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Abstract

Recent progress in variational inference has paid
much attention to the flexibility of variational pos-
teriors. Work has been done to use implicit distri-
butions, i.e., distributions without tractable likeli-
hoods as the variational posterior. However, exist-
ing methods on implicit posteriors still face chal-
lenges of noisy estimation and can hardly scale
to high-dimensional latent variable models. In
this paper, we present an implicit variational infer-
ence approach with kernel density ratio fitting that
addresses these challenges. As far as we know,
for the first time implicit variational inference is
successfully applied to Bayesian neural networks,
which shows promising results on both regression
and classification tasks.

1. Introduction
Bayesian methods have been playing vital roles in ma-
chine learning by providing a principled approach for un-
certainty modeling, posterior inference and preventing over-
fitting (Ghahramani, 2015). As it becomes a common prac-
tice to build large and deep models that have many parame-
ters (LeCun et al., 2015), it is even more important to have
a sophisticated Bayesian formulation to protect these mod-
els. For example, Bayesian Neural Networks (Neal, 2012)
have shown promise in dealing with model uncertainty and
learning with few labeled data.

Besides a few simple examples, Bayesian inference is typi-
cally challenging, for which variational inference has been a
standard workhorse to approximate the true posterior. Tradi-
tional variational inference focuses on mean-field variational
posteriors to get analytical variational updates. While re-
cent progress in this field drives variational inference into
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stochastic, differentiable and amortized (Hoffman et al.,
2013; Paisley et al., 2012; Mnih & Gregor, 2014; Kingma
& Welling, 2013), which does not rely on analytical up-
dates anymore, mean-field posteriors are still commonly
used as the variational family. This greatly restricts the
flexibility of the variational posterior, especially in high-
dimensional spaces, which often leads to biased inference.
There has been some works that try to improve the flexibility
of variational posteriors, borrowing ideas from invertible
transformation of probability distributions to get tractable
density (Rezende & Mohamed, 2015; Kingma et al., 2016).

Although invertible transformation is a promising direction
to increase the expressiveness of the variational posterior,
we argue that a more flexible variational family can be
constructed by using general deterministic or stochastic
transformations, which is not necessarily invertible. As a
common result, the variational posterior does not admit a
tractable likelihood, despite there is a way to sample from
it. This kind of distribution is called implicit distributions,
and for variational methods that use an implicit variational
posterior (also known as variational programs (Ranganath
et al., 2016), wild variational approximations (Liu & Feng,
2016)), we refer to them as Implicit Variational Inference
(Implicit VI).

In this paper we present an implicit variational inference
approach that uses kernel density ratio fitting, which can
scale to high-dimensional latent variable models. As far as
we know, for the first time implicit variational inference is
successfully applied to Bayesian neural networks.

2. Implicit Variational Inference
Consider a generative model p(z,x) = p(z)p(x|z), where
z represents latent variables. In variational inference, a
variational distribution qφ(z) in some parametric family
is chosen to approximate the true posterior p(z|x). The
objective to optimize is called the evidence lower bound
(ELBO):

L(φ) = Eqφ(z) [log p(x|z)]−KL(qφ(z)‖p(z)). (1)

We can see that the challenge of using an implicit qφ is that
computing KL(qφ(z)‖p(z)) requires to evaluate the density
of qφ, which is intractable for an implicit distribution.
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Recently, inspired by the probabilistic interpretation of Gen-
erative Adversarial Networks (Goodfellow et al., 2014; Mo-
hamed & Lakshminarayanan, 2016), there has been some
works that extend the adversarial learning approach to the
posterior inference of latent variable models (Mescheder
et al., 2017; Huszár, 2017; Tran et al., 2017). These methods
all use an implicit variational family and thus can be catego-
rized into Implicit VI methods. One of the key observations
in them is that the density ratio qφ(z)/p(z) can be estimated
from samples of the two distributions by using a probabilis-
tic classifier. They first assign class labels (y) to q and p: Let
samples from qφ(z) be of class y = 1, and samples from
p(z) be of class y = 0. Given equal class priors, the density
ratio at a given point can be calculated as qφ(z)/p(z) =
p(z|y = 1)/p(z|y = 0) = p(y = 1|z)/p(y = 0|z), which
is the ratio between the class probabilities given the data
point. To estimate this, a probabilistic classifier D is trained
to classify between the two classes, with a logistic loss:

max
D

Eqφ(z) log (D(z)) + Ep(z) log (1−D(z)), (2)

where D(z) is a classifier that outputs the probability
of z’s being from class y = 1. Given D is flexible
enough, the optimal solution of problem (2) is D(z) =
qφ(z)/(qφ(z) + p(z)). Therefore, the KL divergence term
in the ELBO of Eq. (1) can be approximated as KL(qφ‖p) ≈
Eqφ(z) [logD(z)− log(1−D(z))] . This is called prior-
contrastive forms of VI in (Huszár, 2017). Note that the
ratio approximation doesn’t change the gradients once the
approximation is accurate (Huszár, 2017). Gradients are
computed using the reparameterization trick (Kingma &
Welling, 2013). Though incorporating the discriminative
power in a probabilistic model has shown great success in
GANs, this approach still suffers from several challenging
problems when applied to variational inference:

• Noisy density ratio estimation In variational inference,
the variational posterior gets updated in each iteration.
To produce accurate estimation, the classifier should be
trained to optimum after each iteration. However, in prac-
tice the classifier is only trained for one or several itera-
tions for each variational update. The resulting unstable
loss often produces noisy gradients and leads to unsatisfy-
ing results. Besides, even if the classifier quickly achieves
the optimum, there is still another issue. Notice that the
training loss in problem (2) is with expectations. But in
practice we are using samples from the two distributions
to approximate it. When the support of the distributions
is high-dimensional, given the limited number of samples
we use, the variance of this estimate is considerable, i.e.,
the classifier may overfit the samples. The phenomenon
is that the classifier achieves a state where samples are
easily distinguished and the probabilities given by the
classifier are near 0 or 1, which is commonly observed in
experiments (Mescheder et al., 2017).

• High dimensional latent variables As the density ratio
is estimated by a classifier, the samples of latent variables
from the two distributions should be fed into it. However,
the typically used neural network classifier cannot scale
towards very high-dimensional inputs (e.g., moderate-
size Bayesian neural networks).

3. Kernel Density Ratio Fitting
As previously mentioned, the key problem of the noisy es-
timation is partly due to crude truncation of the inner loop
after each variational update. Based on the intuition, we
apply a kernel density ratio fitting (KDRF) method simi-
lar to the unconstrained Least Square Importance Fitting
(uLSIF) (Kanamori et al., 2009). Specifically, let the true
density ratio be r(z) = q(z)/p(z). Consider modeling
the density ratio by the linear model: r̂(z) = αTψ(z) =∑K
k=1 αkψk(z), where ψk, k ∈ {1, 2, . . . ,K} are the basis

functions and αk are the combination weights. A common
choice is to set the basis functions as RBF kernels around
the training data points. In practice, to keep the algorithm
efficient, we randomly select a subset of data points from
the samples of q as kernel bases. To estimate the true ratio,
the following squared distance is minimized

L(α) = 1

2

∫
(r̂(z)−r(z))2p(z)dz =

1

2
αTHα−hTα+C

(3)
where H = Ep

[
ψ(z)ψ(z)T

]
, and h = Eq [ψ(z)]. The

expectation can be estimated directly by Monte Carlo in-
tegration. We denote them as Ĥ, ĥ. Adding a quadratic
regularization term λ

2α
Tα to the above loss and removing

the constant, we get the final objective

min
α

1

2
αT Ĥα+ ĥTα+

λ

2
αTα. (4)

We can get the closed-form solution as: α∗ = (Ĥ +

λI)−1ĥ. Note that there should be a constraint that the
estimated density ratio should be non-negative. However,
we do not involve it in the optimization objective in order to
get a closed-form solution.

There are two key differences between the method we use
and the original uLSIF. The first is on how we deal with the
non-negative constraint of density ratios. Because no ex-
plicit constraint is included in the loss, some post-processing
must be done to ensure the estimated ratios are non-negative.
In uLSIF, all αs are clipped to be not less than zero. How-
ever, we argue that reserving some negative coefficients are
essential to obtain smooth approximations, and the clipping
on coefficients often leads to dramatical increase in some
high density regions, resulting in over-estimates of the den-
sity ratio. We solve this issue by replacing the clipping on
α with clipping on the estimated density ratio. The clip-
ping values are searched from {10−8, 10−16, 10−32}. The
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second difference is on the way of determining the kernel
bandwidth. The original uLSIF uses cross-validation while
we apply a heuristic approach that the kernel bandwidth is
chosen to be the median of all distances between the training
data points and the chosen basis, which turns out to work
very well in practice.

Another trick is essential to get an accurate estimate of the
KL divergence. We observe that when applying the above
methods to estimate q

p , the optimization objective in Eq. 3
puts more weights into places where the probability mass
of p is high. However, KL(q‖p) puts more weights into
places where the probability mass of q is high. Unless p
and q match very well in where they put most probabilities,
the ratio estimation objective does not fit well with the KL-
divergence targets. The solution is by a simple trick. Instead
of estimating q

p , we choose to estimate p
q and compute

KL(q‖p) as −Eq log p
q . This trick is found very essential

in experiments to make the estimation accurate enough for
variational inference.

Here we explain how this method addresses the two chal-
lenges stated in Section 2. First, the ratio estimates are given
in closed-forms, thus not having the problem of not catching
up. Second, the bias/variance trade-off of the estimation can
be controlled by the regularization coefficient (λ). When λ
is set smaller, the estimation is more aggressive to match the
samples. When λ is set larger, the estimated ratio function
is smoother. Choosing the appropriate λ, the variance of
estimation can be controlled while maintaining a reasonably
good fit, compared to the extreme ratio estimates given by
classifiers when their probabilities are near 0 or 1.

4. Implicit Variational Bayesian Neural
Networks

In a Bayesian neural network, given input x, the output y is
modeled with

W ∼ N (W|0, I) ; ŷ = fNN (x,W) ; y ∼ P (ŷ; θ) (5)

That is, ŷ is the output of the feed forward network. And
the final output y is of a distribution P parameterized by ŷ
and θ. For regression, P is usually a Gaussian with ŷ as the
mean. For classification, P is usually a discrete distribution
with ŷ as the unnormalized log probabilities.

We use variational inference to approximate the true poste-
rior. The variational posterior is usually set to be factorized
by layer: q

(
{Wl}Ll=1

)
=
∏L
l=1 ql (Wl). Previous methods

use a variational posterior with limited capacity, including
mean-field Gaussian (Hernandez-Lobato & Adams, 2015),
matrix variate Gaussian (Louizos & Welling, 2016; Sun
et al., 2017), normalizing flows (Louizos & Welling, 2017).
Enabled to learn implicit variational posteriors, we propose
to adopt a general distribution without explicit likelihood.

In a neural network, each layer’s parameter W is very high
dimensional. Therefore, we often cannot directly use a
fully connected neural network to model the distribution of
W. Drawing inspiration from low-rank matrix factorization
(Koren et al., 2009), we propose a new kind of network
called Matrix Multiplication Neural Network (MMNN) to
model the implicit distribution of a 2-D matrix, as shown in
Alg. 1. In each layer of a MMNN, for input matrix (Min ×

Algorithm 1 Matrix Multiplication Neural Network

Require: Input matrix X0

Require: network parameters {W l
i }Li=1, {Bli}Li=1,

{W r
i }Li=1, {Bri }Li=1

1: i = 1
2: while i ≤ L do
3: left multiplication: Xi =W l

iXi−1 +Bli
4: right multiplication: Xi = XiW

r
i +Bri

5: if i ≤ L− 1 then
6: Xi = Relu (Xi)
7: end if
8: end while
9: Output XL

Nin), we left multiply a parameter matrix (Mout ×Min)
and add a bias matrix, then we right multiply a parameter
matrix (Nin × Nout) and add a bias matrix. Finally it is
passed through a nonlinear activation function such as Relu.
We call such a layer as Matrix Multiplication Layer of size
[Mout, Nout].

When modeling a matrix, MMNN has significant computa-
tional advantages over fully connected networks. Due to its
low-rank property, MMNN easily scales with matrix size.
To model a M × N matrix, consider a one-layer network
whose input shape is [M0, N0]. For fully connected struc-
ture, the parameter matrix’s shape is [M0N0,MN ]. While
for MMNN structure, we only need two matrices of shape
[M,M0] and two matrices of shape [N0, N ].

To model the implicit distribution of Wl, we only need to
randomly sample a matrix W0

l of smaller size [M0, N0],
and feed it forward through the MMNN to get the output
matrix samples.

W0
l ∼ N (0, I) , q (Wl) =MMNN φl .

(
W0

l

)
(6)

Thus, we can use a MMNN to model the variational poste-
rior of each layer’s parameter Wl for large scale networks.
However, in tasks with small networks, we still use the fully
connected network to model the variational posterior.

5. Experiments
Below we present the experiments of Bayesian neural nets.
We leave results on synthetic datasets to the appendix (A).
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Table 1: Average test set RMSE, predictive log-likelihood for the regression datasets.

Avg. Test RMSE Avg. Test LL
Dataset SVGD Dropout Implicit VI (KDRF) SVGD Dropout Implicit VI (KDRF)
Boston 2.957 ± 0.099 2.97 ±0.19 2.875±0.133 -2.504 ± 0.029 -2.46 ±0.06 -2.598±0.086

Concrete 5.324 ± 0.104 5.23 ±0.12 4.881±0.124 -3.082 ± 0.018 -3.04 ±0.02 -3.116±0.047
Energy 1.374 ± 0.045 1.66 ±0.04 0.583±0.019 -1.767 ± 0.024 -1.99 ±0.02 -1.339±0.006
Kin8nm 0.090 ± 0.001 0.10 ±0.00 0.075±0.001 0.984 ± 0.008 0.95 ±0.01 1.162±0.008
Naval 0.004 ± 0.000 0.01 ±0.00 0.001±0.000 4.089 ± 0.012 3.80 ±0.01 5.434±0.167

Combined 4.033 ± 0.033 4.02 ±0.04 4.010±0.035 -2.815 ± 0.008 -2.80 ±0.01 -2.800±0.008
Protein 4.606 ± 0.013 4.36 ±0.01 4.320±0.012 -2.947 ± 0.003 -2.89 ±0.00 -2.883±0.003
Wine 0.609 ± 0.010 0.62 ±0.01 0.637±0.007 -0.925 ± 0.014 -0.93 ±0.01 -0.962±0.011
Yacht 0.864 ± 0.052 1.11 ±0.09 0.654±0.058 -1.225 ± 0.042 -1.55 ±0.03 -2.084±0.006
Year 8.684 ± NA 8.849 ±NA 9.280±NA -3.580 ± NA -3.588 ± NA -3.648±NA

5.1. Multivariate Regression

To illustrate the predicative ability, we compare the multi-
variate regression results for several public datasets with
stein variational gradient descent (SVGD) (Liu & Wang,
2016) and dropout uncertainty (Gal & Ghahramani, 2016).
We follow the settings in probabilistic backpropagation
(Hernandez-Lobato & Adams, 2015). For information about
our experiment and variational posterior network, see D.1.

The results are shown in Table 1. For each dataset, the best
result is shown as bold. We can see that Implicit VI (KDRF)
consistently outperforms SVGD and dropout in both RMSE
and test log likelihood for most datasets. Especially in
RMSE, Implicit VI (KDRF) has obvious improvements
compared to SVGD and dropout except on Wine and Year
Predication MSD. That is mainly attributed to that Implicit
VI (KDRF) captures more about the complex parameter cor-
relations. Note that matrix variate Gaussian prior (Louizos
& Welling, 2016; Sun et al., 2017) is different from our fac-
torized prior; the former also additionally used variational
dropout, thus their results are not comparable to ours.

Recently, normalizing flows are shown to have good perfor-
mance on Bayesian neural networks (Louizos & Welling,
2017). Being interested in this, we also experiment with
directly applying normalizing flows on this task. See Ap-
pendix B for details.

5.2. MNIST Classification

Table 2: MNIST Classification error rate

hidden Bayes by Backprop,
Gaussian

Implicit VI (KDRF)

400 1.82% 1.68%
800 1.99% 1.56%
1200 2.04% 1.73%

In this part we compare the classification results on MNIST

datasets, which has been worked on by many methods. How-
ever, many of them use a different prior, such as structured
prior (Louizos & Welling, 2016), scale mixture prior (Blun-
dell et al., 2015). Therefore we only compare the classifica-
tion results with Bayes by Backprop (Gaussian) (Blundell
et al., 2015). We use neural network with 2 hidden layers.
For detailed experiment setting, see D.2. The results are
shown in 2. As seen, with the more expressive capacity of
our implicit variational posterior, Implicit VI (KDRF) show
superior classification results compared to the mean field
variational posterior.

To compare with prior-contrastive methods, we also observe
the training lower bound with time going. As the posterior is
extremely high-dimensional, only simple logistic regression
is possible for being a discriminator. So we use logistic
regression as the discriminator for prior-contrastive meth-
ods. Lower bounds of the two methods increase in the same
pace at first, then prior-contrastive fails to converge with
lower bound explosion while Implicit VI (KDRF) improves
consistently. The explosion is mainly because the input to
the discriminator is of hundreds of thousands of dimensions
for this Bayesian neural network. Plain discriminator cannot
handle with such high-dimensional inputs. We also exper-
iment with prior-contrastive for layer size 800 and 1200.
They both fail to converge at end.
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A. Experiments on Synthetic Data
A.1. Toy 1-D Gaussian Mixtures
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(a) Mean-field VI
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(b) Implicit VI (KDRF)

Figure 1: Fitting Gaussian Mixture distribution

We firstly conduct a toy experiment to approximate a 1-D
Gaussian mixture distribution with variational inference.
The Gaussian mixture distribution has two equally dis-
tributed unit-variance components whose means are -3 and
3. We compare the results of Implicit VI (KDRF) with
mean-field VI in Fig. 1. For Implicit VI (KDRF), we for-
ward random samples from a standard normal distribution
through a two-layer fully connected neural network with 50
hidden units and one output unit.

As shown in Fig. 1a, the mean-field posterior converges
to the middle of the two modes, where probability mass is
small. In contrast, Implicit VI (KDRF) can accurately ap-
proximate the Gaussian mixture distribution with expressive
variational posterior.

A.2. 2-D Bayesian Logistic Regression
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(b) Unnormalized true posterior
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(c) Mean-field VI

Figure 2: 2-D Bayesian logistic regression

We also conduct experiments on a 2-D Bayesian logistic
regression example, which has an intractable posterior. The
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(c) implicit (KDE)
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Figure 3: HMC vs. Implicit VI in 2-D Bayesian
logistic regression

model is

w ∼ N(0, I), yi ∼ Bernoulli(σ(wTxi)), i = 1, . . . , N
(7)

where w,xi ∈ R2; σ is the sigmoid function. We generate
N = 200 data points ({(xi, yi)}200i=1) from the true model as
the training data (Fig. 2a). The unnormalized true posterior
is plotted in Fig. 2b. As a baseline, we first run mean-field
variational inference to do posterior inference. The result is
shown in Fig. 2c. It can be clearly seen that the mean-field
VI can capture the position and the scale of the posterior.
But due to its independence property across dimensions, it
cannot fit well to the shape of the true posterior.

We then apply our Implicit VI method. The implicit poste-
rior we use is a simple stochastic neural network. To see how
good the result is, we also run Hamiltonian Monte Carlo
(HMC) to get posterior samples. The results are plotted in
Fig. 3. We can see that the implicit posterior are learned to
capture the strong correlation between the two dimensions
and can produce posterior samples that have a similar shape
with samples drawn by HMC.

B. Comparison with Normalizing Flows
The results are reported in Table 3. We apply 10 planar
normalizing flows (Rezende & Mohamed, 2015) on the
weights to match the computation time of our methods.
However, the results of normalizing flows do not improve
over mean-field VI in this task.

C. Related Work
There are three lines of works closely related.
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Table 3: Test RMSE, log-likelihood for the regression
datasets. VI and NF represent mean-field VI and normaliz-
ing flow.

RMSE VI NF Implicit VI (KDRF)
boston 3.42±0.19 3.43±0.19 2.88±0.13

concrete 6.00±0.10 6.04±0.10 4.88±0.12
energy 2.42±0.06 2.48±0.09 0.58±0.02
kin8nm 0.09±0.00 0.09±0.00 0.08±0.00
naval 0.01±0.00 0.01±0.00 0.00±0.00
LL VI NF Implicit VI (KDRF)

boston -2.66±0.04 -2.66±0.04 -2.60±0.09
concrete -3.22±0.06 -3.24±0.06 -3.12±0.05
energy -2.34±0.02 -2.36±0.03 -1.34±0.01
kin8nm 0.96±0.01 1.01±0.01 1.16±0.01
naval 4.00±0.11 4.04±0.12 5.43±0.17

Implicit generative models Implicit generative models
(generative models that define implicit distributions) have
drawn much attention these days due to the popularity of
Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014). General learning algorithms of implicit models have
been surveyed in (Mohamed & Lakshminarayanan, 2016),
of which density ratio estimation plays the central role. The
connection between density ratio estimation and GANs is
also discussed in (Uehara et al., 2016).

Variational inference Our work builds upon the recent de-
velopments of variational inference, including stochastic
optimization by mini-batches (Hoffman et al., 2013), direct
gradient optimization of variational lower bounds (Paisley
et al., 2012; Mnih & Gregor, 2014), and the reparametriza-
tion trick for continuous latent variable models (Kingma &
Welling, 2013). Following the success of learning with im-
plicit generative models, implicit distributions are applied
to variational inference, which are surveyed in (Huszár,
2017). This paper divides implicit variational inference
into two categories: prior-contrastive and joint-contrastive.
Classifiers in prior-contrastive methods distinguish between
samples from the prior and the variational posterior, while in
joint-contrastive methods it distinguish between the model
joint distribution and the joint distribution composed of
data distribution and variational posteriors. Concurrent with
(Huszár, 2017), authors of (Mescheder et al., 2017) pro-
pose Adversarial Variational Bayes, which is an amortized
version of prior-contrastive methods for training local latent-
variable models like VAEs (Kingma & Welling, 2013). Prior
to (Huszár, 2017), similar ideas with joint-contrastive meth-
ods have been proposed in ALI and Bi-GAN (Dumoulin
et al., 2016; Donahue et al., 2016). Nonparametric meth-
ods for variational inference (Liu & Wang, 2016; Dai et al.,
2015) that adapt a set of particles towards the true poste-
rior are also closely related to implicit variational inference.
They share the similar advantage of flexible approxima-

tions. As previously mentioned, there is also another line of
works on flows (Rezende & Mohamed, 2015; Kingma et al.,
2016; Tomczak & Welling, 2016) that tries to improve the
expressiveness of the variational posterior with invertible
transformations.

Bayesian neural networks There are many recent advances
in inference algorithms for Bayesian neural networks. Prob-
abilistic back-propagation (Hernandez-Lobato & Adams,
2015), structured uncertainty(Sun et al., 2017) is based on
Assumed Density Filtering. Bayes by backprop (Blundell
et al., 2015), dropout uncertainty (Gal & Ghahramani, 2016),
and variational matrix Gaussian (Louizos & Welling, 2016)
build upon variational inference.

D. Experiment Settings and Networks for
Modeling Variational Posteriors

D.1. Multivariate Regression

Following the settings in probabilistic backpropagation
(Hernandez-Lobato & Adams, 2015), we randomly select
90% of the whole dataset for training and use the rest for
testing and use a Bayesian neural network of one hidden
layer. For the two big datasets, i.e., Protein Structure and
Year Predication MSD, the hidden layer is with 100 units.
For the rest datasets, the hidden layer is with 50 units. We
also put a Gamma prior on the output precision. We run
20 times and report the mean and std errors of test perfor-
mances, except 5 times for Protein Structure and only 1
time for Year Predication MSD.

As the regression datasets have small feature dimensions
(usually less than 15, except 90 for year), using Bayesian
neural networks of one hidden layer (50 units) doesn’t pro-
duce very high-dimensional weights. Therefore we still use
fully connected neural networks in the variational posterior.
For the first layer parameter ([50, nin + 1]), we use two
hidden layers of size 1024 and 50 (nin + 1) with Relu ac-
tivations. The input to it is random samples of length 100
from a standard normal distribution. For the second layer
parameter ([1, 51]), we use two hidden layers of size 100,
51. The input to it is random samples of length 50 from a
standard normal distribution.

D.2. MNIST Classification

We use feed forward neural network with two Relu hidden
layers and experiment on layer size 400, 800, 1200. We
use randomly set learning rate 0.001. In both training and
testing, we use 10 random samples, and batch size 100
(For layer size 1200, because of memory problem we use
batch size 40). We randomly select 10000 data points in
training set as validation set. Training with the left 50000
data points, we select the model with best validation result
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for final testing.

MNIST classification needs a larger scale network than the
one used in multivariate regression. Therefore we use a
Matrix Multiplication Neural Network for modeling the
variational posterior. We experimented with hidden layer
size 400, 800 and 1200, denoted by L. Below we set N =
500 when L = 400, otherwise N = 800. In the variational
posterior network, we use two matrix multiplication hidden
layers.

For the first layer parameter ([785, L]), the two hidden ma-
trix multiplication layers are of size [N,N ] and [N,N ] with
Relu activations. The final output layer is of size [L, 785]
with linear activations. The input matrix is random samples
of size [30, 30] from a standard normal distribution. To be
noted, each MM layer represents a left multiply, a right
multiply and two sums.

For the second layer parameter ([L,L + 1]), the two hid-
den matrix multiplication layers are of size [N,N ] and
[N,N ] with Relu activations. The final output layer is of
size [L,L + 1] with linear activations. The input matrix
is random samples of size [30, 30] from a standard normal
distribution.

For the third layer parameter ([10, L + 1]), the two hid-
den matrix multiplication layers are of size [30, N ] and
[30, N ] with Relu activations. The final output layer is of
size [10, L + 1] with linear activations. The input matrix
is random samples of size [30, 30] from a standard normal
distribution.

E. Lower bound with Gamma-Prior Precision
In the multivariate regression task, the output is sampled
from a normal distribution with ŷ (x,W) as mean and
a parameter as variance. The variance controls the like-
lihood of the model, therefore, choosing an appropriate
variance is essential. Therefore we place a Gamma prior
Ga (6, 6) on its reciprocal (i.e., the precision of the Nor-
mal distribution). The variational posterior we used is
q (W, λ) = q (W) q (λ). Then the ELBO can be computed
as

L =Eq(W)Eq(λ) log p (y|x,W, λ)

−KL (q (W) ‖ p (W))−KL (q (λ) ‖ p (λ))

=
1

2
Eq(W)Eq(λ)

[
log λ− λ (y − ŷ (x,W))

2 − log 2π
]

−KL (q (W) ‖ p (W))−KL (q (λ) ‖ p (λ))

=
1

2
Eq(W)

[
ψ (α)− log β − α

β
(y − ŷ (x,W))

2 − log 2π

]
−KL (q (W) ‖ p (W))−KL (q (λ) ‖ p (λ)) .

Where ψ (x) is the digamma function and the KL diver-
gences be calculated in closed-form.


