
Crowd Scene Understanding with Coherent Recurrent Neural Networks ⇤

Hang Su⇤, Yinpeng Dong⇤, Jun Zhu⇤, Haibin Ling†, and Bo Zhang⇤

⇤ Tsinghua National Lab for Information Science and Technology
⇤ State Key Lab of Intelligent Technology and Systems

⇤ Department of Computer Science and Technology, Tsinghua University, Beijing, China
† Department of Computer and Information Sciences, Temple University, USA

⇤l{suhangss, dongyp13, dcszj, dcszb}@mail.tsinghua.edu.cn, † hbling@temple.edu

Abstract

Exploring crowd dynamics is essential in under-
standing crowd scenes, which still remains as a
challenging task due to the nonlinear character-
istics and coherent spatio-temporal motion pat-
terns in crowd behaviors. To address these issues,
we present a Coherent Long Short Term Memory
(cLSTM) network to capture the nonlinear crowd
dynamics by learning an informative representa-
tion of crowd motions, which facilitates the criti-
cal tasks in crowd scene analysis. By describing
the crowd motion patterns with a cloud of keypoint
tracklets, we explore the nonlinear crowd dynam-
ics embedded in the tracklets with a stacked LSTM
model, which is further improved to capture the col-
lective properties by introducing a coherent regu-
larization term; and finally, we adopt an unsuper-
vised encoder-decoder framework to learn a hidden
feature for each input tracklet that embeds its inher-
ent dynamics. With the learnt features properly har-
nessed, crowd scene understanding is conducted ef-
fectively in predicting the future paths of agents, es-
timating group states, and classifying crowd events.
Extensive experiments on hundreds of public crowd
videos demonstrate that our method is state-of-the-
art performance by exploring the coherent spatio-
temporal structures in crowd behaviors.

1 Introduction
Understanding collective behaviors in crowd scenes has a
wide range of applications in video surveillance and crowd
management [Sulman et al., 2008], especially in present era
with recurrent and tragic accidents in populous and diverse
human activities. However, a crowd is more than sum of in-
dividuals, thus making the vision-related tasks disproportion-
ately difficult along with the crowd scales. The past decade
has witnessed a significant progress in crowd scene analy-
sis in learning global motion patterns [Mehran et al., 2010;
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Wu et al., 2010], modeling local spatio-temporal varia-
tions [Kratz and Nishino, 2012; Su et al., 2013], analyz-
ing interactions among individuals [Mehran et al., 2009],
profiling group behaviors [Zhou et al., 2011; 2012b], and
detecting abnormal crowd behaviors [Solmaz et al., 2012;
Mahadevan et al., 2010; Li et al., 2014]. Recently, Li et
al. [2015] gave a comprehensive review on the state-of-the-
art techniques on crowd scene understanding.

Although various methods have been developed, there is
still no publicly accepted framework in understanding the
crowd scenes, especially when extreme clutters or severe
occlusions occur. One of the essential challenges is that
crowd spatio-temporal behavior patterns behave abundantly
nonlinear dynamics, such as limit cycles, quasi-period and
even chaos. This non-linear interaction between individu-
als always result in various complex, spatio-temporal motion
patterns, e.g., the oscillations of the pedestrian flow at bot-
tlenecks [Helbing and Johansson, 2009]. The popular lin-
ear dynamic systems in crowd modeling [Lin et al., 2009;
Shao et al., 2014] may fail to capture the nonlinear character-
istics. Although the nonlinear characteristics of crowd mo-
tions investigated in crowd simulation [Massink et al., 2011],
few attempts are made in the vision-based crowd motion anal-
ysis.

Another challenge in crowd behavior analysis is the col-
lective effect (or coherent motion) [Zhou et al., 2012a; 2014],
e.g., pedestrians in crowds tend to form coherent groups
by aligning with other neighbors. Different from the indi-
vidual motion phenomena, there widely exist various self-
organized spatio-temporal patterns even without externally
planned or organized, which has been well explained with
social force assumption [Helbing and Johansson, 2009]. In
this case, methods that do not leverage the coherent char-
acteristics may hinder the capabilities in capturing the in-
herent crowd dynamics. For instance, crowd features learnt
from a multi-task deep architecture [Shao et al., 2015], al-
though more effective than the handcrafted features, suffer
from the lack of considering the essential non-linear tem-
poral correlations and coherent motions in crowd behav-
ior analysis. More recently, coherent motions in crowd
scenes are detected with a thermal energy field such that pre-
defined activities are effectively recognized [Lin et al., 2016;
Wang et al., 2014]. However, it still fails to explore the non-
linear crowd dynamics which hinders the performance for
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complex crowd behaviors.

1.1 Our Proposal
To address the aforementioned challenges, we propose to ex-
plore the crowd dynamics with a coherent Long Short Term
Memory (LSTM) architecture, which investigates the non-
linearities of crowd behaviors with a stacked LSTM and en-
forces the consistence of spatio-temporal structures with a co-
herent regularization.

Recently, deep learning [Schmidhuber, 2015] has achieved
state-of-the-art performance in several vision tasks related to
visual understanding [Simonyan and Zisserman, 2014] and
scene analysis [Ramanathan et al., 2015] partly due to its
good capabilities in modeling nonlinearity. It inspires us to
explore the nonlinear dynamics of crowd behaviors with a
deep architecture model. Specifically, we build our model
based on the Long Short Term Memory (LSTM) [Hochre-
iter and Schmidhuber, 1997] network, which is an improved
Recurrent Neural Network (RNN) for temporal data model-
ing. LSTM has been proven successful on tasks in generat-
ing image caption [Vinyals et al., 2015] and video descrip-
tion [Donahue et al., 2015], since it provides a good proba-
bility to explore the long term dynamics by overcoming the
problem of gradient vanishing and exploding for conventional
RNNs [Lipton, 2015]. In order to cope with nonlinear dy-
namics in the long term crowd behaviors, we use a multi-
layer LSTM network to learn an informative representation of
crowd tracklets1, which are more conservative and less likely
to drift than long trajectories.

In order to capture the coherent spatio-temporal structures,
we further improve the multi-layer LSTM network by intro-
ducing a coherent regularization term to model the local spa-
tial and temporal dependency between neighboring pedestri-
ans within a coherent group. The memory unit in LSTM
therefore not only stores the dynamic information embedded
in the tracklet of its own but also the dynamics of its neigh-
boring agents. The resulting model is denoted as coherent
LSTM (cLSTM).

Finally, we adopt an unsupervised LSTM auto-encoder
framework [Srivastava et al., 2015] to learn a representation
to explore the crowd dynamics, such that the tedious efforts in
collecting labeled data are significant reduced. Specifically, a
stacked cLSTM first encodes the input tracklets into a hid-
den feature, which is subsequently decoded to reproduce the
input tracklets. By exploiting the hidden feature and the co-
herent regularization, we can extrapolate the past dynamics to
the future and forecast the motion beyond what has been ob-
served by recursively unrolling the feature to the future. More
critical tasks in crowd scene analysis are also conducted us-
ing the learnt representation, including group state estimation
and crowd event classification.

In summary, our work differs significantly from the exist-
ing studies [Shao et al., 2014; 2015] in that the crowd dynam-
ics are captured via an LSTM model, which is “deep in time”

1A tracklet is a fragment of a trajectory obtained by a tracker,
e.g., a KLT keypoint tracker [Baker and Matthews, 2004], which
starts when a novel key-point is detected and terminates when ambi-
guities arise.

and can identify informative structures in time domain. To the
best of our knowledge, this study is a first attempt that investi-
gates the non-linear characteristics of crowd motion patterns
with LSTM. Our main contributions are:

• We propose to investigate the crowd dynamics with a
stacked LSTM model, such that the complex and non-
linear crowd motion patterns are well captured;

• To consider the collective properties in crowd motion
patterns, we propose to improve LSTM by introducing
a coherent regularization which encourages a consistent
spatio-temporal hidden feature;

• Finally, we adopt the hidden features learnt from the co-
herent LSTM to critical tasks in crowd scene analysis,
including future path prediction, group state estimation,
and crowd behavior classification. Experiments demon-
strate state-of-the-art performance of our method.

2 Model Crowd Motions with cLSTM
We consider to describe the crowd motion pattern with a set
of tracklets {x

t

} due to its explainable semantics in crowd
behaviors [Li et al., 2015], as illustrated in Fig. 1. In this sec-
tion, we aim to extract informative features from these track-
lets to explore the crowd dynamics, which facilitates the sub-
sequent tasks in crowd scene analysis. To this end, we first
introduce the basic coherent LSTM unit which updates its
memory with the tracklet of its own together with its neigh-
boring agents; afterwards, we step into details of the coherent
regularization term and describe the LSTM models by stack-
ing the coherent LSTM unit.

Figure 1: Samples of tracklets for crowd motion patterns.

2.1 Coherent Long Short Term Memory Unit
LSTM has a powerful capability in modeling the nonlin-
ear dynamics for sequential data [Lipton, 2015; Greff et al.,
2015]. As illustrated in Fig. 2, each LSTM unit has a cell
as a memory, which maintains its state c

t

at time t by reg-
ulating the information flow into/out of the LSTM unit with
non-linear gates [Greff et al., 2015].

Specifically, the state of a cell is controlled through sig-
moidal gates including an input gate i

t

which takes activation
from the current data point x

t

and the hidden layer at the pre-
vious time step h

t�1 as

i

t

= �(W
xi

x

t

+W
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h
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and a forget gate f

t

which enables the cell to reset its state as

f
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x

t
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c
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), (2)

where Ws are the weight matrices with a proper size; bs are
bias vectors. Note that all the W

c• matrices corresponding to
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Figure 2: A diagram of a coherent LSTM unit.

the cell states are diagonal, whereas the rest are full matrices.
The total input at the input terminal is passed through the tanh
non-linearity and multiplied by the activation of the input gate
i

t

, which is then added to the cell state c
t�1 multiplied by the

forget gate’s activation f

t

as

c

t

= f

t

� c

t�1 + i

t

� tanh(W

xc

x

t

+W

hc

h

t�1 + b

c

), (3)

where � is the element-wise multiplication. The final output
from the LSTM unit h

t

is computed by multiplying the up-
dated cell state that passed through a tanh non-linearity with
an output gate’s activation as

h

t

= o

t

� tanh(c

t

), (4)

where o

t

is the output gate as

o

t

=�(W
xo

x

t

+W
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h

t�1 +W

co

c

t

+ b

o

). (5)

The output gate o

t

controls how much of the memory cell
should be transferred to the hidden feature. Compared with
the conventional RNN, the additional cells in LSTMs sum
the activities over time. Such strategy avoids a quick gradient
vanishing and enables the LSTMs to learn extremely complex
and long-term temporal dynamics in crowd behavior analysis.

Different from the individual behaviors, there widely exist
coherent motion phenomena [Zhou et al., 2012a] in crowds,
since the individuals are always willing to engage with “seed”
groups and form spatially coherent structures. Therefore, we
propose to improve the conventional LSTM by taking the
neighboring tracklets into account. The intuition behind the
model is if the dynamics of two tracklets are coherent in the
spatial and temporal domain, i.e., when the neighboring re-
lationship of individuals remains invariant over time or the
correlation of their velocities remains high, they tend to have
similar hidden states. To this end, we propose to update the
memory unit by incorporating its own state together with its
neighboring agents with a coherent regularization as

c

t

= f

t

� c

t�1 +

X

j2N
�
j

(t)f j
t
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j

t�1

+ i

t
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c

), (6)

where N denotes the set of neighboring tracklets within a
coherent group; f j

t

and c

j

t�1 are corresponding to the forget
gate and cell state for LSTM in the coherent group; and �

j

(t)
weights the dependency between the tracklets, as detailed be-
low.

2.2 Coherent Motion Modeling
In this section, we first investigate the dependency between
agents in coherent groups, which are discovered using the co-
herent filtering [Zhou et al., 2012a], as illustrated in Fig. 3.
The coherent keypoints with similar motion patterns and ten-
dencies are marked with the same color.

Figure 3: Group detection using coherent filtering [Zhou et
al., 2012a], in which different groups are indicated with dif-
ferent colors (best viewed in color version).

The dependency relationship between two tracklets within
the same group is measured with their pairwise velocity cor-
relations as

⌧
j

(t) =
v

i

(t) · v
j

(t)

kv
i

(t)kkv
j

(t)k , (7)

where v

i

(t) and v

j

(t) are the velocities of the ith and jth
tracklets, respectively. The dependency coefficient between
the ith and jth tracklets in Eq. (6) is defined as

�
j

(t) =
1

Z

i

exp

✓
⌧
j

(t)� 1

2�2

◆
2 (0, 1], (8)

where Z

i

is the normalization constant corresponding to the
ith tracklet. �

j

(t) tends to be 1 when the tracklets i and j are
similar, and decreases when the tracklets become different. In
this case, our model with coherent regularization encourages
the tracklets to learn similar feature distributions by sharing
information across tracklets within a coherent group.

In order to model the long term crowd dynamics, additional
depths are also added to LSTMs by stacking them on top of
each other, i.e., using the output of the LSTM in the (l�1)th
layer as the input to the LSTM in the lth layer, as illustrated
in Fig. 4.

3 Crowd Scene Analysis based on cLSTM
In this section, we describe an unsupervised encoder-decoder
framework using the coherent LSTM to generate a hidden
feature, which embeds the inherent characteristics for each
tracklet. It shares similar ideas to that of auto-encoders [Vin-
cent et al., 2010] such that the parameters are optimized by
minimizing the difference between the reproduced and tar-
get sequences. Critical tasks in crowd scene analysis is con-
ducted based on the hidden features, e.g., future path forecast-
ing, group state estimation and crowd behavior classification.

To learn an informative representation, we take the
“encoder-decoder”approach inspired by [Donahue et al.,
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Figure 4: We stack a series of coherent LSTM units to cap-
ture the time-varying nonlinear crowd dynamics by mapping
tracklets in a coherent group to similar hidden features, which
is conducted by incorporating a coherent regularization.

2015], which consists of an encoder coherent LSTM and a
decoder coherent LSTM, as is shown in Fig. 5. The encoder
coherent LSTM runs though a tracklet to come up with a hid-
den feature, which is decoded to produce a target sequence
with a decoder coherent LSTM. Note that our model allows
to reproduce the input tracklets, and also provides a method
to forecast the unseen future paths by exploiting the hidden
features.

Coherent Regularization

1x 2x 3x
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4x̂ 5x̂ 6x̂eW eW

rdW rdW

pdW pdW
Encoder

Reconstruction 
Decoder

Prediction 
DecoderLearnt Hidden 

Features

Th

Figure 5: The encoder-decoder framework with coherent
LSTM. The encoder generates a hidden feature of each track-
let, and the decoder reproduces the input tracklets and pre-
dicts the future paths.

At the encoding stage, we obtain representation vectors for
tracklets with the encoder coherent LSTM following Eq. (4)
as

h

T

= cLSTM
e

(x

T

,h
T�1), (9)

Coherent 
regularization

Coherent 
regularization

Motion Prediction

LSTM

LSTM

LSTM

Figure 6: Prediction of future path with coherent regulariza-
tion, in which the blue paths are reliable tracklets obtained
from KLT trackers and the green ones are the forecasted paths
from the cLSTM.

where cLSTM
e

is an encoding operation to map the input
tracklet to a hidden feature; x

T

and h

T�1 are the input track-
lets at time step T and hidden feature vectors at the previous
time step T�1, respectively.

As for the reconstruction decoder, the coherent LSTM gen-
erates a set of estimated tracklet ˆx for each tracklet, which
reproduces the input tracklets but in a reverse order to avoid
the long range correlations as

ˆ

x

t

= cLSTM
dr

(h

t

, ˆx
t+1), where t 2 [1, T ], (10)

where cLSTM
dr

decodes the representation recursively to
reproduce the input tracklets; h

t

is the feature that is de-
rived from the hidden features h

T

in Eq. 9. The parame-
ters {Ws,bs} are optimized by minimizing the reconstruc-
tion error between the input tracklets and the reproduced ones
when training the model.

The prediction decoder is similar to that of the reconstruc-
tion decoder, except that the decoder LSTM extrapolates fu-
ture paths. Specifically, the prediction is implemented by un-
rolling the hidden feature by

ˆ

x

t

= cLSTM
dp

(h

t

, ˆx
t�1), where t > T, (11)

where cLSTM
dp

is a decoding operation to predict the future
path of an agent derived from the hidden feature by taking
the coherent motion into account. During the training stage,
tracklets in the training dataset {x

t

}T
t=1 are divided into two

segments as {x
t

}T0
t=1 and {x

t

}T
t=T0+1. The former segments

are input to the encoder to learn a hidden feature, which is
used to predict the latter segment by minimizing the differ-
ence between the original and estimated tracklets. The pa-
rameter T0 is modified to adjust the length ratio between the
segments, which enhances inherent evolutionary dynamics
are well captured.

The success of path prediction lies in the facts that the hid-
den states generated from the encoder captures the dynamics
of tracklets to forecast the future within a coherent group,
which is further enhanced by incorporating with the coherent
regularization, as the schematic shown in Fig. 6.

In summary, we capture the inherent crowd dynamics by
mapping the tracklets to hidden features with the cLSTM
model. With the features properly harnessed, we reconstruct
the input tracklets as well as predict the future paths. A
reconstruction-oriented encoder would suffer from the ten-
dency to memorize the inputs, and the future predictor would
suffer from the tendency to ignore the initial frames because
of the more significant impacts from the last few frames.
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Therefore, the proposed method encourages a more inher-
ent feature by mutually enhancing each other, such that the
features maintain the dynamics embedded in the whole se-
quences by not just memorizing the information.

3.1 Crowd Scene Profiling
With crowd dynamics properly captured by our coherent
LSTM model, the critical tasks in crowd scene analysis can
be conducted based on the learnt features, e.g., understanding
group states and recognizing crowd behaviors.

The states of groups with coherent spatio-temporal struc-
tures are generally recognized as Gas, Solid, Pure Fluid and
Impure Fluid [Shao et al., 2014], which is related to multiple
social psychological and physical factors, e.g., crowd den-
sity, goals, interactions between group members, etc. In this
section, we implement group state estimation with the learnt
representation since it embeds dynamics of coherent groups.
Specifically, we feed the feature learnt from the unsupervised
cLSTM to a softmax classifier, which infers the group states
based on the dynamics of tracklet within a coherent group as

L =

1

NT

NX

i=1

TX

j=1

CX

c=1

8
>><

>>:
1{yi(t) = c} log e⌘

T
c hi(t)

NcP
c=1

e⌘T
c hi(t)

9
>>=

>>;
, (12)

where 1(·) is an indicator function with value 1 if the predi-
cate is true otherwise 0; ⌘

c

is a parameter to weight the hid-
den feature corresponding to class c; h

i

(t) is the hidden fea-
tures corresponding to the ith tracklet in the group at time
step t; N denotes the total number of tracklets in a coherent

group; and T is length of tracklets. The term log

NcP
c=1

e⌘
T
c hi(t)

normalizes the distribution to guarantee the probability con-
dition. A reliable inference is conducted by maximizing the
softmax regression.

Besides estimating the state of each individual group, we
also implement the holistic crowd video classification by
training another softmax classifier over the sequential hid-
den features of all the tracklets in a crowd video, producing a
distribution over the holistic crowd behavior categories. The
success of complex crowd behavior recognition lies on the
facts that composing deep layers of cLSTMs can result in a
powerful capability in exploring the nonlinearities and coher-
ent spatio-temporal structures in crowd motions.

4 Experimental Results
In this section, we demonstrate the effectiveness of the fea-
tures learnt from our algorithm on three critical applica-
tions in crowd scene analysis: pedestrian future path pre-
diction, group state estimation, and crowd behavior classi-
fication. Evaluations are conducted on the CUHK Crowd
Dataset [Shao et al., 2014], which includes crowd videos with
different densities and perspective scales in many environ-
ments, e.g., street, airports, etc. The ground truth of keypoint
tracklets, group state, and crowd video classification are also
available for the dataset. It consists of more than 400 se-
quences, and 200,000+ tracklets in total.

In each experiment, we construct a coherent LSTM with
128 hidden units, such that the input tracklets are mapped
to 128-dimensional hidden features. Similar as the work
in [Shao et al., 2014], we randomly select half of the track-
lets in the sequences for training and the remaining for test-
ing. When optimizing the parameters in predicting the fu-
ture paths, we divide each tracklet into two segments, and use
the hidden features learnt from the first segments (e.g., 2/3 of
each tracklet) to predict the latter segments (e.g., the rest 1/3
tracklet).

4.1 Future Path Forecasting of Pedestrians
We first test the performance of our framework on path fore-
casting by comparing our approach with a baseline method
of Kalman filter, which implements path prediction by incor-
porating a linear dynamic model with the uncertainties of the
current state, which cannot capture the nonlinear characteris-
tics of the complex crowd motions and leverage information
of the coherent groups. We also conduct path prediction with
a variant of the proposed cLSTM model by neglecting the co-
herent regularization between neighboring agents, which is
denoted as Un-coherent LSTM. In each experiment, we take
a fragment of tracklets as the input (e.g., 2/3 of each tracklet
in this paper), reconstruct them and then generate the rest of
the predicted tracklets (e.g., 1/3 of each tracklet) to evaluate
the performance.

Figure 7: Prediction of future paths with coherent regular-
ization, in which the red paths are reliable tracklets obtained
from KLT trackers and the green ones are the forecasted paths
from the cLSTM.

Sample results are demonstrated in Fig. 7, in which the red
tracklets are the paths obtained with the KLT tracker [Baker
and Matthews, 2004] that are followed by green curves of
tracklets generated with our cLSTM prediction model. The
results demonstrate that our algorithm is capable to capture
the inherent dynamics of each tracklet, which reflects the ten-
dency of neighboring agents by taking the coherent regular-
ization into account. Since the near future paths are well pre-
dicted, it provides a good probability to prevent the serious
incidents before they would emerge.

In Table 1, we report the quantitative performance of path
forecasting in terms of prediction error, which measures the
average distance between the ground-truth tracklets and the
estimated paths in terms of pixel as unit. It shows that our
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approach significantly outperforms the alternative methods.
Compared with the baseline method of Kalman filter, our
cLSTM captures the inherent nonlinearity of the crowd be-
havior such that the complex crowd motions are well pre-
dicted with a high precision; moreover, our method also ben-
efits from the coherent regularization due to the collective
properties in moving crowds.

Table 1: Error of Path Prediction

Kalman Filter Un-coherent LSTM Coherent LSTM
9.32 ± 1.99 6.64 ± 1.76 4.37±0.93

4.2 Group State Estimation
Group states well reflect the characteristics of a crowd, which
are useful in various applications. In the CUHK Crowd
Dataset [Shao et al., 2014], groups are classified into four
states as Gas2, Solid3, Pure Fluid4 and Impure Fluid5. Sam-
ples of groups with different states are illustrated in Fig. 8.

(a) Gas (b) Solid (c) Pure Fluid  (d) Impure Fluid

Figure 8: Samples of groups undergoing different states.

In this section, we train a softmax classifier using the hid-
den features learnt by our cLSTM, and then implement the
group state estimation. As a comparison, we also conduct
group state estimation by feeding the descriptors learnt from
variants of the proposed cLSTM model, including the predic-
tion LSTM by only targeting at predicting future paths, re-
construction LSTM by neglecting the prediction components,
and un-coherent LSTM by neglecting the coherent regulariza-
tion. Besides, we also report the results based on a collective
transition [Shao et al., 2014], which is the state-of-the-art al-
gorithm in group state estimation.

The quantitative evaluation in terms of confusion matrix is
reported in Fig. 9. Obviously, our proposed algorithm with
coherent LSTM (Fig. 9 (e)) outperforms the alternative meth-
ods. As a baseline method, group state estimation based on
collective transition [Shao et al., 2014] (Fig. 9(a)) explores
the crowd dynamics via a linear transition matrix, which is
not valid for groups with complex motion patterns, e.g., when
groups undergo an impure fluid state. The performance also
degrades when we neglect the reconstruction or predication

2Gas: Particles move in different directions without forming col-
lective behaviors

3Solid: Particles move in the same direction with relative posi-
tions unchanged

4Pure Fluid: Particles move towards the same direction with
ever-changing relative positions

5Impure Fluid: Particles move in a pure fluid style with invasion
of particles from other groups

(a) Collective  Transition

(e) Coherent LSTM(d) Un-coherent LSTM

(b) Prediction LSTM (c) Reconstruction LSTM

Figure 9: Confusion matrices of estimating group states us-
ing different methods: (a) collective transition [Shao et al.,
2014]; (b) prediction LSTM; (c) reconstruction LSTM; (d)
un-coherent LSTM; and (e) coherent LSTM. See text for the
description of each method.

components for prediction LSTM (Fig. 9 (b)) or reconstruc-
tion LSTM (Fig. 9 (c)), since the prediction LSTM tends to
maintain information of the last few frames rather than the
whole tracklets, and the reconstruction LSTM suffers from
the tendency to memorize the tracklets rather than explore
the inherent dynamics. When we implement group state es-
timation without taking the collective properties into account
using the un-coherent LSTM (Fig. 9(d)), the performance is
significantly inferior to our cLSTM method especially for
groups with organized structures, e.g., the group undergoing
a solid or fluid state.

4.3 Crowd Video Classification
Finally, we demonstrate the effectiveness of our method in
classifying crowd video dependent on the holistic crowd be-
haviors in a scene. In CUHK Crowd Dataset [Shao et al.,
2014], all video clips are annotated into 8 classes which are
commonly seen in crowd videos as 1) Highly mixed pedes-
trian walking; 2) Crowd walking following a mainstream and
well organized; 3) Crowd walking following a mainstream but
poorly organized; 4) Crowd merge; 5) Crowd split; 6) Crowd
crossing in opposite directions; 7) Intervened escalator traf-
fic; and 8) Smooth escalator traffic.

Similar as the implementations of group state estimation,
we conduct crowd video classification by feeding the repre-
sentations, which are learnt by our coherent LSTM, to a soft-
max classifier. As comparisons, crowd video classification
is also implemented with variants of the proposed cLSTM
method, including prediction LSTM, reconstruction LSTM,
and un-coherent LSTM (See Section 4.2 for details). Besides,
we also compare with collective transition [Shao et al., 2014].
In Fig. 10, we report a confusion matrix in crowd video classi-
fication based on our cLSTM, which demonstrates that videos
are classified into specific categories with high qualities.

In Fig. 11, we demonstrate the accuracy of crowd video
classification on each class by various methods as mentioned
above. We can see that the coherent LSTM outperforms the
alternative methods in general, since it captures the nonlin-
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Figure 10: Confusion matrix of crowd video classification
based on coherent LSTM. See text for the name of each class.

ear dynamics embedded in the complex crowd motion by
taking into the coherent motion at the same time, especially
for crowds with high nonlinearity, e.g., highly mixed pedes-
trian walking. Our method significantly outperforms the col-
lective transition method [Shao et al., 2014], which fails to
explore the nonlinear characteristics of crowd motion and
meanwhile neglects the coherent spatio-temporal structures
in crowd videos. Note that the videos of Crowd walking fol-
lowing a mainstream and well organized are well recognized
by collective transition, since crowd motions of these videos
satisfy the linear dynamics assumption of collective transition
in most cases.

Our cLSTM also benefits from exacting hidden features
by incorporating the reconstruction with the prediction tasks
together. Obviously, neither prediction LSTM or reconstruc-
tion LSTM fails to capture the inherent dynamics of overall
crowd motion, which degenerates the performance in video
classification. Besides, the effect of coherent regularization is
also essential in the scenarios when the collectiveness within
a crowd are significant, e.g., crowd merge or split.

Figure 11: Per-class accuracy comparison of crowd video
classification using different methods. See text for the name
of each class.

5 Conclusions
We present a novel recurrent neural network with coherent
long short term memory (cLSTM) units to understand crowd
scenes. To address the nonlinear dynamics in complex crowd
scenes, we propose to map a set of tracklets that describe the
crowd motion patterns to hidden features with LSTM, which

can keep track of an input tracklet. To consider the collec-
tive properties of moving crowds, we introduce a coherent
regularization such that the memory units are updated by tak-
ing into account dynamics of tracklets with coherent motions,
which encourages the learnt hidden features to have consis-
tent spatial and temporal structures. With the inherent dynam-
ics properly harnessed, our algorithm also provides a method
to predict the possible future paths, which is of great im-
portance in crowd management to prevent serious accidents
before they emerge. Extensive experiments on real-world
dataset demonstrate that our method outperforms its variants
and alternative method in group state estimation and crowd
video classification.
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