. Then we parse the descriptions of each video to get

a latent topic representation, i.e., a vector in the semantic

space. We integrate the topic representation into the train-

ing process by introducing an interpretive loss, which helps

to improve the interpretability of the learned features.

To further interpret the learned features, we present

a prediction difference maximization algorithm. We also

present a human-in-the-loop learning procedure, through

which users can easily revise false predictions and the

model based on the good interpretation of the learned fea-

tures. Our results on real-world datasets demonstrate the

effectiveness.

2. Methodology

In this section, we present the key components of our

interpretation system. We first overview the system on the

video captioning task. We then present an attentive encoder-

decoder network, which incorporates an interpretive loss

to learn interpretable features. Afterwards, we present a

prediction difference maximization algorithm to interpret

the learned features of each neuron. We will introduce a

human-in-the-loop learning procedure by leveraging the in-

terpretability in Section. 4.

2.1. Overview

Our goal is to improve the interpretability of DNNs with-

out losing efficiency. By designing proper learning ob-

jective, we expect to learn the hidden features with two

properties—discriminability and interpretability. Discrim-

inability defines the ability that the features can distinguish

different inputs and predict corresponding outputs. Inter-

pretability measures the extent that human users can under-

stand and manipulate the learned features. These two prop-

erties are often contradictory in DNNs. According to the

fundamental bias-variance tradeoff, a complex DNN can be

highly competitive in prediction performance but its hidden

features are often too abstract to be understandable for hu-

mans. On the other hand, a simple DNN can lead to more

interpretable features, but it may degrade the performance.

In order to break this dilemma, we introduce extra semantic

information to guide the learning process. In this paper, we

will concentrate on the video captioning task [32], although

the similar ideas can be generalized to other scenarios.

Specifically, the video captioning task aims to automat-

ically describe video content with a complete and natural

sentence. Recent works have demonstrated that video cap-

tioning can benefit from the discovery of multiple seman-

tics, including obejcts, actions, relationships and so on. Liu
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Figure 2. The attentive encoder-decoder framework for the video captioning task, which can automatically learn interpretable features. We

stack a CNN model and a bi-directional LSTM model as encoder to extract video features {v1, ...vn}, and then feed them to an LSTM

decoder to generate descriptions. The attention mechanism is used to let the decoder focus on a weighted sum of temporal features with

weight αt. We extract latent topics from human labeled descriptions as semantic information and introduce an interpretive loss to guide

the learning towards interpretable features, which is optimized jointly with the negative log-likelihood of training descriptions.

et al. [20, 21] proposed one original method for joint human

action modeling and grouping, which can provide compre-

hensive information for video caption modeling and explic-

itly benefit understanding what happens in the given video.

As a video is more than a set of static images, in which there

are not only the static objects but also the temporal relation-

ships and actions, video analysis often requires more com-

plex network architectures. For example, some works have

shown the effectiveness of DNNs on video analysis [2, 35]

when stacking a hierarchical RNN on top of some CNN lay-

ers. Such a complex network makes it more challenging to

learn interpretable hidden features and hinders the interac-

tion between the models and human users. To address this

issue, we propose a novel technique to improve the inter-

pretability of the learned features by leveraging the latent

topics extracted from video descriptions.

The overall framework is shown in Fig. 2, which con-

sists of an attentive encoder-decoder network for video cap-

tion generation and an interpretive loss to guide the learning

towards semantically meaningful features.

Formally, in the training set, each video x has n sam-

ple frames along with a set of Nd descriptions Y =
{y1,y2, ...,yNd}. For each y ∈ Y, let (x,y) denote a

training video-description pair, where y = {y1, y2, ..., yNs
}

is a description with Ns words. We first transform the in-

put x into a set of Dv-dimensional hidden features V =
{v1, ...,vn} by using an encoder network. Then, the hid-

den features are decoded to generate the description y. We

define the task-specific loss as the negative log-likelihood

of the correct description

LT (x,y) = − log p(y|x). (1)

We parse the text descriptions Y to get a semantically

meaningful representation (i.e., a topic representation in this

paper), which is denoted as s. Then, we introduce an in-

terpretive loss LI(V, s) to measure the compliance of the

learned features with respect to the semantic representation

s. Putting together, we define the overall objective function

as

L(x,y, s) = − log p(y|x) + λLI(V, s). (2)

The tradeoff between these two contradictory losses is cap-

tured by a balancing weight λ. An interpretation system

with high-quality can be realized based on an appropriate

λ, which can be obtained using the validation set.

After training (See the experimental section for details),

we use the prediction difference maximization algorithm to

interpret the learned features of each neuron by a topic. Be-

low, we elaborate each part.

2.2. Attentive EncoderDecoder Framework

We adopt an attentive encoder-decoder framework sim-

ilar to [34] for video captioning. The attention mechanism

is used to let the decoder selectively focus on only a small

subset of frames at a time.

A key difference from previous works [32, 34, 26] which

use CNN features as video representations is that we stack

a bi-directional LSTM model [29] on top of a CNN model

to characterize the video temporal variation in both input

directions. Such an encoder network makes the vector rep-

resentation vi of the i-th frame capture temporal informa-

tion, and thus the interpretive loss (defined later in Eq. 8)

lets the internal neurons learn to detect latent topics in the

video. So the learned features are more likely to be both

discriminative and interpretable.

To generate the description sentences, we use an LSTM
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model as the decoder. At each time step, the input to

the LSTM decoder can be represented by [yt−1, φt(V )],
where yt−1 is the previous word and φt(V ) is the dynamic

weighted sum of temporal feature vectors

φt(V ) =

n
∑

i=1

αt
ivi. (3)

The attention weight αt
i reflects the importance of the i-th

temporal features at time step t [34], which is defined as

αt
i =

exp(wa tanh(Uaht−1 +Tavi + ba))
∑n

j=1
exp(wa tanh(Uaht−1 +Tavj + ba))

, (4)

where wa, Ua, Ta and ba are the parameters that are

jointly estimated with the other parameters. We adopt the

same strategy as [33] to initialize the memory state and hid-

den state as
[

c0
h0

]

=

[

finit,c
finit,h

]

(
1

n

n
∑

i=1

vi), (5)

where finit,c and finit,h are both multilayer perceptions,

which can also be jointly estimated.

At each time step, we use the LSTM hidden state ht to

predict the following word, and define a probability distri-

bution over the set of possible words by using a softmax

layer

pt = softmax(Wp[ht, φt(V ),yt−1] + bp). (6)

Therefore, we can predict the next word based on such prob-

ability distribution until the end sign is emitted. The log-

likelihood of the sentence is therefore the sum of the log-

likelihood over the words

log p(y|x) =

Ns
∑

t=1

log p(yt|y<t,x; θ), (7)

where θ are the parameters of the attentive encoder-decoder

model.

2.3. Interpretive Loss

The above architecture for video captioning incorporates

both CNN and RNN to encode the spatial and temporal in-

formation. The complex architecture makes internal neu-

rons learn more abstract features than a single CNN or

RNN, and these features are typically hard to interpret by

human users. To improve the interpretability, we introduce

an interpretive loss, which makes the neurons learn to detect

semantic attributes in the text descriptions. For humans, it

is natural and easy to understand a concept in text descrip-

tions.

In our method, instead of using the raw description

data which can be very sparse and high-dimensional vec-

tors (e.g., in bag-of-words or tf-idf format), we adopt a

people people, group, men, line, crowd

woman woman, lady, women, female, blond

man man, guy, unique, kind, bare

dance dancing, dance, stage, danced, dances

walk walking, walks, race, turtle, walk

eat eating, food, eats, eat, ate

play playing, plays, play, played, instrument

field grass, field, yard, run, garden

dog dog, tail, barking, wagging, small

cat cat, licking, cats, paws, paw

Table 1. Sampled latent topics with their high-probability words.

We have named the topics according to these words.

topic model to learn a semantic representation. As proven

in previous work [13, 7], topic models can extract se-

mantically meaningful concepts (or themes) that are use-

ful for visual analysis tasks. Furthermore, compared to

the raw text descriptions, the representations by topic mod-

els can better capture the global statistics in a corpus as

well as synonymy and polysemy [4]. Here, we adopt the

most popular topic model, i.e., Latent Dirichlet Alloca-

tion (LDA) [4], which has been applied to image/video/text

analysis tasks [13, 7, 6, 40]. Specifically, LDA is a hier-

archical Bayesian model, in which each document is rep-

resented as a finite mixture over topics and each topic is

characterized by a distribution over words. In our case,

we concatenate all of the single descriptions in Y together

to form a “document”. Here, we adopt WarpLDA [9] to

efficiently estimate the parameters for an Nt topics LDA

model, and set Nt to 100 in experiments. The top words

from the learned topics are illustrated in Table. 1. We can

see that each topic has a good correspondence to a mean-

ingful semantic attribute.

After training, we parse each description document to

get the latent topic representation, from which the words are

generated. We encode the topic representation for a video

as a binary vector s = [t1, t2, ..., tNt
] ∈ {0, 1}Nt , whose

i-th element ti is set to 1 when i-th topic occurs in the de-

scriptions, and 0 otherwise. This vector can be obtained by

running the Gibbs sampler in WarpLDA. We use a binary

vector here rather than a real-valued vector denoting the av-

erage probability of each topic, because it provides an easy

way to interpret the learned features of each neuron by a

topic, when applying the prediction difference maximiza-

tion algorithm described in Section. 2.4.

Given the topic representations, we define the interpre-

tive loss as

LI(V, s) = ‖f(
1

n

n
∑

i=1

vi)− s‖2
2
, (8)

where f : Dv → Nt is an arbitrary function mapping

video features to topics. This formulation can be individ-

ually viewed as a multi-label classification task, where we
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predict topics given a set of video features. The choice of

the function f is also a tradeoff between interpretability and

task performance. A complex function with a large number

of parameters will increase the interaction among different

neurons, leading to hard-to-interpret features again. On the

contrary, a too simple function will limit the discriminabil-

ity of the learned features. For example, an identity map-

ping will turn the hidden features into a replica of topics,

which may degrade the performance for caption generation.

Here, we adopt a two-layer perception as f . To avoid over-

fitting, we use “mean pooling” features over all frames as

input. We use l2-norm to define interpretive loss because

it’s simple and effective to build a correspondence between

neurons and topics and it performs well in practice. We will

see in Section. 3.2 how the interpretive loss help to learn

interpretable features.

2.4. Prediction Difference Maximization

To analyze the correspondence between neurons and top-

ics and semantically interpret the learned features, we pro-

pose a prediction difference maximization algorithm, which

is similar with a concurrent and independent work [41], to

represent the learned features of each neuron by a topic.

This method is different from the activation maximization

methods [12, 25], where they aim to find the input patterns

(e.g., image patches) that maximally activate a given neu-

ron. The reason why we do not use activation maximization

is that some neurons represent temporal actions (e.g., play-

ing, eating), which cannot be represented by static image

patches.

Specifically, in a video with topic representation s, for

each topic i that ti = 1 and i ∈ [1, ..., Nt], we expect to find

a neuron j∗i that

j∗i = argmax
j

([f(v)]i − [f(v\j)]i), (9)

where v = 1

n

∑n

i=1
vi are the average video features, v\j

denotes the set of all input features except that the j-th neu-

ron is deactivated (set to zero) and [f(·)]i is the i-th element

of the prediction f(·).

The purpose of Eq. 9 is to find a neuron which con-

tributes most to predicting a topic occurred in the video. We

can consider that the identified neuron j∗i “prefers” topic i,
which can then represent the learned features of j∗i . After

we go through all the videos in the training set, we can find

one or more neurons associated with each topic. Note that

previous work has shown that a neuron may respond to dif-

ferent facets [25], which is also true in our case, that is, a

neuron may prefer different topics. Here, we only choose

one for simplicity to represent the learned features of the

given neuron.

3. Experimental Results

3.1. Experimental Settings

Dataset: We use the YouTubeClips [8] dataset, which is

well suited for training and evaluating an automatic video

captioning model. The dataset has 1, 970 YouTube clips

with around 40 English descriptions per video. The video

clips are open-domain, containing a wide range of daily

subjects like sports, animals, actions, scenarios, etc. Fol-

lowing [32], we use 1, 200 video clips for training, 100
video clips for validation and 670 video clips for testing.

Training: In the attentive encoder-decoder framework,

we select n = 28 equally sampled frames in each video

and feed each frame into GoogLeNet [30] to extract a 1024
dimensional frame-wise representation from the pool5/7×
7 s1 layer. The parameters of GoogLeNet are fixed during

training.

The overall objective function for caption generation is

L =
1

N

N
∑

k=1

(

λ‖f(vk)− sk‖2
2
−

Nk

s
∑

t=1

log p(yk
t |y

k
<t,x

k)
)

,

where there are N training video-description pairs (xk,yk).
vk = 1

n

∑n

i=1
vk
i are the average video features and sk is

the topic representation for video xk.

We use Adadelta [36] to jointly estimate the model pa-

rameters for bi-directional LSTM of the encoder, attentive

LSTM of the decoder and two-layer perception of f . After

training, we apply the prediction difference maximization

algorithm to interpret the learned features of each neuron.

Baseline: In the experiment, we call our model LSTM-I

which jointly models the interpretability of the learned fea-

tures and video captioning. The hyperparameter λ is set

to 0.1 by maximizing the performance on the validation

set. To compare the results, we also test a baseline model

named LSTM-B without interpretive loss—it is only opti-

mized with respect to the sum of negative log-likelihood

over the words. These two models have the same encoder-

decoder architecture.

3.2. Feature Visualization

We visualize the learned representations of test videos in

Fig. 3. The top and bottom rows show the results of LSTM-I

and LSTM-B, respectively. We randomly choose some top-

ics, and for each topic, we find a subset of videos containing

this topic and plot the neuron activations by averaging the

features from these videos. It can be seen that the entries

of LSTM-I representations are very peaky at some specific

neurons, indicating a strong correspondence between top-

ics and neurons. Therefore we can rely on the prediction

difference maximization algorithm to represent the learned

features of neurons by the corresponding semantic topics.

The interpretability of the learned features in LSTM-I is
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Figure 3. Examples of learned video representations using LSTM-

I model (top) and LSTM-B model (bottom). Each histogram indi-

cates an average of activations of a subset of videos, which have

the same topic. (a) representations for topic “dog”; (b) represen-

tations for topic “girl”; (c) representations for topic “walk”; (d)

representations for topic “dance”. The top words for topics are

shown in Table. 1.

better than that in LSTM-B because the correspondence be-

tween neurons and topics decouples the interaction of dif-

ferent neurons, which makes human users easily understand

and manipulate video features (See Section. 4).

To further visualize the variation of the learned features

for a video through time, we randomly choose some videos

for presentation as shown in Fig. 4. For each video, we

select some relevant topics existing in the descriptions and

some irrelevant topics which are unimportant or easily con-

fusing1. We have named the topics according to their high-

probability words (See Table. 1 for the top words with re-

spect to topics). We plot the activations of one neuron as-

sociated with each topic. We can see that the neurons as-

sociated with the salient topics in videos have high activa-

tions through time, which suggests the strong compliance

between neuron activations and video contents.

It should be noted that the relevant topics are mapped

from average video features in Eq. 8, so the associated neu-

rons may not be activated in every frame. For example, in

Fig. 4 (c), the neuron with respect to topic “horse” is not

activated in the first frame, but the average video features

can be mapped to predict topic “horse” correctly. The fact is

also true in Fig. 4 (d), where the neuron with respect to topic

“woman” is only activated in the third frame. It proves that

the neurons are able to detect corresponding topics when

they appear without severe overfitting.

3.3. Performance Comparison

To validate whether the interpretability of the learned

features will affect the task performance, we test the qual-

ity of the generated sentences measured by BLEU [27] and

METEOR [11] scores, which compute the similarity be-

tween a hypothesis and a set of references. In the first block

of Table. 2, we compare the performance with the baseline

model. We can see that LSTM-I significantly outperforms

1A video demo is available at http://ml.cs.tsinghua.edu.

cn/˜yinpeng/papers/demo-cvpr17.mp4

Model BLEU METEOR

LSTM-B (GoogLeNet) 0.416 0.295

LSTM-I (GoogLeNet) 0.446 0.297

LSTM-YT (AlexNet) [32] 0.333 0.291

S2VT (RGB + Optical Flow) [31] - 0.298

SA (GoogLeNet) [34] 0.403 0.290

LSTM-E (VGG) [26] 0.402 0.295

h-RNN (VGG) [35] 0.443 0.311

SA (GoogLeNet + C3D) [34] 0.419 0.296

LSTM-E (VGG + C3D) [26] 0.453 0.310

h-RNN (VGG + C3D) [35] 0.499 0.326

Table 2. BLEU and METEOR scores comparing with the state-of-

the-art results of description generation on YouTubeClips dataset.

the baseline LSTM-B in BLEU score and achieves better

performance in METEOR score. These results suggest that

our model benefits from the proper way of incorporating ex-

ternal semantic information into the training process, which

makes the features capture more useful temporal informa-

tion (e.g., actions, relationships) and thus generates more

accurate descriptions. So the proposed LSTM-I with better

interpretability also helps to improve the performance for

captioning.

To fully evaluate the performance on the video cap-

tioning task, we compare our approach with five state-

of-the-art methods, namely, LSTM-YT [32], S2VT [31],

SA [34], LSTM-E [26], and h-RNN [35]. LSTM-YT

translates videos to descriptions with a single network us-

ing mean pooling of AlexNet [18] features over frames;

S2VT directly maps a sequence of frames to a sequence of

words; SA incorporates a soft attention mechanism into the

encoder-decoder framework; LSTM-E considers the rela-

tionship between the semantics of the entire sentence and

video content by embedding visual-semantic; and h-RNN

exploits the temporal dependency among sentences in a

paragraph by a hierarchical-RNN framework.

We only use 2-D CNN features for simplicity in this

work. For fair comparison, we also show the extensive

results of SA, LSTM-E and h-RNN which only incorpo-

rate 2-D CNN features. By comparing our baseline method

LSTM-B to SA, which only uses a single CNN model as

encoder and a similar decoder architecture, we can see that

our baseline model achieves higher BLEU and METEOR

scores, suggesting that the bi-directional LSTM can help us

capture temporal variation and lead to better video represen-

tations. On the other hand, our LSTM-I achieves state-of-

the-art performance and gets higher BLEU score than other

methods. These results further demonstrate the effective-

ness of our method, and we can conclude that integrating

the interpretability of latent features by leveraging seman-

tic information during training is a feasible way to simulta-

neously improve interpretability and achieve better perfor-

mance.
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Figure 4. Neuron activations with respect to relevant and irrelevant topics in sampled videos. Topics(R) are relevant topics extracted from

video descriptions. Topics(I) are irrelevant topics which are unimportant or easily confusing topics. We plot the activations of one neuron

related to each topic through time.

Model LSTM-B LSTM-I LSTM-R

Accuracy(%) 88.50 91.13 90.13

Table 3. Video action recognition performance of different models.

3.4. Video Action Recognition

We also demonstrate the generalization ability of the

learned interpretable features. Specifically, interpretable

features usually contain more general information than the

features learned by optimizing a task-specific objective,

because task-specific features may overfit the particular

dataset, while interpretable features reach a good balance

between task-specific fitting and generalization. We test this

hypothesis by examining a transfer learning task—we eval-

uate the performance on video action recognition by trans-

ferring the learned features from video captioning.

We use the UCF11 dataset [22], a YouTube action dataset

consisting of 1600 videos and 11 actions, including bas-

ketball shooting, biking, diving, golf swinging, horse rid-

ing, soccer juggling, swinging, tennis swinging, trampoline

jumping, volleyball spiking, and walking. Each video has

only one action associated with it. We randomly choose 800
videos for training and 800 videos for testing. We use the

same encoder architecture as in the video captioning task.

The decoder is a two-layer perception and we minimize the

cross-entropy loss.

Table. 3 presents the results, where we adopt three model

variants. We do not compare with other state-of-the-art ac-

tion recognition models due to the lack of standard train-test

splits. In LSTM-B and LSTM-I, the parameters of the en-

coder are fixed, which are initialized with the trained cap-

tioning model. We can consider that the features for ac-

tion recognition are extracted from the trained captioning

encoder. We only optimize the parameters of the two-layer

decoder. LSTM-R has the same architecture but all the pa-

rameters are initialized randomly and then optimized.

We can see that LSTM-I achieves higher accuracy than

LSTM-B, which verifies our hypothesis that the inter-

pretable features contain more general information than

the task-specific features and lead to higher performance

in other tasks. Another fact is that LSTM-I outperforms

LSTM-R, which indicates that the interpretable features

learned by captioning task are more effective than the fea-

tures learned by action recognition. This is because that the

interpretive loss makes the neurons learn to detect semantic

attributes in LSTM-I model and these features are general

and transferable for other tasks.

4. Human-in-the-loop Learning

An important advantage of the interpretable features is

that they provide a natural interface to get human users in-

volved in the learning process, and make them understand

how the system works, what is going wrong and how to

correct errors (if any). Although previous works [37, 23]

have provided some applications on human interaction and

architecture selection, they still need expert-level users to

join the procedure because non-expert users get little in-

sight about potential problems. They also lack a human-

in-the-loop learning procedure, which helps models inte-
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Figure 5. We show the second half (unseen part) of four videos

and the predicted captions before and after refining the model. By

providing the missing topics (“dance”, “motorcycle”, “swim” and

“polar bear”) for the first half of these four videos and refining the

model, the predictions for the second half are more accurate.

grate human knowledge into the training process to refine

their shortcomings. Here, we present an easy way to allow

a human-in-the-loop learning procedure by clearly under-

standing the learned features without requiring expert-level

experience of human users. In our case, when the model

outputs an inaccurate description, human users only need to

provide the missing topics. The human-in-the-loop learn-

ing procedure can diagnose potential problems in the model

and refine the architecture, so the similar errors will never

occur in future unseen data.

Specifically, the human-in-the-loop learning procedure

can be divided into two steps—activation enhancement and

correction propagation. First, when it receives a topic t
from human users for an inaccurate output, it retrieves a

set of neurons associated with t, which are already found by

the prediction difference maximization algorithm. For these

neurons, it adds the average activations of them in a subset

of training videos containing topic t and turns the original

features v to v∗. The purpose of activation enhancement

is to let the neurons associated with the missing topic have

higher activations, so the decoder propobably maps the new

features to more accurate descriptions. Second, to general-

ize the specific error to future unseen data, we use the cor-

rection propagation to fine-tune the parameters of the en-

coder. We expect to let the encoder learn to generate v∗

instead of v, so we minimize

Lhuman = ‖v′ − v∗‖2
2
+ µ‖θ′ − θ‖2

2
, (10)

where v′ are the outputs of the refined encoder, θ and θ′

are the parameters of the original and the refined encoders,

respectively. The first term aims to let features v′ approx-

imate the optimal features v∗, and the second term forces

the model to have little variations. The balancing weight µ
makes the refined model not overfit to this sample.

In our experiments, it’s hard to find a similar error oc-

curred in two videos in the test set due to its small size and

rich diversity. So we find 20 videos with inaccurate predic-

tions in the test set and split each of them into two parts. We

optimize Eq. 10 using the first half of each video and use the

second half as future unseen data to test. We get more accu-

rate captions for 17 videos (second half), which can capture

the missing topics. Fig. 5 shows four cases. Taking the po-

lar bears video for example, the model doesn’t capture the

salient object “polar bear” for every parts of the video. By

providing the missing topic and refining the model using

the first half, the model can accurately capture “polar bear”

and produce more accurate captions for the second half. It

proves that the model learns to solve its potential problems

with the aid of human users.

We also examine whether this procedure could affect the

overall performance. We test the performance of the new

model after refining for these 20 videos in turn. We get

BLEU score 0.449 and METEOR score 0.298, which are

sightly better than those in Table. 2 to prove that refined

model does not affect the captioning ability while it makes

more accurate predictions for the selected 20 videos.

5. Conclusions

In this work, we propose a novel technique to improve

the interpretability of deep neural networks by leveraging

human descriptions. We base our technique on the challeng-

ing video captioning task. In order to simultaneously im-

prove the interpretability of the learned features and achieve

high performance, we extract semantically meaningful top-

ics from the corpus and introduce an interpretive loss dur-

ing the training process. To interpret the learned features in

DNNs, we propose a prediction difference maximization al-

gorithm to represent the learned features of each neuron by

a topic. We also demonstrate a human-in-the-loop training

procedure which allows humans to revise false predictions

and help to refine the network.

Experimental results show that our method achieves bet-

ter performance than various competitors in video caption-

ing. The learned features in our method are more inter-

pretable than opaque models, which can be transferred to

video action recognition. Several examples prove the effec-

tiveness of our human-in-the-loop learning procedure.
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