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Abstract

Although several effective learning-from-crowd
methods have been developed to infer correct labels
from noisy crowdsourced labels, a method for post-
processed expert validation is still needed. This
paper introduces a semi-supervised learning algo-
rithm that is capable of selecting the most informa-
tive instances and maximizing the influence of ex-
pert labels. Specifically, we have developed a com-
plete uncertainty assessment to facilitate the selec-
tion of the most informative instances. The ex-
pert labels are then propagated to similar instances
via regularized Bayesian inference. Experiments
on both real-world and simulated datasets indicate
that given a specific accuracy goal (e.g., 95%), our
method reduces expert effort from 39% to 60%
compared with the state-of-the-art method.

1 Introduction
Crowdsourcing has become one of the most cost-effective
mechanisms to quickly obtain large amounts of labeled data
[Wang and Zhou, 2016; Yan et al., 2015; Zhou and He, 2016].
Such labeled data is the cornerstone of a variety of super-
vised learning methods [Zhang et al., 2016]. However, due
to individual differences among workers in terms of back-
ground, knowledge, and expertise, crowdsourced labels may
be noisy and poor in quality. Researchers have developed
a variety of effective learning-from-crowd algorithms to es-
timate correct labels from noisy data [Tian and Zhu, 2015;
Zhou et al., 2012]. Although these algorithms achieve some
success in increasing accuracy, the unsupervised nature of
these algorithms limits their performance.
Recently, Hung et al. [Hung et al., 2015] introduced ad-

ditional expert labels into these learning-from-crowd algo-
rithms, and it is acknowledged as one of the pioneering efforts
in this direction. For simplicity’s sake, we denote this method
as Hung’s method. Although this method has demonstrated
the effectiveness of leveraging expert labels at reducing the
labor involved, it has two major issues: incomplete uncer-
tainty assessment because it mainly considers the uncertainty

∗S. Liu is the corresponding author.

caused by the data (e.g., input labels) and an indirect label
propagation mechanism.
To address the above issues, we have developed a semi-

supervised algorithm that simultaneously considers the un-
certainty in each phase of machine learning and thoroughly
propagate expert labels. A previous study has shown that un-
certainty can be introduced in each phase of learning [Liu
et al., 2016; Wang and Zhai, 2016]. As a result, in the se-
lection phase, we have developed a complete uncertainty as-
sessment method for selecting the most informative instances,
which jointly considers the uncertainty caused by the data, the
model, and the solution, respectively. In the label propagation
phase, the key is to seamlessly integrate the expert labels into
a learning-from-crowd model to maximize their influence. To
this end, we have formulated such integration as regularized
Bayesian inference [Zhu et al., 2014], along with a Gibbs
sampler for performing Bayesian inference.
To demonstrate the method’s effectiveness, we evaluated it

with several simulated and real-world datasets. The exper-
imental results show that for the best case, our method can
achieve an accuracy of 95% with only 23% of the instances
validated by an expert (Fig. 2E). Given a specific accuracy
goal (e.g., 95%), our method reduces expert effort from 39%
to 60% compared with Hung’s method (Fig. 2A-D). In ad-
dition, the results clearly demonstrate that each of the two
major components, the uncertainty assessment and the label
propagation, can reduce the effort required.
The key technical contributions of this work include:
• A complete uncertainty assessment method that si-

multaneously considers the uncertainty in each phase of
machine learning and in turn makes more gain.

• An effective label propagation mechanism that di-
rectly propagates the influence of expert labels via a for-
mulation based on regularized Bayesian inference.

2 Background
Our label propagation algorithm is based on the max-margin
majority voting (M3V) model [Tian and Zhu, 2015], which is
a state-of-the-art learning-from-crowd model to estimate the
true labels from noisy data. This model introduces the con-
cept of margin to improve its discriminative ability. The mar-
gin of an instance measures the separation between a potential
correct label and any alternative label. This model maximizes
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Figure 1: Basic idea of our method.

the overall margins of all instances and the posterior proba-
bility of correct labels y given the crowdsourced labels Xc:

inf
q∈P

L(q(R)) + 2c · Eq

[ M∑
i=1

(ζi)+

]
, (1)

where ζi measures the margin of instance i with a property
that a larger ζi means a smaller margin. It can be computed
by the method proposed by Crammer and Singer [Crammer
and Singer, 2001]. (x)+ = max(0, x), R is a set of random
variables to be inferred (correct labels y, worker reliability η,
and confusion tensor Φ), and L(q(R)) can be calculated by:

L(q(R)) = KL(q(R)||p0(R))− Eq

[
log(p(Xc|R)))

]
. (2)

p0(R) is the prior. It is factorized as the product of a Dirich-
let prior over Φ, a spherical Gaussian prior over η, and a
uniform prior over y [Tian and Zhu, 2015]. p(Xc|R) is
the likelihood and is computed by the method proposed by
Dawid and Skene [Dawid and Skene, 1979]. p(R|Xc) is
the Bayesian posterior obtained by the standard Bayes’ rule:
p(R|Xc) ∝ p0(R)p(Xc|R). q(R) is a general posterior. To
distinguish it from p(R|Xc), q(R) is called the desired post-
data posterior. Its optimal distribution is obtained by solving
the optimization problem defined in Eq. (1).

3 Method Overview
Given the crowdsourced labels Xc and expert labels Xe,
we model the inference of the correct labels y as a semi-
supervised learning problem:

y = fA(X
c,Xe), (3)

where the expert labels are the ground-truth labels for sev-
eral selected instances, the crowdsourced labels are features
of those instances, and fA(·) is the aggregation function that
combines the crowdsourced labels and the expert labels. In
practice, the expert may make a mistake when labeling the
selected instances. We follow Hung’s lightweight confirma-
tion check [Hung et al., 2015] to make our algorithm robust
with respect to the potential wrong expert labels.
In contrast to traditional semi-supervised learning, the

ground-truth labels (expert labels) in our scenario are not
ready and need to be acquired first. Because acquiring expert

labels is expensive, our method iteratively selects the most
informative instances to reduce the effort:

M (k)
o =M (k−1)

o ∪ argmax
m∈M

(k)
s

I(m) (k = 1, ..., n), (4)

whereM (k)
s is a subset that contains all the instances except

those that are selected at iterations 1, ..., k − 1, and I(·) is an
informativeness measure. The expert labels Xe are obtained
by iteratively validating the instances inM (k)

o .
Accordingly, we have developed a semi-supervised learn-

ing algorithm to incorporate expert labels. The input of our
method are crowdsourced labels and the corresponding in-
ferred correct labels. The inferred labels are computed by
the M3V model [Tian and Zhu, 2015]. To incorporate expert
labels, we first use an instance selection method with a com-
plete uncertainty assessment to find the most informative in-
stances to be validated by an expert (Fig. 1A). Second, in the
label propagation phase (Fig. 1B), the expert labels are prop-
agated to other similar instances by using joint optimization.
After the inferred correct labels are updated, more instances
can be selected to further improve accuracy. The main fea-
tures of the two steps are summarized as below.
• Selection method. We develop a complete uncertainty

assessment that considers the uncertainty occurred in
each phase of machine learning, i.e., data, model, and
solution uncertainty (Fig. 1C). The selection strategy
is then based on this complete uncertainty assessment,
which makes more gain in quality control.

• Label propagation. By modeling the expert labels as a
loss term in the M3V model (loss-driven M3V, Fig. 1D),
we jointly optimize likelihood and other important fac-
tors such as margin during the propagation. We also
show that this model can be solved by using regularized
Bayesian inference (Fig. 1E).

4 Selection Method
The selection method aims to find the most informative in-
stances to be validated by an expert. A widely-used frame-
work to achieve this goal is uncertainty sampling [Settles,
2010]. This framework selects the instances that the learn-
ing algorithm is least certain about labeling. Accordingly,
the key challenge is to accurately assess the uncertainty that
can be introduced in each phase of learning [Wang and Zhai,
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2016]. To address this challenge, we have developed a selec-
tion method that assesses the uncertainty associated with the
data, the model, and the solution (inference process).
Data uncertainty. We follow Hung’s method [Hung et al.,
2015] for computing data uncertainty. Specifically, two types
of data uncertainty are considered: the uncertainty caused
by noisy crowdsourced labels and the uncertainty caused by
faulty workers. For each instance i, the uncertainty of its
crowdsourced labels Uc(i) is measured by using entropy-
based information gain: IG(i) = H(P ) − H(P |i), where
H(P ) is the sum of the Shannon entropies [Shannon, 2001]
of all instances, and H(P |i) measures the expected value of
H(P ) if the label of instance i is known. The uncertainty
introduced by faulty workers, Uf (i), is defined as the total
expected number of detected faulty workers if instance i is
validated, which can be calculated by using Hung’s worker-
driven strategy.
Model uncertainty. To measure the uncertainty of the
model, we compare the results of multiple learning-from-
crowd models. For simplicity’s sake, we use two learning-
from-crowd models (A1 and A2) to illustrate the basic idea.
For each instance i, we denote its label inferred by A1 (A2)
as yA1

i (yA2
i ). A subset of instances is identified based on

the disagreement of two models, which is defined as Md =
{i|yA1

i ̸= yA2
i }. The model uncertainty of instance i is de-

fined as Um(i) = 1Md
(i), where 1Md

(i) is an indicator func-
tion. Next, we demonstrate that selecting instances with large
model uncertainty makes more gain in quality control.

Theorem 1. If the accuracy of A1 is smaller than 1 and
the accuracy of A2 is larger than 0.5, then we have p(i ∈
Ms1|i ∈ Md) > p(i ∈ Ms1|i ∈ M), where Ms1 represents
the set of instances that are misclassified by A1 and M rep-
resents the set that contains all the instances.

Proof. We denote the accuracy of A1, the accuracy of A2,
and p(i ∈ Ms1, i ∈ Ms2, y

A1
i ̸= yA2

i ) as p1, p2 and p3. With
the assumption thatA1 andA2 misclassify instances indepen-
dently, we have p(i ∈Ms1|i ∈Md) =

(1−p1)p2+p3

p3+p1(1−p2)+p2(1−p1)

and p(i ∈Ms1|i ∈M) = 1− p1. Thus,

p(i ∈Ms1|i ∈Md) > p(i ∈Ms1|i ∈M) (5)

⇔ (1− p1)p2 + p3
p3 + p1(1− p2) + p2(1− p1)

> 1− p1 (6)

⇔ p3 + (2p2 − 1)(1− p1) > 0. (7)

Inequation (7) can be easily proven by using the given condi-
tions p1 < 1 and p2 > 0.5.

The above theorem indicates that selecting instances from
Md instead of M increases the probability of selecting mis-
classified instances. Because correcting a misclassified in-
stance usually brings more gain than verifying a correctly
classified instance [Sun and Zhou, 2012], incorporating
model uncertainty generally makes more gains. We can also
employ more than two learning-from-crowd models based on
the idea of query by disagreement [Cohn et al., 1994]. Specif-
ically, we first run all the models and estimate the perfor-
mance of these models by using model likelihood. Then we

regard the model that has the best performance as A1 and the
model that has the worst performance as A2.
Solution uncertainty. Since we use Gibbs sampling to solve
the model, we measure solution uncertainty by comparing
the results of multiple Gibbs samplers. Specifically, the so-
lution uncertainty Us(i) is calculated by using Shannon en-
tropy: −

∑
l∈Lmi,l/m log(mi,l/m). Here mi,l denotes the

number of Gibbs samplers that return l as the estimated label
for instance i and m (m = 5 in our implementation) is the
number of Gibbs samplers used.
Combining different types of uncertainty. The afore-
mentioned uncertainty types can be combined by a mix-
ture model that samples instance i with probability p(i) =∑

Ux∈{Uc,Uf ,Um,Us} p(i|Ux)p(Ux). Here p(Ux) is the mix-
ing coefficients and p(i|Ux) denotes individual uncertainty
component densities. We calculate the component density
by using the exponential growth model [Wikipedia, 2017],
p(i|Ux) ∝ eUx(i), which aims to increase the sampling prob-
ability of instances with larger uncertainty values. In our
implementation, p(Uc), p(Uf ), p(Um), and p(Us) are set to
0.36, 0.04, 0.54, and 0.06, respectively.

5 Label Propagation
Label propagation aims to maximize the influence of expert
labels by propagating them to other unconfirmed instances.
The key challenge is to effectively propagate expert labels
while decreasing the effect caused by the noisy crowdsourced
labels. The state-of-the-art method [Hung et al., 2015] used
an indirect propagation mechanism that may fail to effectively
propagate expert labels. In their method, the expert labels
are first used to assess the reliability of workers, and then
the reliability is exploited to infer the correct labels of other
instances that are labeled by these workers. Because each
worker only labels a small set of instances, the influence of
expert labels is limited in such an indirect propagation. In
addition, this indirect propagation process may accumulate
more errors due to the noise in the crowdsourced labels. Thus,
it is desirable to develop a more direct way to maximally and
accurately propagate expert labels to other instances.
An intuitive method to directly propagate expert labels is

using the coin-toss model [Goldberg, 1989]. In this model,
the label of a validated instance is propagated to similar in-
stances with a probability p. Specifically, for each instance i,
its most similar validated instance iv is selected. If i is not
validated, we set its label the same as that of iv with proba-
bility p = siv,i, where siv,i is the similarity between i and iv .
However, this method only considers the similarity between
two instances without taking the confidence of the inferred la-
bels into account. As a result, the coin-toss model may lead to
unintentional modifications of correctly classified instances
with high confidence.
To solve this problem, we have developed a loss-driven al-

gorithm based on the M3V model [Tian and Zhu, 2015]. The
main feature of our algorithm is that it jointly considers the
influence of expert labels and other important factors such as
the likelihood of crowdsourced labels.
Expert labels as a loss term. Based on the M3V model,
we incorporate expert labels into the original optimization
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function of M3V as a loss term. The loss term aims to
maximally propagate the influence of expert labels with the
following two constraints. First, for validated instances, the
loss term ensures their labels are correctly set. Second, for
other instances, the loss term penalizes the model for setting
its label deviating far from its similar validated instances.
Accordingly, we add a loss term composed of two parts (L1
and L2), one for each goal:

inf
q∈P

L(q(R)) + 2c · Eq

[ M∑
i=1

(ζi)+
]
+ α · L1 + β · L2, (8)

L1 = Eq

[∑
i∈S

∥yi − li∥0
]
, (9)

L2 = Eq

[∑
i/∈S

si,iv∥yi − liv∥0
]
, (10)

where S is the set of validated instances, li is the expert label
of instance i, si,j is the similarity between i and j, and α, β
are regularization factors that control the influence of L1 and
L2, respectively.
As shown in Eq. (8), our model jointly optimizes the influ-

ence of expert labels, the likelihood of a crowdsourced label,
and the margin of an instance.
Regularized Bayesian inference. Solving this optimization
problem can be viewed as performing a regularized Bayesian
inference. To perform this inference, we develop a Gibbs
sampler by absorbing the loss term into L(q(R)). Specifi-
cally, we first obtain the following equation by substituting
Eqs. (9) and (10) into Eq. (8):

inf
q
KL(q(R)||p0(R))−

∫
q(R) log p(Xc|R)dR

−
∫
q(R) log exp(−

M∑
i=1

2c(ζi)+)dR

−
∫
q(R) log exp(−

∑
i∈S

α ∥yi − li∥0)dR

−
∫
q(R) log exp(−

∑
i/∈S

β si,iv∥yi − liv∥0)dR,

(11)

by grouping the last four terms, Eq. (11) is rewritten as:

inf
q
KL(q(R)||p0(R))− Eq

[
log(p̃(Xc,R))

]
, (12)

where
p̃(Xc,R) = p(Xc|R)ψ(y|Xc,η)σ(y)τ(y),

ψ(y|Xc, η) = exp(−
M∑
i=1

2c(ζi)+),

σ(y) = exp(−
∑
i∈S

α ∥yi − li∥0),

τ(y) = exp(−
∑
i/∈S

β si,iv∥yi − liv∥0).

(13)

Here, p̃(Xc,R) is an unnormalized pseudo-likelihood. Ac-
cording to the theory of regularized Bayesian inference [Zhu
et al., 2014], solving Eq. (12) is equivalent to sampling from:

q̂(R) = p0(R)p̃(Xc,R)

= p0(R)p(Xc|R)ψ(y|Xc,η)σ(y)τ(y).
(14)

By introducing an augmented variable λ and exploiting the
property that the correct label of each instance is independent
from each other, we obtain:

q̂(R) ∝ p0(R)

M∏
i=1

p(xi|Φ, yi)ψ(yi|xi,η)σ(yi)τ(yi), (15)

where

ψ(yi|xi, η) =

∫ ∞

0

ψ(yi, λi|xi,η)dλi, (16)

ψ(yi, λi|xi,η) = (2πλi)
− 1

2 exp(
−1

2λi
(λi + cζi)

2). (17)

By using the Bayes’ rule, the new conditional distribution to
sample the correct labels y can be computed by:

q(yi|Φ, η, λi) ∝ p(xi|Φ, yi)ψ(yi, λi|xi,η)σ(yi)τ(yi). (18)

To compute the conditional distribution of the remaining
variables (Φ,η,λ), we follow the method proposed in the
M3V model. The time complexity of our method is the same
as that in M3V because we do not sample additional variables.

6 Evaluation
We conducted three experiments to demonstrate the effective-
ness of our method. The first one briefly evaluates the overall
performance. The results show that our method significantly
reduces expert effort compared with Hung’s method. The sec-
ond and third experiments analyze the selection method and
the label prorogation method. All the experiments were con-
ducted on a workstation with Intel Core i5 CPU (3.3 GHz)
and 16 GB of Memory.

6.1 Experimental Settings
Datasets. We used the following datasets in our experiments.
• Dog [Zhou et al., 2012]: It contains 800 images of 4

breeds of dogs from ImageNet [Deng et al., 2009]. Each
image is labeled by 10 workers.

• Age [Han et al., 2015]: It contains 1,002 face images.
The workers were asked to estimate the age of the person
in each image, which is discretized into 7 bins.

• Monkey: It contains images of 4 kinds of wild mon-
keys (Siamang, Guenon, Patas and Baboon). These im-
ages were selected from ImageNet and we simulated the
crowdsourced labels for each image by the method used
in [Hung et al., 2013].

• News: It contains documents of 4 topics from the
20NewsGroup dataset [Lang, 1995]. We simulated the
crowdsourced labels for each document by the method
used in [Hung et al., 2013].

Datasets Instances Workers Classes

Real-world Dog 800 109 4
Age 1002 165 7

Simulated Monkey 957 104 4
News 2007 186 4

Table 1: Datasets statistics. In the simulated datasets, the images
and documents are real, but the crowdsourced labels are simulated.

Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17)

2332



0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela�ve expert effort (%)

Dog dataset

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela�ve expert effort (%)

Dog dataset

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela�ve expert effort (%)

Dog dataset

A

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela�ve expert effort (%)

Dog dataset

A

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela�ve expert effort (%)

Dog dataset

Ours

A

Hung's 
Majority voting

Gain=39%

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Relative expert efforts (%)

Age dataset

0.6
0.64
0.68
0.72
0.76
0.8

0.84
0.88
0.92
0.96

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Relative expert effort (%)

Age dataset

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Relative expert effort (%)

Age dataset

B

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Relative expert effort (%)

Age dataset

B

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Relative expert effort (%)

Age dataset

B

Gain=43%

Ours
Hung's 
Majority voting 0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

 

Monkey dataset

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

Monkey dataset

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

Monkey dataset

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Monkey dataset

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

Monkey dataset

0.78
0.8

0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

Monkey dataset

0.6
0.64
0.68
0.72
0.76
0.8

0.84
0.88
0.92
0.96

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

Monkey dataset

0.6
0.64
0.68
0.72
0.76
0.8

0.84
0.88
0.92
0.96

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

Monkey dataset

0.6
0.64
0.68
0.72
0.76
0.8

0.84
0.88
0.92
0.96

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

Monkey dataset

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela e expert effort (%)

Monkey dataset

B

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Monkey dataset

B

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

Monkey dataset

C

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela  expert effort (%)

Monkey dataset

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela�ve expert effort (%)

Monkey dataset

CE (23%)

Gain=60%

Ours
Hung's
Majority voting 0.68

0.72

0.76

0.8

0.84

0.88

0.92

0.96

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert efforts (%)

News dataset

0.6
0.64
0.68
0.72
0.76

0.8
0.84
0.88
0.92
0.96

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

News dataset

0.6
0.64
0.68
0.72
0.76

0.8
0.84
0.88
0.92
0.96

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

News dataset

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

News dataset

D

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

News dataset

D

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela ve expert effort (%)

News dataset

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60 70 80 90 100

Ac
cu

ra
cy

Rela�vee expert effort (%)

News dataset

D

Gain=52%

Ours
Hung's 
Majority voting

Figure 2: Comparison of accuracy and relative expert effort on multiple datasets (Gain = (Hung’s - Ours)/Hung’s).

Statistics of all the datasets are summarized in Table 1.
Expert labels. The ground-truth labels in each dataset are
treated as the expert labels in our experiments.
Feature extraction. To measure the similarity between in-
stances, we extracted a feature vector for each instance. For
an image, we extracted its feature vector by using a deep con-
volutional neural network: VGG-NET [Simonyan and Zis-
serman, 2014]. We used the output of the last but one fully-
connected layer as the feature vector of the image. For a doc-
ument, we extracted its feature vector by using TF-IDF.
Criteria. We compared our method with the baseline meth-
ods in terms of the following criteria.
• Relative expert effort is defined as Ns/N , where Ns

represents the number of validated instances and N is
the total number of instances in the dataset.

• Accuracy is defined as Nc/N , where Nc is the number
of correctly classified instances.

6.2 Overall Performance
To evaluate the overall performance of our method, we first
compared it with Hung’s method in terms of accuracy and
expert effort. Fig. 2 shows how accuracy changes with rel-
ative expert effort for both methods on four datasets. Note
that the base model in Hung’s method, the DS (Dawid-Skene)
model [Dawid and Skene, 1979], is different from ours, the
M3V model. Therefore, when expert effort is 0, the perfor-
mance of the two methods is different. Our method performs
better than theirs on most of the four datasets. By analyzing
the results, we have the following conclusions.
First, compared with Hung’s method, our method is able

to achieve much higher accuracy at most levels of expert ef-
fort on all datasets. This demonstrates that our method can
significantly reduce expert effort. In particular, given a spe-
cific accuracy goal, 95%, our method reduces expert effort
from 39% to 60% compared with Hung’s method (Fig. 2A-
D). Among the four datasets, our method performs the best on
the Age dataset. This is because this dataset contains some
outliers (e.g., the young person looks very old). The M3V
model adopted by our method avoids the over-fitting problem
by adding margin as a regularization term.
Second, as expert effort increases, the accuracy of our

method first increases very fast and then slows down as rel-
ative expert effort approaches 100%. This indicates that our
method can select the most informative instances in the begin-
ning and correctly propagate the labels to other instances. As

a result, the accuracy of our method can be considerably im-
proved even when the number of expert labels is small. This
is a very desirable feature for many real-world applications
because the expert labels are usually expensive to acquire.
We then analyzed how the estimated assignment probabil-

ity of the correct labels changed with different levels of expert
effort (0%, 15%, and 30%). For each instance, a good method
assigns a higher probability to the correct label than to an in-
correct one. Fig. 3 shows two histograms of the probability
distribution of the News dataset and the Dog dataset. For
each instance, we examined the assignment probability q̂(R)
(Sec. 5) of its correct label. If this assignment probability is
in a probability bin, the count for that bin is increased by 1.
We noted that more than 10% instances had a very low prob-
ability (<0.1) to be correctly classified when no expert la-
bels were incorporated. By incorporating more expert labels,
fewer instances have a very low probability to be correctly
classified. We also observed that the number of instances that
had a very high probability (>0.9) to be correctly classified
increased as the expert labels increased. This result demon-
strates that the performance of the learning-from-crowd
method is improved after more expert labels are provided.

6.3 Selection Method
Baselines. Four baselines are used in this experiment. The
first baseline (Hung’s selection method) is the selection
method used in Hung’s method, which takes into account data
uncertainty. The second baseline (Model uncertainty) only
considers model uncertainty. The third baseline (Solution
uncertainty) only considers solution uncertainty. The last
baseline (Random) randomly selects instances fromM (Sec.
4). To eliminate the bias caused by different label propaga-
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Figure 3: Probability distribution of correct labels
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Figure 4: Comparison of different selection methods. For a fair comparison, our label propagation method and the M3V model are adopted
in all the methods.
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Figure 5: Comparison of the misclassified ratio (the number of the misclassified instances over that of the selected instances).
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Figure 6: Comparison of different label propagation algorithms. For a fair comparison, all the algorithms employ the same base model, M3V,
and our selection method.

tion methods, we combined these selection methods with our
label propagation method and then evaluated the correspond-
ing accuracy and expert effort. In all the experiments, we
provided multiple instances to the expert each time.
Results. As shown in Fig. 4, our selection method achieves
higher accuracy compared with the baselines on all datasets.
This result demonstrates that integrating model uncertainty
and solution uncertainty makes more gain.
Next, we demonstrated that our selection method could se-

lect more misclassified instances than Hung’s method for dif-
ferent levels of expert effort. To this end, we defined the mis-
classified ratio, rm, as the number of selected misclassified
instances over that of total selected instances. As shown in
Fig. 5, our selection method increases the ratio from 20% to
43% at a low level of expert effort (5%) (Fig. 5A-D). The
reason is that in the beginning we select the instances among
Md (Sec. 4) and thus our method can select more misclas-
sified instances. As expert effort increases, the improvement
gradually decreases because all the instances inMd have been
selected and the method starts to select the instances from

M \Md. This result clearly illustrates the effectiveness of in-
corporating both model uncertainty and solution uncertainty.

6.4 Label Propagation
Baselines. The adopted baselines are Hung’s method [Hung
et al., 2015] and the coin-toss model. To fairly compare our
label propagation method with Hung’s method, we adopted
the same base model (M3V) and our selection method.
Results. As shown in Fig. 6, our method outperforms Hung’s
method and the coin-toss model. Compared with the indirect
propagation of Hung’s method, our method is able to directly
propagate expert labels to more similar instances. In this
way, our method is less affected by the noise in the crowd-
sourced labels and thus achieves higher accuracy. The results
also show that the coin-toss model sometimes leads to un-
intentional modifications by only considering the similarity
between instances. For example, in the Monkey dataset, the
accuracy of the coin-toss model remains the same when rel-
ative expert effort is 15% and 20%. In contrast, our method
achieves higher accuracy as expert effort increases.
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7 Related Work
Most recent learning-from-crowd methods can be catego-
rized into three groups: generative methods, discriminative
methods, and hybrid methods.
Generative methods use a probabilistic model to generate

the crowdsourced labels conditioned on the correct labels and
assumptions of worker behavior. A typical example is the DS
(Dawid-Skene) model [Dawid and Skene, 1979], in which the
behavior of each worker is modeled by a confusion matrix.
To improve the performance of the DS model, researchers
later put a prior over confusion matrices [Liu et al., 2012]
and considered task difficulties [Bachrach et al., 2012].
Discriminative methods directly resolve the correct labels

via some aggregation rules. An intuitive example is majority
voting [Snow et al., 2008]. Another example is weighted
majority voting [Karger et al., 2011], which distinguishes a
spammer from a reliable worker (worker reliability).
Recently, Tian et al. [Tian and Zhu, 2015] developed a hy-

brid method to combine the discriminative ability of discrim-
inative methods and the flexibility of generative methods. In
particular, they extended the weighted majority voting model
with the notion of margin, and then coupled it with the DS
model via regularized Bayesian inference.
Although these algorithms have increased the accuracy, the

performance is still limited by the unsupervised nature of
these algorithms. To solve this problem, Hung et al. [Hung
et al., 2015] proposed a method to minimize expert workload
for validating crowdsourced labels. However, this method
suffers from two major issues: incomplete uncertainty assess-
ment and an indirect label propagation mechanism. Com-
pared to their work, our selection method considers the un-
certainty in each phase of machine learning, which is able to
select more misclassified instances and makes more gain. In
addition, we directly propagate the influence of expert labels
by formulating the label propagation problem as regularized
Bayesian inference.

8 Conclusions and Future Work
In this paper, we have presented a semi-supervised algo-
rithm to improve the quality of crowdsourced labels by
incorporating expert labels. Our method comprehensively
considers the uncertainty occurred in each phase of machine
learning to select the most informative instances. Moreover,
it models the influence of expert labels to other instances
with regularized Bayesian inference. Experimental results
demonstrate that our method reduces the effort of experts
from 39% to 60% compared with the state-of-the-art method.
Directions for future investigation include the reliability

evaluation of expert labels. Currently, we assume that the
expert labels are the ground-truth labels. However, the ex-
pert may make a mistake due to fatigue or lack of knowl-
edge. For cases where more than one experts validate the
estimated labels, the experts may not always make agreement
on each label. Accordingly, it would be interesting to inves-
tigate the influence of expert disagreement on the final result.
Another important topic for future research is to investigate
the possibility of incorporating other learning-from-crowd al-
gorithms [Zhou et al., 2012; 2014]. This will facilitate the

improvement of model uncertainty and form an ensemble of
estimators for boosting accuracy improvement.
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