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ABSTRACT
Feature selection is an important task in order to achieve
better generalizability in high dimensional learning, and struc-
ture learning of Markov random fields (MRFs) can automat-
ically discover the inherent structures underlying complex
data. Both problems can be cast as solving an �1-norm reg-
ularized parameter estimation problem. The existing Graft-
ing [16] method can avoid doing inference on dense graphs in
structure learning by incrementally selecting new features.
However, Grafting performs a greedy step to optimize over
free parameters once new features are included. This greedy
strategy results in low efficiency when parameter learning
is itself non-trivial, such as in MRFs, in which parameter
learning depends on an expensive subroutine to calculate
gradients. The complexity of calculating gradients in MRFs
is typically exponential to the size of maximal cliques.
In this paper, we present a fast algorithm called Grafting-

Light to solve the �1-norm regularized maximum likelihood
estimation of MRFs for efficient feature selection and struc-
ture learning. Grafting-Light iteratively performs one-step
of orthant-wise gradient descent over free parameters and
selects new features. This lazy strategy is guaranteed to
converge to the global optimum and can effectively select
significant features. On both synthetic and real data sets,
we show that Grafting-Light is much more efficient than
Grafting for both feature selection and structure learning,
and performs comparably with the optimal batch method
that directly optimizes over all the features for feature se-
lection but is much more efficient and accurate for structure
learning of MRFs.
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1. INTRODUCTION
Markov random fields (MRFs) are undirected graphical

models and have been widely used in an ever-growing va-
riety of applications, including natural language process-
ing [21], data mining [14], signal processing [29], etc. Con-
ditional random fields (CRFs) [11] are special MRFs that
are globally conditioned on inputs and have shown great
promise in various applications [21, 14]. These models are
based on composite features that explicitly exploit the struc-
tural dependencies among elements in high-dimensional in-
puts (e.g., text sequences) and structured interpretational
outputs (e.g., part-of-speech tagging). Therefore, they usu-
ally have a complex and high-dimensional feature space. To
achieve better generalizability and interpret complex data,
it is desirable to do feature selection [7] and pursue a sparse
representation of such models that leaves out irrelevant fea-
tures. Since the problem of selecting an optimal subset of
features is NP-hard [28], a popular solution is to use a con-
vex relaxation of the non-convex feature selection problem.
�1-norm regularized maximum likelihood estimation (MLE)
is among the most popular approaches to selecting features
in Markov random fields and has shown great promise [1,
16]. The sparsity of the �1-norm regularized MLE is due to
the singularity of the �1-norm at the origin [24].

Another important problem we consider is the structure
learning of MRFs. As the variety and scale of problems in-
crease, hand-crafting MRFs become less applicable. Learn-
ing the structures of MRFs can automatically discover the
inherent structures underlying complex data. Similar as in
feature selection, structure learning of MRFs can be cast as
solving an �1-norm regularized parameter estimation prob-
lem [12, 27], where the structures of MRFs are encoded by a
set of features. However, solving the �1-norm regularized es-
timation problem is not easy, as we explain below, especially
in MRFs, where the inference is typically exponential to the
size of maximal cliques. In this paper, we focus on devel-
oping efficient algorithms to solve the �1-norm regularized
estimation problem for both feature selection and structure
learning of MRFs.

Two types of approaches have been successfully used to
solve the �1-regularized MLE, that is, the batch methods
(such as the OWL-QN algorithm [1] and the �1-ball projection-
based method [20]) that directly optimize over all the candi-
date features and the incremental methods (such as Graft-
ing [16]) that incrementally include new features. Although
batch methods can deal with a large number (e.g., millions
[1]) of features, there are several scenarios in which only
the incremental methods can be applied. First, for online



feature selection [17], not all the features are available at
the beginning. In this case, incremental methods can be
easily applied. Second, even all the candidate features are
available, a model with all the features can be extremely dif-
ficult to do inference. One typical example is the structure
learning of MRFs, which has been formulated as a feature
selection problem by defining features that encode the de-
pendencies among random variables and performing the �1-
regularized MLE [12]. In this case, including all the features
could lead to an extremely dense (usually complete) graph
structure, of which inference can be extremely hard and in-
accurate. Therefore, we consider the incremental methods
in this paper.
Existing incremental methods, such as Grafting [16], opti-

mize the �1-regularized MLE by iteratively performing two
steps, i.e., optimizing over all the free parameters and select-
ing new features. Although selecting features can be quickly
done by using a gradient-based heuristic to assess and select
new features that can improve the existing model much, op-
timization over the free parameters is usually an expensive
step, especially in Markov random fields. In MRFs, find-
ing the optimal parameters requires an iterative procedure,
such as the quasi-Newton method [13, 21] or stochastic gra-
dient descent [26], in which each iteration needs to compute
the gradients. Computing gradients in MRFs is computa-
tionally expensive even for the models whose tree-width is
small. Moreover, our empirical results show that this greedy
strategy of Grafting tends to select fewer features than the
batch method [1] and under-fit the data.
In this paper, we propose a fast incremental algorithm

called Grafting-Light to solve the �1-regularized MLE for
efficient feature selection and structure learning [12, 27] of
Markov random fields. Grafting-Light fully integrates the
feature selection and parameter learning together by alter-
nating between one-step of gradient descent (instead of full
optimization as in Grafting) over the free parameters and
selecting new features. For gradient descent, we use the
orthant-wise quasi-Newton step [1] as the search direction
and perform a backtracking line search, and for selecting
features, we apply the same gradient-based method as in
Grafting [16]. This simple algorithm is guaranteed to con-
verge to the global optimum. Although this lazy strategy
can result in selecting some redundant features as compared
to the greedy Grafting method, they can be effectively dis-
carded when the �1-regularized MLE achieves its optimum.
Empirical results on both synthetic and real data sets show
that (1) Grafting-Light is much more efficient than Grafting
for both feature selection and structure learning of MRFs;
and (2) Grafting-Light can perform as well as the optimal
batch method that optimizes over all the features on fea-
ture selection, but Grafting-Light is much more efficient and
accurate than the batch method on structure learning of
MRFs.
The paper is organized as follows. Section 2 presents some

related work. Section 3 introduces some preliminaries. Sec-
tion 4 formally describes the two problems of feature selec-
tion and structure learning in MRFs. Section 5 presents the
Grafting-Light algorithm, and section 6 presents our empir-
ical results. Finally, section 7 concludes this paper.

2. RELATED WORK
Feature selection is an important problem and has become

the focus of much research in many areas where data sam-

ples can have tens of thousands of variables, e.g., genomic
microarray data analysis [30]. Feature selection can help
interpret complex data and reduce the risk of over-fitting.
Early approaches including the Filter [9] and Wrapper [10]
often treat feature selection as a separate or weakly corre-
lated task with the learning. Recently, feature selection has
been viewed as an integrated step during learning within the
framework of regularized risk minimization, i.e., minimizing
a regularized empirical risk. By using the �1-norm regular-
izer, irrelevant features can be effectively discarded when the
minimization problem obtains its optimum [24, 33, 34].

The approaches to structure learning of Markov random
fields typically use greedy local heuristic search that incre-
mentally changes the model structure by adding or deleting
edges. The adding or deleting operation is guided towards
an improvement of some objective function, such as marginal
likelihood [15]. As the search is local and greedy, the learned
network is (at best) a local optimum of a penalized likeli-
hood score. Recently, structure learning of MRFs has been
formulated as a convex program that maximizes an �1-norm
regularized log-likelihood [12]. One advantage of this formu-
lation is that it admits a unique global optimal solution.

Many methods have been developed to solve the �1-norm
regularized estimation problem for feature selection or struc-
ture learning, including the batch and incremental meth-
ods as we have discussed in the introduction. The Gauss-
Seidel method [22] is another batch method that applies
a coordinate-descent strategy and optimizes over one sub-
set of features at each step while keeping the weights of all
other features fixed. Like Grafting, this method relies on
a greedy sub-step of fully optimizing over free parameters,
and thus is inefficient for MRFs and may under-fit the data.
Other incremental methods like [18, 14] are even less effi-
cient than Grafting even when some heuristics are used as
in [14], because at each iteration they need to estimate the
likelihood gain for each candidate feature, which depends
on a step of estimating the weights of newly added features.
An empirical comparison of several approaches to solving
the �1-regularization problem is provided in [20].

Finally, for learning structures of the special Gaussian
Markov random fields (GMRFs), inverse covariance estima-
tion methods [2, 32, 3] have been developed based on the
�1-norm penalized maximum likelihood estimation. For the
structure learning of directed Bayesian networks, the struc-
tural EM (SEM) algorithm [4, 5] has a similar procedure as
Grafting, that is, alternatively performing structural search
to find new model structures and parametric search to obtain
the optimal model parameters. Therefore, SEM is greedy in
nature. See Section 5.3.2 for more comparison between SEM
and Grafting-Light.

3. PRELIMINARIES
Without loss of generality, we consider the conditional

random fields (CRFs) [11] which are special Markov random
fields that are globally conditioned on observations. Our al-
gorithm can be applied to any MRFs. Let G = (V,E) be an
undirected model over a set of random variables X and Y.
X are variables over the observations (e.g., text sentences)
to be labeled and Y are variables over the corresponding
labels (e.g., part-of-speech tag sequences). The variables Y
could have a non-trivial structure, such as a linear-chain [11]
or 2D grid. Each component Yi takes values from a set of
possible class labels Yi (e.g. part-of-speech tags). The con-



ditional distribution of the label y (an instance of Y) given
the observation x (an instance of X) is

p(y|x) = 1

Z(x)

∏
c∈C

φ(x,y|c),

where C is the set of cliques on G; y|c are the components
of y associated with the clique c; φ is a potential function
taking non-negative real values; Z(x) =

∑
y

∏
c∈C φ(x,y|c)

is the normalization factor. Usually, the potential functions
are of a log-linear form, i.e., φ(x,y|c) = exp{∑k wkfk(x,y|c)},
where fk(x,y|c) are feature functions and wk are their weights.
We use f to denote the vector of fk and w to denote the cor-
responding vector of weights.
Given a set of labeled training data D = {(xi,yi)}Ni=1, the

standard parameter learning of CRFs is a task to find the
best parameter vector that has the maximal log-likelihood
or minimal negative log-likelihood L(w), where

L(w) = −
N∑

i=1

log p(yi|xi) = −
N∑

i=1

(w�f(xi,yi)− logZ(xi)),

where fk(x,y) to denote the summation of fk over the sam-
ple (x,y). At least in principle, the parameter learning prob-
lem can be solved with gradient descent methods, such as
quasi-Newton [13], stochastic [26], or exponentiated gradi-
ent [6] methods. Each component of the gradient is

∂L(w)

∂wk
= −

N∑

i=1

fk(x
i,yi) +

N∑

i=1

Ep(y|xi)[fk(x
i,y)]. (1)

However, from Eq. (1), we can see that the gradient depends
on the marginal probabilities of the variables associated with
cliques. For a model (e.g., linear chain CRFs [11]) whose
graph structure has a small tree-width (i.e., the size of the
maximum cliques minus one), inferring the marginal proba-
bilities (and the gradients) can be efficiently done, e.g., by
doing forward-backward message passing or using the gen-
eral junction tree algorithm. The complexity of these exact
methods is exponential to the size of the maximum cliques.
But for those models whose graph structures contain large
loops, we have to turn to approximation methods, either
deterministic variational methods [8] and belief propagation
[31]), or stochastic Markov chain Monte Carlo (MCMC)
methods. In general, the accuracy and time-efficiency of
these approximation methods depend largely on the graph
structures. For dense graphs (e.g., a complete graph), ap-
proximation methods can be extremely inaccurate.
In this paper, we present a fast algorithm for efficient fea-

ture selection and structure learning of CRFs (MRFs in gen-
eral). Generally, our algorithm improves in the following two
key aspects: (1) it significantly reduces the number of gradi-
ent computation in feature selection and structure learning,
which is of exponential complexity; and (2) it performs infer-
ence only on sparse graphs in the structure learning problem.

4. PROBLEM SETUPS
In this section, we formally present the problems we want

to solve.

4.1 �1-regularized Feature Selection
As we have stated, feature selection is an important task

to learn a sparse model representation that has a better gen-
eralization ability and can interpret complex data. For dis-
criminative models (e.g., CRFs [11]), since in principle they
can use arbitrary and overlapping features, the dimension
of their feature spaces is usually very high and sparse, and

discarding redundant features will not hurt the performance
much. For example, in the NP-chunking task more than 3
million (much larger than the number of training data) fea-
tures were used in [21]. However, as we shall see, most (e.g.,
99.9%) of these features can be discarded without decreasing
the performance more than 1% in F1 score.

Traditional feature selection methods like Wrapper [10]
and Filter [9] adopt an ineffective strategy that treats feature
selection and learning as two independent or weakly corre-
lated (as in Wrapper) tasks. Thus the information gleaned
from the data by the learning system may be ignored when
selecting features. We consider the integrated approach of
�1-regularized maximum (conditional) likelihood estimation
as in [16]. Our objective function to minimize is:

L(w) � L(w) + λ‖w‖. (2)

where ‖w‖ � ∑
k |wk| is the �1-norm.

Due to the singularity at the origin, the �1-norm has been
widely used as a regularizer to achieve sparse estimates [24,
16, 3] by setting some feature functions’ weights to exact
zeros. In this generic formulation, we can use other loss
functions L(w), such as the hinge loss in SVMs [33] or struc-
tured hinge loss in max-margin Markov networks [34]. We
can also introduce an additional differentiable �2-norm

1 as
in [16] without changing the algorithm as presented below.

4.2 �1-regularized Structure Learning
Structure learning is a task to learn the graph topology of

MRFs. Recently, the structure learning problem of MRFs
has been formulated as a feature selection problem by defin-
ing the feature functions f to encode the model structures
and performing the �1-regularized MLE [12, 27]. We con-
sider both the pure feature selection problem (when model
structures are kept fixed) and learning structures of MRFs
in our experiments.

Two major types of approaches have been used to mini-
mize L(w), that is, batch methods and incremental meth-
ods. Batch methods (e.g., OWL-QN [1] and the �1-ball
projection-based approach [20]) optimize L(w) over all the
features from the very beginning. In contrast, incremental
methods (e.g., Grafting [16]) maintain a working set of ac-
tive features and iteratively optimize L(w) over the active
features and select new features to add into the working set.
As we have stated, although batch methods can handle a
large set of features, there are many scenarios in which only
the incremental methods can be applied, such as structure
learning of graphical models [12] and online feature selection
[17]. Therefore, we focus on the incremental methods and
present a fast algorithm for selecting features and learning
structures of Markov random fields.

5. THE GRAFTING-LIGHT ALGORITHM
In this section, we present the fast Grafting-Light algo-

rithm with comparisons with existing methods and conver-
gence analysis. The basic idea is that we begin with a model
whose weights are almost all zeros. Then, we iteratively
perform two steps, which are similar to but fundamentally
different from those of Grafting [16]. At each iteration, we
use a fast gradient-based heuristic to decide which features

1The composite regularizer of �1 and �2 norms is known
as an elastic net regularizer, which has nice properties as
discussed in [35].



Algorithm 1 Grafting-Light

Input: data D = {(xi,yi)}Ni=1, constant λ, candidate
feature set F , and Select Unit M (M ≥ 1)
Output: a subset S ⊆ F and weights w
Initialize S ← ∅ and U = F .
repeat

Step 1: Perform one-step of orthant-wise gradient de-
scent of L(w) over the working set S.
Step 2: Select top M features from the set {fk :
fk ∈ U , and |∂kL(w)| > λ} with large absolute sub-
gradients. Add selected features into S and remove
them from U .

until convergence.

should be included in order to decrease the objective func-
tion by the maximum amount. Then, we perform one-step
(or several steps) of gradient descent over all the active fea-
tures that have been selected.

5.1 Optimality Conditions
Before describing the algorithm, we note that the opti-

mality conditions of minimizing L(w) are:

∀k,
{

∂kL(w) + λsgn(wk) = 0, wk 	= 0
|∂kL(w)| ≤ λ, otherwise

(3)

where we have used ∂kL(w) to denote the partial deriva-

tive ∂L(w)
∂wk

as computed in Eq. (1), and the signum func-

tion sgn(w) takes values from {−1, 0, 1} according to whether
w is negative, zero, or positive. From the optimality condi-
tions, we can define the sub-gradient of L(w) as:

∂kL(w) =

⎧⎪⎪⎨
⎪⎪⎩

∂kL(w) + λsgn(wk), wk 	= 0
∂kL(w) + λ, wk = 0, ∂kL(w) < −λ
∂kL(w)− λ, wk = 0, ∂kL(w) > λ

0, wk = 0, |∂kL(w)| ≤ λ

(4)

Then, the negative sub-gradient as defined in Eq. (4) is
the direction of maximum descent and the optimality con-
ditions (3) are equivalent to the condition that ∂kL(w) =
0, ∀k. Both Grafting and Grafting-Light are iterative pro-
cedures that incrementally include new features until the
above optimality conditions are satisfied for all the features.

5.2 The Basic Algorithm
The Grafting-Light algorithm maintains a working set S

of selected features, and alternates between two steps. The
procedure is outlined in Algorithm 1, and detailed below.
Step 1: one-step of orthant-wise gradient descent

over the working set S. At each iteration, Grafting-Light
performs one step of gradient descent over the features in S.
Although the objective function L(w) is not differentiable
everywhere, it is if w takes values within one orthant. Based
on this observation, we can apply the fast quasi-Newton gra-
dient descent step within a particular orthant. This idea has
been explored in the OWL-QN algorithm [1].
At the tth iteration, according to the definition of the

subgradient as in Eq. (4), a reasonable orthant is the one
that contains wt and into which ∂L(wt) leads, that is,

∀k, ek =

{
sgn(wk), wk 	= 0

sgn(−∂kL(w)), wk = 0
.

Let Ht denote the approximate hessian matrix at the point

wt. This matrix can be efficiently computed as in the lim-
ited memory BFGS (L-BFGS) algorithm [13], which only
uses the first-order information gathered from previously ex-
plored points within several steps. We refer the interested
readers to [13] for more details. Given Ht, the quasi-Newton
search direction is:

dt = Π(Htp
t, e),

where pt = Π(−∂L(wt), e) is the projection of the negative
sub-gradient into the subspace associated with the orthant
e, and

∀k, Πk(μ, v) =

{
μk, sgn(μk) = sgn(vk)
0, otherwise

Given dt, we do backtracking line search to select a step
size α. During this procedure, we need to keep all the ex-
plored points w within the orthant e. This can be done by
using the projection operator Π. Specifically, the backtrack-
ing line search looks for the first step size α such that:

L(Π(wt + αdt, e)) ≤ L(wt)− γe�[Π(wt + αdt, e)−wt],

where α = βn (n = 0, 1, 2, · · · ) and γ, β ∈ (0, 1) are con-
stants. Then, the new model parameter is wt+1 = Π(wt +
αdt, e).

Step 2: select new features. Grafting-Light selects
new features to add into the working set S. Like Graft-
ing, Grafting-Light selects features that have largest sub-
gradients (in magnitude). For those inactive features which
satisfy the optimality condition (3), the coordinate-wise sub-
gradients are zeros, and the weights will stay at zero at the
next iteration. Therefore, Grafting-Light selects M (M ≥ 1)
features that satisfy |∂kL(w)| > λ and have the largest
sub-gradients in magnitude2. The selected new features are
added to the working set S. We refer to M as the Select
Unit, that is, the number of features selected at each itera-
tion.

Grafting-Light alternates between the above two steps un-
til convergence. We set the stopping criterion as the aver-
age change of the L(w) within several steps is less than
a threshold ε. Note that the working set S may not be
changed at Step 2 (when no features satisfy the condition
|∂kL(w)| > λ).

5.3 Connections to Other Methods
The procedure of Grafting-Light is very simple as in Algo-

rithm 1, and one can easily implement it. To better under-
stand the idea of Grafting-Light, we discuss the relationships
between Grafting-Light and existing methods.

5.3.1 Comparison with Incremental Methods
The Grafting [16] method takes the similar iterative pro-

cedure to incrementally select new features. But the key dif-
ference is that Grafting aggressively optimizes over the free
parameters at each iteration after new features have been se-
lected, while Grafting-Light just performs one step of gradi-
ent descent. Figure 1 illustrates the basic idea. Suppose the
working set S is initialized to contain the feature weighted
by μ. Then, Grafting-Light performs one step of gradient de-
scent along the coordinate μ to μ1, while Grafting optimizes
over the free parameter μ to arrive at the local optimum

2If the number of features that satisfy |∂kL(w)| > λ is
smaller than M , all these feature are selected.



Figure 1: 2D illustration of the algorithms: (Left)
Grafting-Light; (Right) Grafting.

point μ�. After this step, both Grafting and Grafting-Light
select new features. Suppose the feature weighted by v is
selected by both algorithms. Then, Grafting-Light starts
performing gradient-descent in the two dimensional space
from (μ1, 0) and keep going until convergence, while Graft-
ing again optimizes over the free parameters (i.e., μ and v),
starting from the previous local optimum point (μ�, 0) (solid
line) or the origin (dashed line). Similar to Grafting, the in-
formation gain-based methods [18, 14] also fully optimize
over free parameters at each iteration. These greedy incre-
mental methods are inefficient for the feature selection or
structure learning of MRFs because the optimization over
free parameters can require many times of calculating the
gradients, which is an expensive subroutine in MRFs. More-
over, they may result in a too sparse model that under-fits
the data.

5.3.2 Comparison with Structural EM
As we have stated, both the Grafting and Grafting-Light

can be used to learn the structures of MRFs. The key idea
of Grafting and Grafting-Light is to integrate the structure
learning of MRFs into the procedure of parameter estima-
tion, which is performed with gradient descent methods.
The basic procedure alternatively performs the structural
search (i.e., including new features in Grafting or Grafting-
Light) and parametric search (i.e., parameter estimation with
gradient descents) in the joint structure-parameter space.
Since the parametric search step is very computationally
demanding, Grafting-Light adopts a lazy strategy, which
performs one or several steps of gradient descents. This
lazy strategy can significantly reduce the number of gra-
dient evaluation, which can be exponentially expensive in
MRFs, as we shall see in the experiments.
A similar idea has been investigated in the well-known

structural EM (SEM) (a.k.a, model selection EM: MS-EM)
algorithm [4, 5], which is used for the structure learning of
directed Bayesian networks (BNs) in the presence of miss-
ing data or hidden variables. The basic procedure of SEM
is the similar to that of Grafting or Grafting-Light, that is,
alternatively performing the structural search and paramet-
ric search. For Bayesian networks with hidden variables,
the parametric search is performed with an EM algorithm,
which is greedy in the sense that the EM algorithm finds the
optimal model parameters. This greedy strategy is accept-
able for Bayesian networks because in BNs the EM proce-
dure is much cheaper than the structural search. However,
a greedy strategy of parametric search is not acceptable in
the structure learning of MRFs, because of the expensive
and inaccurate gradient evaluation, as we have discussed.

The alternating MS-EM algorithm [4] is also greedy in na-
ture, and thereby essentially different from Grafting-Light.

5.3.3 Comparison with OWL-QN
The orthant-wise quasi-Newton (OWL-QN) [1] method

for solving �1-regularized CRFs is a batch method that op-
timizes over all the features from the very beginning. As
we have stated, this batch method has its disadvantages in
several scenarios, like structure learning of MRFs and online
feature selection. The Grafting-Light can be seen as an in-
cremental version of the OWL-QN. As we shall see, Grafting-
Light can work as well as the OWL-QN when model struc-
tures are kept fixed, and is much more efficient and accurate
on learning the structures of MRFs.

5.4 Convergence
Based on the above connections, we can get the following

convergence theorem of Grafting-Light:

Theorem 1 (Convergence). When the loss function
L(w) is convex, bounded below, and continuously differen-
tiable, the Grafting-Light converges to the global optimum.

The convergence can be derived from the convergence
theorem of OWL-QN [1]. We present some intuitive in-
sights here. The stopping criterion guarantees that when
Grafting-Light stops, the optimality conditions (3) are sat-
isfied. Thus, the solution of Grafting-Light is a local opti-
mum of L(w), because the points explored at each iteration
are constrained in a subspace. Since L is convex, L is also
convex and the local optimum is the global optimum.

6. EXPERIMENTS
In this section, we report our empirical results of Grafting-

Light on both feature selection and structure learning of
MRFs [12]. We compare with Grafting [16], Gauss-Seidel
[22], and the full optimization with an �1-regularizer (Full-
Opt.-L1) [1]. The information-gain methods [18, 14] are too
expensive and we do not report their results here. All the
algorithms are implemented in the C++ language on a stan-
dard Intel 2.00 GHz processor. For Grafting, we use the
same select unit M , and for Gauss-Seidel, M is the number
of features that are optimized over at each step.

6.1 Feature Selection
Our first set of experiments are on selecting features of

MRFs, whose model structures are kept fixed during the
learning. We report results on both synthetic and real NP-
Chunking data sets. In this case, the batch method Full-
Opt.-L1 is optimal in the sense of obtaining the best subset
of features, achieving the best predictive performance, etc.
Although stochastic gradient methods [26, 25] may achieve
better time efficiency than Full-Opt.-L1, they usually se-
lect many irrelevant features because of the approximate
stochastic gradients they are using. The main observation
in these experiments is that Grafting-Light performs com-
parably with the optimal Full-Opt.-L1, and is much more
efficient than Grafting and Gauss-Seidel.

6.1.1 Evaluation on Synthetic Data
We generate sequence data sets, i.e., each input x is a se-

quence (x1, · · · , xL), and each component xl is a d-dimensional
vector of input features. The synthetic data are generated
from pre-specified CRF models with i.i.d. instantiations of
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Figure 2: The training time (in cpu-seconds), negative log-likelihood, error rate, number of non-zero features,
number of selected features (in base 10 logarithm) during training, and number of gradient calculation on
the synthetic data by different algorithms when they use different Select Unit M .

the input features, from which samples of the structured out-
put y, i.e., a sequence (y1, · · · , yL), can be drawn from the
conditional distribution p(y|x) defined by the CRF based
on a Gibbs sampler. Specifically, we set d = 1000 and 100
input features are relevant to the output. The i.i.d input
features are randomly drawn from a standard Gaussian dis-
tribution. We randomly generate a linear-chain CRFs with
8 binary states (i.e., L = 8 and Yl = {0, 1}). The feature
functions include: 2000 real valued state-feature functions,
of which each is over a one-dimensional input feature and a
class label; and 4 (2×2) transition feature functions captur-
ing pairwise label dependencies. We generate a data set that
contains 5000 instances of which 3000 are randomly selected
as training data and the rest are for testing.
We compare different methods on six criteria, that is,

training time, negative log-likelihood on the training set,
error rate, number of non-zero features in the final estimate,
number of selected features, and the number of computing
gradients. Figure 2 shows the results of different methods
with respect to the select unit M (1, 10, 20, · · · , 110). For
easy comparison, we use the same regularization constant
λ = 64, which is the best parameter for the Full Opt. L1
method. From the results, we can see that: (1) Grafting-
Light is much more efficient than Grafting and Gauss-Seidel,
especially when the select unit M is small. Also, compared
to Grafting, the Grafting-Light is more robust with respect
to the select unit. This robustness is important for on-
line feature selection [17], where only a few features come
at one time. Moreover, as shown in the fourth and fifth
plots, Grafting-Light usually includes more features than the
greedy Grafting during training, but the �1-regularization
can effectively discard redundant features when Grafting-
Light converges and result in almost the same numbers of
non-zero features as the optimal Full-Opt.-L1; (2) Grafting-
Light performs comparably with the optimal batch method
(Full-Opt.-L1) on all the six evaluation criteria, except the
number of features included during training. Since the train-
ing time is mainly spent on performing forward-backward

message passing on the linear-chain CRFs, Full-Opt.-L1 is
always the most efficient one because of the fewest num-
ber of computing gradients as shown in the last plot, al-
though both Grafting and Gauss-Seidel use much fewer fea-
tures than Full-Opt.-L1 during training; (3) when the select
unit M is fixed, the greedy Grafting and Gauss-Seidel usu-
ally select fewer features, as compared to Grafting-Light and
the optimal Full-Opt.-L1. A too sparse model may under-fit
the data and result in a large error rate. For example, when
M is very small, Gauss-Seidel selects much fewer features
than Full-Opt.-L1 and leads to a model that has a larger
error rate and larger negative log-likelihood.

6.1.2 Evaluation on NP Chunking
We perform feature selection on real NP chunking, which

is a sequence labeling task. In NP Chunking, the input is
a word sequence and each word has an automatically anno-
tated part-of-speech (POS) tag. The output is a correspond-
ing label sequence, in which each label indicates whether a
word is outside a chunk (O), starts a chunk (B), or continues
a chunk (I). We use the CoNLL-2000 data set [19].

We use the same method as in [21] to define the labels y for
a second-order Markov dependency between chunk tags, and
the feature functions that encode the pairwise dependency
between labels and the dependency between a label and in-
put features (e.g., unigram words, bigram word pairs, uni-
gram POS tags, bigram POS tag pairs, and trigram POS tag
tuples). See Table 1 in [21] for detailed definition. The to-
tal number of supporting feature functions whose predicate
is on at least once in the training set is larger than 3 mil-
lions. We compare different methods to select features from
all these candidate feature functions. We choose the regu-
larization constant λ of Full-Opt.-L1 by doing 5-fold cross
validation, and compare all the methods using the same λ.

Figure 3 shows the results on the six criteria, that is,
training time, negative log-likelihood on the training set,
F1 (i.e., the harmonic mean of precision and recall), number
of non-zero features in the final estimate, number of selected
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Figure 3: The training time (in cpu-seconds), negative log-likelihood, F1 score, number of non-zero features,
number of selected features (in base 10 logarithm) during training, and number of gradient calculation on
the NP-chunking task by different algorithms when they use different Select Unit M .

features, and the number of gradient calculation. Surpris-
ingly, we get better results than those reported in [21]. The
F1 score of Full-Opt.-L1 is less than 1 percent off than the
CRF models using all the features. From the results, we can
get almost the same conclusions as on the synthetic data.
Firstly, Grafting-Light is much more efficient than Grafting
and Gauss-Seidel when using different select units. The ef-
ficiency is due to the fact that Grafting-Light usually needs
fewer numbers of gradient calculation (see the last plot),
which is the most expensive step in MRFs, i.e., exponential
to the size of maximum cliques. Secondly, Grafting-Light
is much more robust than Grafting and Gauss-Seidel with
respect to the select unit M in terms of time efficiency, mod-
eling fitting (i.e., likelihood), predictive accuracy (i.e., F1),
the number of non-zero features, and the number of gra-
dient computation. Thirdly, similar to the results on syn-
thetic data, Grafting-Light usually includes more features
than Grafting during training, but the �1-norm regularizer
can effectively discard redundant features when Grafting-
Light converges and result in almost the same numbers of
non-zero features as the optimal Full-Opt.-L1. Finally, on
all the six criteria, except the number of features included,
Grafting-Light performs as well as the Full-Opt.-L1, which
is the optimal solution we can achieve as all features are
presented from the beginning. Since the training time is
mainly spent on computing gradients, Full-Opt.-L1 is al-
ways the most efficient one because of the fewest number
of computing gradients as shown in the last plot, although
both Grafting and Grating-Light use much fewer features
than the Full-Opt.-L1 during training. Moreover, when the
select unit is fixed, the greedy Grafting and Gauss-Seidel
methods usually select much fewer features, as compared to
Grafting-Light and Full-Opt.-L1, and they tend to under-fit
the data when the select unit is small, which leads to a lower
F1 and higher negative log-likelihood.

6.2 Structure Learning
As we have stated, structure learning of MRFs can be for-

mulated as a feature selection problem, by defining feature
functions to encode the structural dependencies among ran-
dom variables and performing the �1-regularized MLE [12].
We evaluate the Grafting-Light on learning the structures
of pairwise MRFs. We use the OCR data set [23], but treat
characters independently. We get 20× 20 binary images by
placing the original 16×8 characters in the centers of 20×20
black squares. We compare Grafting-Light with the Graft-
ing and Full-Opt.-L1. We use the loopy belief propagation
(BP) [31] to do approximate inference for the gradient cal-
culation as in Eq. (1).

Figure 4 shows the results of the six characters of the
phrase “acm sig”. The sample sizes of these characters are
4033, 2114, 1602, 1394, 4913, and 2472, respectively. For
each data set, we use a half to learn the structure. We
can see that Grafting-Light is much more efficient than the
other two methods. For Full-Opt.-L1, which optimizes over
all the features, the model structure is a complete graph and
the inference is very slow. Therefore, although the number
of gradient calculation is (in most cases) fewer than those
of the other two methods, the total training time is much
larger. Moreover, the approximation inference of the Loopy
BP algorithm is very inaccurate on a complete model struc-
ture, which leads to a larger negative average log-likelihood
(over the pixels) of the Full-Opt.-L1. Similar to the pre-
vious results, Grafting needs more steps of computing the
gradients and thus has a slower convergence, as compared
to Grafting-Light. We also show the average images learned
by the three methods. Clearly, Full-Opt.-L1 under-fits the
data and produces blurry average images, because of the in-
accurate inference (i.e., inaccurate gradients) on a complete
model graph.

Figure 5 shows the changes of the training time, negative
log-likelihood, number of non-zero features and number of
gradient calculation of the three different methods on the
data set of character “c”. We can see that the training time
and the number of gradient calculation of Grafting-Light
are reasonably stable, with small jumps when M = 30.



For Grafting, the training time and the number of gradi-
ent calculation decrease, but both are larger than those of
Grafting-Light. Due to the inaccurate gradient calculation,
the Full-Opt.-L1 does not achieve a sparse enough model
structure. Therefore, the negative log-likelihood is higher
than those of Grafting and Grafting-Light.

7. CONCLUSIONS
We present a fast incremental algorithm called Grafting-

Light for feature selection and structure learning of Markov
random fields, in which computing the gradients is usually
very expensive. Grafting-Light iteratively performs one step
of orthant-wise quasi-Newton gradient descent and selects
new features. The algorithm is guaranteed to converge to
the global optimum and can effectively select significant fea-
tures. On both synthetic and real data sets, we show that (1)
Grafting-Light is much more efficient than Grafting for both
feature selection and structure learning; and (2) Grafting-
Light can work comparably with the optimal batch method
that optimizes over all the features for feature selection, but
Grafting-Light is much more efficient and accurate than the
batch method for structure learning of MRFs.
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Figure 4: From left to right, the bars in different groups are the training time (in base 10 logarithm), negative
per-pixel log-likelihood, and number of gradient calculation (in base 10 logarithm) of three methods. The
images are the average images learned by (Left) Grafting-Light; (Middle) Grafting; and (Right) Full-Opt.-L1.
From top to down, the rows are for the characters “a”, “c”, “m”, “s”, “i”, and “g”, respectively.
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Figure 5: The training time (in base 10 logarithm), negative per-pixel log-likelihood, number of non-zero
features (in base 10 logarithm), and number of gradient calculation (in base 10 logarithm) of the three
different methods on the character “c”.


