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Abstract

Crowd behavior understanding is crucial yet challenging
across a wide range of applications, since crowd behavior is
inherently determined by a sequential decision-making pro-
cess based on various factors, such as the pedestrians’ own
destinations, interaction with nearby pedestrians and antici-
pation of upcoming events. In this paper, we propose a novel
framework of Social-Aware Generative Adversarial Imita-
tion Learning (SA-GAIL) to mimic the underlying decision-
making process of pedestrians in crowds. Specifically, we in-
fer the latent factors of human decision-making process in an
unsupervised manner by extending the Generative Adversar-
ial Imitation Learning framework to anticipate future paths
of pedestrians. Different factors of human decision making
are disentangled with mutual information maximization, with
the process modeled by collision avoidance regularization
and Social-Aware LSTMs. Experimental results demonstrate
the potential of our framework in disentangling the latent
decision-making factors of pedestrians and stronger abilities
in predicting future trajectories.

1 Introduction

With the increase of population and diversity of human ac-
tivities, accurate analysis of human behaviors in crowds be-
comes an essential requirement across a wide range of do-
mains, e.g., visual surveillance (Shao, Loy, and Wang 2014;
Shao et al. 2015), robot navigation in crowds (Robicquet
et al. 2016), etc. Recently, there has been a growing inter-
est in developing computational methodologies for model-
ing crowd behaviors, including visual representations (Zhou,
Wang, and Tang 2011; Luber et al. 2010; Zhou, Wang, and
Tang 2012; Rodriguez, Ali, and Kanade 2009), detection of
abnormal behaviors (Mehran, Oyama, and Shah 2009) and
modeling interaction among pedestrians (Andriluka and Si-
gal 2012). Despite these strong needs, the complexities of
crowded scenes such as frequent occlusions among pedes-
trians and large variations of human behaviors across space-
time severely impede the implementation of conventional al-
gorithms. A lot of efforts have been made to address these
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Figure 1: Left: Illustration of an imitating decision-making
process. The dashed white rectangle indicates the pedestrian
of interest. The black segment is her observed trajectory.
Controlled by a latent code, the process generates differ-
ent future trajectories in red, green and blue. Right: Data of
sufficient pedestrians reveal the local approximate motion
trend (yellow arrows) towards the exit in the bottom left cor-
ner. We infer this exit to be the intention of this pedestrian
(denoted white disc). However, to accommodate for nearby
pedestrians (purple discs), other assignments of the latent
code generate more social-aware trajectories.

issues by leveraging the recent advances in deep learning (Su
et al. 2016; 2017; Alahi et al. 2016; Yi, Li, and Wang 2016;
Lee et al. 2017). However, these methods only learn the gen-
eral historical motion statistics of a scene, without deeper
investigation into humans in crowds.

Without more thorough modeling, learning crowd behav-
iors from videos remains difficult partly because the individ-
ual motion is affected by many factors that are not directly
captured by videos. Human behaviors in crowds are inher-
ently determined by a sequential decision-making process
according to the persons of interest, environments and so-
cial rules (Ali 2008; Xie et al. 2017). In general, pedestrians
first decide their destinations, pick paths by considering the
neighboring crowd state, and constantly make minor modi-
fications to follow the majority or avoid collision (see Fig.
1 (Right) for example). This cognitively-based method was
popularly used in crowd simulation previously (Yu and Ter-
zopoulos 2007; Pellegrini et al. 2009). Nevertheless, only
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a few attempts have been made on vision-based analysis,
which resort to simplified rules, energy functions (Pellegrini
et al. 2009; Xie et al. 2017) and grid-based planning (Ziebart
et al. 2009), with large amounts of hand-crafted design and
specification of dynamics and features.

Admittedly, inferring the aforementioned decision-
making process of pedestrians is challenging since it is
complex and determined by various factors, including per-
sonal intentions, neighboring pedestrians, and physical ob-
stacles (Pellegrini et al. 2009). The interaction with neigh-
boring pedestrians has been modeled by social pooling lay-
ers (Alahi et al. 2016; Lee et al. 2017) and coherently regu-
larized RNNs (Zhou, Tang, and Wang 2012; Su et al. 2016).
However, the pedestrian’s own intention, though plays a
key role as the internal driving force of human behav-
iors (Ziebart et al. 2009; Monfort, Liu, and Ziebart 2015;
Xie et al. 2017), remains to be better modeled.

In addition to the quantities of the decision-making fac-
tors, the way that humans consider these factors before mak-
ing decisions is also not well exploited. Humans do not sim-
ply act responsively to them. They also anticipate future
states and induce the current action backwards. One typical
example is when two people travel in orthogonal directions,
they constantly locate each other to forecast whether they
will collide. This innate ability of humans to simulate what
is about to happen before taking actions is missing in almost
all recent works.

1.1 Our proposal

Different from previous algorithms based on the statistics of
visual appearance, we propose a novel Social-Aware Gener-
ative Adversarial Imitation Learning (SA-GAIL) framework
to understand crowd behaviors by inferring the decision-
making process of pedestrians in crowds. Specifically, we
infer the humans’ decision-making process by anticipating
their future paths as illustrated in Fig. 1, which requires a
deeper understanding of the behaviors in determining not
only what the activity is but also how the activity should be
unfolded. To this end, we imitate human behaviors from the
observed trajectories by extending the recent framework of
Generative Adversarial Imitation Learning (GAIL) (Ho and
Ermon 2016), which is capable of training generic neural
network policies to produce expert-like movement patterns
from limited demonstrations.

Compared with existing supervised learning methods (Su
et al. 2016; 2017; Alahi et al. 2016; Yi, Li, and Wang 2016;
Lee et al. 2017), Imitation Learning (IL), especially GAIL,
fits in more naturally for the human decision-making pro-
cess (Li, Song, and Ermon 2017) since it enjoys both a
sound theoretical analysis and efficient training. In partic-
ular, the numerous human trajectories in the training set are
regarded as expert demonstrations, which reflect the human
decision-making process in a crowded scenario. Following
GAIL, we devise a generator (policy) based on the recurrent
encoder-decoder framework which tries to generate behav-
iors matching the expert demonstrations, and a discrimina-
tor which tries to distinguish the generated trajectories from
expert demonstrations. The generator and discriminator are
jointly optimized as playing an adversarial minimax game.

To properly model the pedestrians’ latent intentions, it is
natural to first disentangle the latent intention from other
social factors. To address this, we propose to learn seman-
tically meaningful latent codes that reflect different fac-
tors of the decision-making process. Specifically, the ob-
jective function of GAIL (Ho and Ermon 2016) is fur-
ther augmented with a mutual information term between
the latent codes and the generated paths (Chen et al. 2016;
Li, Song, and Ermon 2017). This modification is based on
the observation that pedestrians with the same entrance and
destination may still behave differently, because they face
different neighborhood conditions. The latent codes thus
provide an elegant way to represent such diversity, with
one setting expectedly corresponding to the policy to walk
straight to the destination, and others corresponding to the
influence of neighbors, as illustrated by the outputs in Fig. 1
(Left). It’s noteworthy that the disentangled latent represen-
tations are learned in an unsupervised manner without any
human labeling of the different factors. This is different from
the traditional physics-inspired Social Force model (Hel-
bing, Farkas, and Vicsek 2000; Mehran, Oyama, and Shah
2009), where different forces driving pedestrians moving are
defined in a hand-crafted fashion.

We further imitate the human decision-making process by
introducing human’s ability of world simulation into SA-
GAIL. Here, we mainly consider the instinct of collision
avoidance. Inspired by the ORCA framework (Van Den Berg
et al. 2011) in crowd simulation, we propose an original
communication-simulation mechanism across pedestrians.
Each pedestrian propagates his/her desired candidate action
to nearby pedestrians, and only executes it when no collision
is detected. The pedestrians will make an efficient move to
avoid pending collisions in advance with minimal effort. In
this paper, we assume that pedestrians choose the paths with
a minimal amount of movement and turning effort upon in-
teracting with each other, which behaves like people observ-
ing neighbors and acting accordingly.

Extensive experiments demonstrate that SA-GAIL can
not only understand the present crowd behaviors but also
predict their future paths after penetrating into the underly-
ing decision-making process. To summarize, our main con-
tributions are:

1. We present a first attempt to apply a novel data-driven
Imitation Learning framework to model the sequen-
tial decision-making process of pedestrian behaviors.
With the imitation process, we reason about and model
crowd motion from a perspective more similar to human
decision-making.

2. The different factors of pedestrian decision-making are
disentangled in an unsupervised manner with mutual in-
formation maximization. We specifically infer the human
intentions apart from human-human interactions, endow-
ing the policy with certain interpretability.

3. We bring the idea of world simulation into behavior un-
derstanding by introducing a collision avoidance regular-
ization which does not jeopardize neural network training.
Our model behaves more human-like and avoids predict-
ing intuitively unreasonable paths.
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Figure 2: Overview of our proposed SA-GAIL. Observed trajectories are fed into the policy to generate future paths. The
policy/generator adopts an encoder-decoder architecture where latent codes could be fused with the decoder, augmented with
a collision avoidance regularization and social awareness. The generated paths, concatenated with the observed ones, are then
fed into the discriminator to guide the generator training and into the posterior to recover the latent code.

2 Methodology

To model the decision-making process of pedestrian be-
haviors, we propose SA-GAIL for crowd behavior under-
standing. In this section, we first formulate the problem and
overview the general framework of SA-GAIL; then, we de-
scribe each component of the architectures; finally we in-
troduce the optimization techniques for trajectory prediction
and intention inference, respectively.

2.1 Problem Formulation

We implement behavior understanding via motion predic-
tion, i.e., given an observed trajectory of length T1, fore-
cast the future trajectory of length T2. The trajectories are
already obtained from tracking in the format of sequences
of coordinates, with the observed trajectory of pedestrian i
being Xi = {x1, x2, ..., xT1

} and his/her ground-truth fu-
ture trajectory being Yi = {yT1+1, yT1+2, ..., yT1+T2}. Each
xi and yi is a two-dimensional coordinate in the video im-
age. Instead of treating trajectory prediction as sequence-to-
sequence mapping (Su et al. 2016; 2017; Alahi et al. 2016;
Lee et al. 2017), we tackle it from a decision-making per-
spective. Borrowing the notion of states and actions in
MDP (Markov Decision Process), we have a policy gen-
erating actions Ŷi conditioned on previous states, where
states correspond to previous coordinates of the trajectory
and actions correspond to the pedestrian’s next position.
In addition to generating one trajectory per person as ex-
isting works do (Su et al. 2016; 2017; Alahi et al. 2016;
Yi, Li, and Wang 2016), we also generate multiple trajec-
tories to visualize intention inference.

2.2 System Overview

As shown in Figure 2, SA-GAIL has three constituent net-
works, namely the policy/generator G, the discriminator D
and the variational posterior estimator Q. The three net-
works are jointly optimized with Imitation Learning (IL) to
deconstruct the underlying decision-making process.

Specifically, the policy G takes as input the observed tra-
jectories and generates future trajectories, which we param-

eterize as a Recurrent Neural Network (RNN). It generates
actions in an auto-regressive manner:

ŷt = G(x1, ..., xT1 , ŷT1+1, ..., ŷt−1), ∀T1 < t ≤ T1 + T2.

When trained to perform intention inference, we also inject
a latent code c to the policy to control its output:

ŷt = G(c;x1, ..., xT1 , ŷT1+1, ..., ŷt−1), ∀T1 < t ≤ T1 + T2.

We design three Social-Aware components into G:

• Intention inference with latent code

• Collision avoidance regularization with simulation

• Social-Aware LSTMs for human-human interaction

The obtained full trajectories from G, merging the observed
and generated parts, are then fed to 1) the discriminator D
to output a score and 2) the posterior Q to try to recover the
latent code injected to the generator before policy execution.

The generator and discriminator are jointly optimized
with GAIL (Ho and Ermon 2016) in the form of an adver-
sarial minimax game as GAN (Goodfellow et al. 2014):

min
G

max
D

E
[
logD([Xi, Yi])

]
+ E

[
log(1−D([Xi, Ŷi]))

]
.

The posterior estimator is further optimized together with
the generator to maximize the mutual information (Chen et
al. 2016) between the generated paths and the injected code:

I([Xi, Ŷi]; c) = H(c)−H(c|[Xi, Ŷi]),

where H(·) is entropy. The policy will then be controlled by
the latent code to generate interpretable trajectories to some
extent as performing intention inference.

2.3 Generator/Policy Design

The generator, acting as the policy for the decision-making
process, should intuitively grasp a fair understanding of
the previous states to decide its next action. However, the
sequential nature of pedestrian trajectories poses practical
challenges for conventional feed-forward neural policies
(Ho and Ermon 2016; Li, Song, and Ermon 2017) to reason
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about the status of each individual as well as the dynamic
interaction between them.

Towards this end, we propose the generator G with an
architecture inspired by the encoder-decoder model (Cho et
al. 2014; Sutskever, Vinyals, and Le 2014) to account for
the sequential nature, as depicted by the Generator part in
Figure 2. To capture the individual status from the observed
trajectory, we input the observed part to the encoder RNN
one coordinate per timestep, which progresses as

ht = RNNenc(xt, ht−1), ∀1 ≤ t ≤ T1.

The last hidden state, hT1
, is treated as the fixed-length de-

scriptor of the observed part of the trajectory to initialize
the decoder RNN. Useful information about the pedestrian
status such as his/her own navigation style and desired des-
tination is extracted in this fixed-length vector.

The decoder RNN then takes hT1
as its initial hidden state

and xT1
as its first input. By recursively inputting its last

generated action to itself, the decoder RNN evolves as
ŷT1+1, hT1+1 = RNNdec(xT1 , hT1)

ŷt, ht = RNNdec(ŷt−1, ht−1),

∀T1 + 1 < t ≤ T1 + T2.

We then build the three Social-Aware components into this
encoder-decoder architecture. We keep the encoder RNN
simple to capture only the individual status, and augment
the decoder RNN with the Social-Aware extensions.

Intention Inference: In this work, for simplicity we con-
sider the two most critical factors underlying the pedes-
trian decision-making process, namely the latent intention of
the pedestrians themselves and the interaction with nearby
pedestrians. As a result of the two factors, in a sparse
environment with few people ahead people usually walk
straight to their intented destinations, and in crowded sce-
narios where there are many people around travelling in
different directions, people have to avoid collision, respect
others’ personal space and thus take detours deviating from
the ideal straight path. Therefore, two pedestrians sharing
similar observed trajectories may still continue to navigate
differently due to the different crowd states they face. The
assumption that people sharing resembling observed paths
would continue behaving similarly, upon which the recent
deep learning methods are based (Su et al. 2016; 2017;
Alahi et al. 2016; Yi, Li, and Wang 2016; Lee et al. 2017), is
thus rather debatable, and a fairer assumption would be that
they share similar latent intentions instead of similar future
behavior.

With sufficient data of pedestrian behavior, we assume
that both types of future behavior (ideal straight and de-
viating detours) are of significant presence. Furthermore,
even though deviating detours may exhibit wide diversity,
the ideal straight trajectory is generally stable and direct to
destination, forming a generalized “mode” conditioned on
observed trajectories. This provides the possibility of learn-
ing the mode in a data-driven fashion to gain a deeper under-
standing of the decision-making process. To model and dis-
entangle the latent intention apart from the diversity caused
by the interaction factor, we propose to inject an additional
code c into our policy so that the policy could act differ-
ently controlled by the code. More specifically, the code is

RNN 
Decoder

RNN 
Decoder

RNN 
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Fully-
connected
64 units
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connected

2 units
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Figure 3: An example of the decoder RNN with injected
code. The code is first embedded to a higher dimension equal
to one of the hidden layers, and is then element-wise added
to the hidden layer activation.

injected after the encoder RNN based on the intuition that
similar observed trajectories should result in similar descrip-
tive vectors hT1

from the encoder RNN. We fuse c with hT1

in a certain way so that different c causes the decoder RNN
to generate different future paths, of which an example ar-
chitecture is shown in Fig. 3. The relationship between c

and genenrated Ŷi is discovered in an unsupervised manner
without any further labeling, as will be detailed in Sec. 2.5.

Collision Avoidance: A policy imitating ordinary pedes-
trians’ decision-making should naturally prevent itself from
generating two crashing trajectories, as ordinary people sim-
ulate, foresee collision and then act accordingly. Recent
deep learning methods achieve this only implicitly through
mean squared error of each trajectory w.r.t. its ground-
truth (Su et al. 2016; 2017; Alahi et al. 2016; Yi, Li, and
Wang 2016; Lee et al. 2017). To explicitly incorporate col-
lision avoidance into our generator, we draw inspiration
from ORCA (Optimal Reciprocal Collision Avoidance) (Van
Den Berg et al. 2011) and propose a novel regularization
mechanism of instant simulation into our policy. In ORCA,
each agent senses its nearby agents’ current velocities and
maps its own to a velocity that’s guaranteed to be safe
for a time window, indirectly simulating for that time. The
mapping operation is implemented as an inner optimiza-
tion loop of linear programming, thus not directly applica-
ble with neural networks’ backpropagation. We accordingly
propose a simplified differentiable operation in this regard.
Each agent still senses all the other agents within the same
mini-batch, but instead of performing velocity mapping, it
will directly stop moving if its generated next action col-
lides with one or more of the others. Therefore, the decoding
RNN now performs the following recurrence:

ŷt, ht = RNNdec(ŷt−1, ht−1)

ŷt =

{
ŷt−1, if colliding
ŷt, if safe

The conditional selection of next actions is implemented in
TensorFlow enabling backpropagation. Collision is deter-
mined if two actions lie closer than several pixels to each
other. The decoder RNN will continue output the same ac-
tion until its generated action becomes safe. This directly
causes the generated trajectories to be much shorter than and
deviating from the ground-truth, thus heavily penalizing col-
lision during training. Compared to ORCA, our mechanism
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equivalently simulates for one timestep into the future (0.5
seconds at 2 fps), treats generated actions as simulated can-
didates and maps them directly to zero velocity if colliding.

Social-Aware LSTM: In addition to coupling the LSTMs
of each individual with collision avoidance, we further
model the interaction between pedestrians inspired by (Alahi
et al. 2016; Su et al. 2016). We employ an operation across
RNNs similar to Social Pooling (Alahi et al. 2016), and con-
struct a vicinity tensor V i

t of size N×N×H in each RNN’s
neighborhood of pixel range N × N . H is the dimension
of the RNN hidden state. The tensor V i

t for trajectory i at
timestep t is computed as follows:

V i
t =

∑
j∈Ni

I[xj
t − xi

t]h
j
t−1,

where Ni is the neighboring pedestrians of person i, I[xj
t −

xi
t] is an indicator function to locate the neighbor, and hj

t−1
is the hidden state of the RNN of person j at timestep t− 1.
This vicinity tensor is further embedded to a compact repre-
sentation with the same dimension as the RNN hidden state,
and added to the hidden state as (Su et al. 2016) does.

2.4 Discriminator and Posterior

The distinction of our framework w.r.t. recent works (Su et
al. 2016; 2017; Alahi et al. 2016; Yi, Li, and Wang 2016;
Lee et al. 2017) lies in that with GAIL the supervision to
the policy is provided by the discriminator. To feed the dis-
criminator with necessary information, we devise the dis-
criminator D to take as input the full generated trajectory,
combining the observed and generated parts. D is also of
a recurrent structure with RNNs first processing the whole
trajectory, and the last hidden state is treated as trajectory
descriptor to be passed to fully-connected layers. The fully-
connected layers are followed by LeakyReLU nonlinearity
as suggested by (Radford, Metz, and Chintala 2015). The
final fully-connected layer outputs the probability of the tra-
jectory being real as in standard GAN.

To establish the relationship between the code c and the
policy G, a variational posterior estimator is further needed
to lowerbound the mutual information (Chen et al. 2016).
Similarly as the discriminator, we build the posterior taking
the combined trajectories as input with output corresponding
to the prior code distribution.

2.5 Optimization Algorithms

In light of the sequential decision-making process of pedes-
trian behavior, we propose to apply Imitation Learning (IL)
and corresponding optimization algorithms to let a policy
imitate crowd motion from data. The data, tracked tracklets,
serve as expert demonstrations in terms of IL.

We advocate to apply GAIL (Ho and Ermon 2016), sus-
taining the efficiency of gradient-based learning while still
formulating the problem as occupancy matching as Inverse
RL does. GAIL introduces a discriminator to distinguish the
generated state-action pairs from the expert-demonstration
ones, and this discriminator guides the learning of the policy
model, drawing inspirations from GANs (Goodfellow et al.
2014). The gradient is not directly backpropagated from D

Algorithm 1 SA-GAIL
Input: Tracked trajectories [Xi, Yi]; initial policy G0, discrimi-
nator D0 and variational posterior estimator Q0

Output: Learned policy G
for i = 0, 1, 2, ... do

† Sample a batch of latent codes from pre-specified distribu-
tion: ci ∼ P (c)

Generate a batch of trajectories Ŷi conditioned on Xi

† (and ci for intention inference, fixed in each rollout)
Sample ground-truth trajectories [Xi, Yi]
Gradient descent on D to minimize

Ê[Xi,Ŷi]
[logD([Xi, Ŷi])] + Ê[Xi,Yi][log(1−D([Xi, Yi]))]

† Gradient descent on Q to minimize

−λÊ[Xi,Ŷi]
[logQ(c|[Xi, Ŷi])]

Update policy G with TRPO to maximize the following re-
ward (without intention inference):

Ê[Xi,Ŷi]
[D([Xi, Ŷi])]

† or (for intention inference):

Ê[Xi,Ŷi]
[D([Xi, Ŷi])]− λÊ[Xi,Ŷi]

[logQ(c|[Xi, Ŷi])]

end for

to G, but through policy gradient algorithms such as TRPO
(Schulman et al. 2015).

Motion Prediction For pure motion prediction, we take
away the intention inference part of our framework, leav-
ing only G and D. The whole system, with Social-Aware
LSTMs and collision avoidance, is trained with the GAIL
algorithm (Ho and Ermon 2016), as outlined in Algorithm 1
without intention inference (the steps beginning with †). The
algorithm optimizes

min
D

max
G

Ê[Xi,Ŷi]
[logD([Xi, G(Xi))])]

+ Ê[Xi,Yi][log(1−D([Xi, Yi]))]

Intention Inference We employ the whole framework of
SA-GAIL together with intention inference. The three net-
works, G, D and Q, given the sampled latent code c, are
jointly optimized with the SA-GAIL algorithm as fully out-
lined in Algorithm 1, similar to (Li, Song, and Ermon 2017).
The algorithm optimizes

min
D,Q

max
G

Ê[Xi,Ŷi]
[logD([Xi, G(Xi))])]

+ Ê[Xi,Yi][log(1−D([Xi, Yi]))]

−λ Ê[Xi,G(Xi)][logQ(c|[Xi, G(Xi)])]

2.6 Characteristics of SA-GAIL

• We propose the collision avoidance regularization with
the idea of simulating the future. Instead of naively regu-
larizing the objective function, it incorporates an intuitive
rule into the network architecture (thus a layer) and fits in
gradient-based learning (still differentiable).

• Our generator design is novel with non-trivial analysis.
We found that a sequence generation model as (Alahi et
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al. 2016) didn’t perform well on our dataset. We deduce
that it’s mainly because the same set of weights process
both observed and generated paths, so we separate the
roles of understanding pedestrian history and predicting
future. With this principle, we add the three social-aware
components all into the decoder, distinct from (Alahi et
al. 2016; Su et al. 2016; 2017) where social-awareness is
distributed all across the network.

• Our SA-LSTM with an additive integration of vicinity and
RNN states models more types of crowd motion than co-
herence (Su et al. 2016; 2017) and is more stable under
empty vicinity than (Alahi et al. 2016). We also adopt the
standard GAN discriminator because the recent WGAN
discriminator exhibits more instability due to clipping on
LSTM discriminator weights and unbounded output.

3 Experiments

We demonstrate the effectiveness of SA-GAIL on two tasks
of pedestrian behavior understanding: behavior prediction
and intention inference. Behavior prediction is the task of
interest in all recent works (Su et al. 2016; 2017; Alahi et
al. 2016; Yi, Li, and Wang 2016; Lee et al. 2017), which
we implement as a preliminary verification of SA-GAIL.
We then conduct intention inference, delving deeper into
the decision-making process and seeking generalized modes
across individuals for disentanglement and interpretability.

3.1 Dataset and Experimental Settings

We conducted all experiments on the publicly available Cen-
tral Station dataset (Zhou, Wang, and Tang 2011), which is a
surveillance video of 33 minutes long with more than 40,000
keypoint tracklets. The scene is shown in Fig. 4, with ten en-
trance/exit regions manually labeled. This dataset is a highly
challenging one in pedestrian motion analysis with usually
over 100 people simultaneously in the unstructured scene.

1 2
3

4

5

6

7

89

10

Figure 4: Ten entrance/exits regions labeled in the scene.

As per Sec. 2.1, we fix T1 = 9 and T2 = 8 in all our ex-
periments. In other words, the first 9 coordinates are treated
as observed part of trajectories, and our system predicts the
last 8 coordinates. Shorter tracklets are ignored. We fix the
lengths T1, T2 for simplicity, but our system is easily ex-
tended to variable-length sequences since the neural net-
works taking the trajectories as input are all of recurrent na-
ture. We sample all trajectories at a frame rate of 2 fps. The
video is 720 pixels in width and 480 pixels in height. We nor-

Table 1: Error of generated trajectories. The ones marked
with † are taken from (Yi, Li, and Wang 2016).

normADE ADE FDE
Constant velocity† 5.86% - -
SFM† 4.45% - -
LTA† 4.35% - -
Behavior CNN† 2.52% - -
Vanilla LSTM 2.39% 14.57 27.78
SA-LSTM 2.14% 12.82 25.51
Vanilla LSTM with
collision avoidance 2.20% 13.11 26.19

full SA-GAIL (no code) 1.98% 11.98 23.05
SA-GAIL without

SA-LSTM 2.21% 13.17 26.55

SA-GAIL without
collision avoidance 2.09% 12.61 25.08

SA-GAIL without GAIL 2.17% 12.95 25.95

malize the two dimensions of coordinates respectively w.r.t.
the size so that all coordinates lie within [0, 1].

We specify the basic network design as follows: we use
an LSTM with 128 units for the encoder of the policy, and
an LSTM with 128 units followed at each timestep by one
fully-connected layer with 64 units and a final output fully-
connected layer with 2 units. The hidden fully-connected
layer employs ReLU nonlinearity as suggested by (Radford,
Metz, and Chintala 2015) for generator. The 2-dimensional
output is treated as Gaussian mean with pre-specified logstd
to parameterize a stochastic policy for TRPO. We adopt
a similar architecture for the discriminator and posterior,
where we use an LSTM with 128 units to process the whole
sequence and add a fully-connected output layer to the last
output of the LSTM. For the discriminator the output layer
has only one sigmoid unit for the probability of the trajec-
tory being real, and for the posterior a softmax distribution.
We train SA-GAIL following the training procedure in (Ho
and Ermon 2016; Li, Song, and Ermon 2017).

3.2 Behavior Prediction

For this task, we take away the posterior and code input of
the networks so our system directly imitates the decision-
making process and emphasizes individual prediction.

Comparison methods: To the best of our knowledge,
only (Yi, Li, and Wang 2016) has done extensive experi-
ments on the same crowd scene, though with different set-
tings of T1, T2, sampling frame rate and trajectory labeling.
We refer to some of their results as approximate baselines
(entries with † in Table 1). We establish three baselines of
our own, namely the vanilla LSTM without any further mod-
ification, the LSTM with only vicinity tensors (SA-LSTM)
and the LSTM with only collision avoidance. These meth-
ods are all trained with supervised learning and are com-
pared to our full system (excluding the intention inference
part). The contribution of each part of our system, the SA-
LSTM, the collision avoidance layer and GAIL training, is
demonstrated with ablation tests by removing each module.

Evaluation metrics: We evalutate prediction perfor-
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Figure 5: Given observed (yellow) trajectories, our model generates different future trajectories (red, green, blue) controlled by
the code, with intention orientations illustrated in dashed green. Ground-truth future paths are shown in white. (1-6): results
with 3-dimensional code. (7-9): results with 2-dimensional code. (10-12): some failure cases.

mance with three metrics, the normalized Avarage Displace-
ment Error (normADE), the Avarage Displacement Error
(ADE) in terms of pixels and the Final Displacement Er-
ror (FDE) also in terms of pixels. The normADE is the error
between generated and ground-truth coordinates normalized
with respect to the image width and height, as used in (Yi,
Li, and Wang 2016). We scale the coordinates back to the
image size of 720× 480 to compute the other two metrics.

Results: We select the first 80% of the tracklets as the
training set, then 10% as validation and the last 10% as
test, and report the test error. As can be seen from Table
1, our simple baseline, vanilla LSTM, is on par with Be-
havior CNN in (Yi, Li, and Wang 2016). Although our ex-
perimental settings are not identical to (Yi, Li, and Wang
2016), this rough comparison still verifies the effectiveness
of our encoder-decoder architecture of the policy. Slight im-
provement is achieved with SA-LSTMs or collision avoid-
ance respectively, preliminarily implying the effectiveness
of the proposed social-aware components.

Our full SA-GAIL without code performs the best, at-
tributed to the better modeling of the decision-making pro-
cess with collision avoidance and SA-LSTMs for inter-
human interaction, as well as the suitable training algorithm,
GAIL, for imitating the process. Ablation tests also demon-
strate the necessity of each introduced module, though from
the comparison between the ablation tests and baselines, not
all network architectures benefit from adversarial training,
presumably due to the difficulty of training recurrent neural
network generators with GANs (Metz et al. 2017). The com-
parison also suggests that the effects of the collision avoid-
ance regularization need further investigation.

3.3 Intention Inference

We add the posterior and code for intention inference. We
experimented with both a 2-dimensional one-hot code and

a 3-dimensional one-hot code. We expect one code configu-
ration discovers the latent intention, and the other config-
uration(s) approximately model behaviors under different
crowd scenarios. We approximately treat the intentions in
this scene to be ideal straight paths to one of the ten en-
trances/exits as shown in Fig. 4. After training with SA-
GAIL, we generate different future paths for each observed
trajectory by iterating over all the code configurations. The
results are shown in Fig. 5, where (1-6) are results of the 3-
dimensional code, and (7-9) are results of the 2-dimensional
code.

We managed to achieve that in both experiments one con-
figuration of the latent code would make the policy exhibit a
more exit-oriented behavior than the other configuration(s)
directly towards the middle of the exits. We arrange the col-
ors of the generated paths so that both such codes in the two
experiments correspond to green trajectories, and use green
dashed lines to illustrate the straight orientations. With infor-
mation maximization the generated trajectories don’t (and
don’t have to) mimic the ground-truth very accurately, but at
least share similar trend.

We also show some failure cases in (10-12) in Fig. 5. Sud-
den turns after the last observed coordinates inevitably cause
large discrepancy as in (10). Occasional inability to recog-
nize the scene (such as walls in (12)) is also present with
no such labels in data. Our policy may also fail on some
rare cases. Besides, it’s hard to evaluate this task fully ob-
jectively since it requires manual specification of intention
and other criteria. Still, we demonstrate the potential of our
method through direct visualization, a key test as in (Chen
et al. 2016; Li, Song, and Ermon 2017).

4 Conclusions

In this paper, we propose a novel framework for understand-
ing human behaviors in crowds by inferring their underlying
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decision-making process, unlike recent advances through
supervised deep learning. Our system, harnessing collision
avoidance and other human interaction with recurrent archi-
tectures, models the decision-making process and disentan-
gles the different decision factors by introducing modes to
the policy. Experiments demonstrate that our algorithm can
not only predict proper future paths of pedestrians but also
infer their inner intentions. By understanding and imitating
the human decision process, it provides a good opportunity
to develop a system that could make safe and reasonable de-
cisions in unconstrained crowded scenarios.
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