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Abstract
Feature noising is an effective mechanism on re-
ducing the risk of overfitting. To avoid an explo-
sive searching space, existing work typically as-
sumes that all features share a single noise level,
which is often cross-validated. In this paper, we
present a Bayesian feature noising model that flexi-
bly allows for dimension-specific or group-specific
noise levels, and we derive a learning algorithm that
adaptively updates these noise levels. Our adaptive
rule is simple and interpretable, by drawing a di-
rect connection to the fitness of each individual fea-
ture or feature group. Empirical results on various
datasets demonstrate the effectiveness on avoiding
extensive tuning and sometimes improving the per-
formance due to its flexibility.

1 Introduction
Feature noising is effective on protecting machine learning
methods from overfitting and increasing the invariance. The
early work on explicit corruption includes virtual support vec-
tor machines [Burges and Scholkopf, 1997], which explicitly
augment the training data through some invariant transforma-
tion models. Though effective, such an approach lacks ele-
gance and may suffer from the increased computational cost
on processing the artificially corrupted samples. The work on
marginalized corrupted features (MCF) [Maaten et al., 2013;
Chen et al., 2014] takes a strategy of implicit corruption,
where an infinite number of corrupted samples are consid-
ered via an expectation operator with respect to some nois-
ing model. This strategy has proven effective on introducing
adaptive regularization [Bishop, 1995; Wager et al., 2013].
Among many noising models, the dropout noise is particu-
larly interesting because of its simplicity and flexibility for
modeling the feature-wise difference between training data
and test data (e.g., some features exist in training data but
are absent in test data ), especially in document classifica-
tion and image processing [Globerson and Roweis, 2006;
Bovik, 2010]. It has been used to improve the generalization
of deep networks [Hinton et al., 2012] and to learn semantic
features in denoising auto-encoders [Vincent et al., 2008].

However, previous work has primarily focused on the fixed
noise distribution with some noise level parameters, and often

made the assumption that all features share a single dropout
noise level to avoid an explosive search space. Such simpli-
fication may ignore the feature-specific details. For exam-
ple, some features might be more discriminative than oth-
ers. Furthermore, it has been empirically shown that tun-
ing the noise level influences a lot on the performance. Us-
ing cross-validation to search for a good noise level is of-
ten time-consuming. The recent work [Geras and Sutton,
2014] presents a scheduled noising scheme to learn multiple-
levels of representations, but still assuming a single noise
level shared by all feature dimensions. Little effort has been
spent on adaptively learning the dropout levels, except [Ba
and Frey, 2013] which builds a binary belief network that is
stochastically overlaid on a deep neural network (DNN) to
selectively regularize each hidden unit of the DNN.

In this paper, we revisit the marginalized corrupted features
framework and propose a Bayesian feature noising model for
adaptively choosing the dropout noise levels. Our method
flexibly assigns each feature with its own noise level and in-
fers all the noise levels from the training data. In the cases
where features form non-trivial groups [Meier et al., 2008;
Lee et al., 2010], we adapt our method to learn group-wise
feature noise levels, where the features with the same group
share a common noise level. By optimizing the expected loss
function under the Bayesian noising model with variational
methods, we build a new algorithm that iteratively updates
the noise level parameters and learns the model parameters
under the marginalized corrupted features framework with a
given noising model. Our adaptive update rule for dropout
noise is simple and interpretable; it has a direct connection
to the fitness of each single feature or a feature group in
the group-wise learning setting. Extensive empirical studies
on various datasets demonstrate that our algorithm can adap-
tively learn the noise levels, without sacrificing the prediction
performance. In fact, it often achieves better prediction per-
formance due to the flexibility on capturing the differences
among features or feature groups.

2 Preliminaries
We consider the binary classification problem. Let D =
{(xi, yi)}ni=1 be the given training data, where x ∈ RD de-
notes the input data and y ∈ {+1,−1} denotes the response
variable. The learning problem is commonly formulated as a



regularized empirical risk minimization (ERM) framework:

θ̂ = argmin
θ

R(y;X,θ) + c · Ω(θ), (1)

where Ω(θ) is a regularization term, X ∈ Rn×D is the data
matrix, y ∈ {+1,−1}n and c is a hyper-parameter. Let
`(y;x,θ) be the loss function on data x when the true la-
bel is y. R(y;X,θ) =

∑n
i=1 `(yi;xi,θ) is defined as the

empirical risk.
When n is small compared to the model complexity, the

empirical risk may be a poor estimate to the true expected
loss, and minimizing the empirical risk function may lead
to a model with poor generalization to the data outside the
range of training data, which results in overfitting. The MCF
framework [Maaten et al., 2013] mitigates overfitting by gen-
erating an infinite corrupted dataset implicitly and training
models over such a dataset. More specifically, in MCF the
label-invariant noise αi is assigned over the original train-
ing data xi and transforms it into the corrupted version x̃i,
under an additive noise or multiplicative noise scheme. The
dropout noise is one type of multiplicative noise and corrupts
the training data by

x̃i = xi ◦αi, (2)

where αi is a binary vector with entry 0 denoting the deletion
of a feature and ◦ denotes the element-wise product. The
vector αi is generated from some noising model, such as:

p(αi|η) =

D∏
d=1

(1− ηd)αidη1−αid

d , (3)

which leads to the expectations E[αid] = 1− ηd and E[x̃i] =
x ◦ η, a biased version of x. Some unbiased feature noising
schemes can be constructed as well, e.g., x̃i = xi ◦αi ◦ 1

1−η .
In this paper we concentrate on the biased dropout noise, but
our results can be extended to the unbiased case.

Then, MCF optimizes the corrupted loss function (again
under the ERM framework) as follows:

R(y;X,θ,η) =

n∑
i=1

Ep(αi|η)[`(yi; x̃i,θ)]. (4)

Asymptotically, Eq. (4) is the limit case of explicitly gener-
ating a corrupted training set by generating corrupted exam-
ples several times. This implicit corruption strategy makes
the model training faster than explicitly generating finite cor-
rupted copies of training data. Many recent works follow
this strategy, by adopting various loss functions, including the
quadratic loss, exponential loss, logistic loss [Maaten et al.,
2013] and hinge loss [Chen et al., 2014]. In the sequel, we
will use the unified representation:

`(y;x,θ) = − log p(y|x,θ),

where p(y|x,θ) is some likelihood function. For example,
we have p(y|x,θ) = 1

1+exp(−yθ>x)
for logistic-loss and

p(y|x,θ) = exp(−(` − yθTx)+) for hinge loss, where
(x)+ = max(0, x).

However, the price MCF has to pay is that the computation
of the corrupted loss becomes more complex than that of the

Figure 1: The Bayesian feature noising model.

empirical loss, thereby calling for efficient approximate al-
gorithms, such as using second-order Taylor expansion [Wa-
ger et al., 2013], Gaussian approximation [Wang and Man-
ning, 2013] or minimizing some variational bounds (e.g., the
Jensen’s bound [Maaten et al., 2013] and data augmentation
bound [Chen et al., 2014]). We follow the idea of data aug-
mentation bound in this paper. Here we use the hinge loss as
an example, and the bound for logistic loss is similar. Details
can be found in [Chen et al., 2014]. Let ζi = `−yiθTx̃i, and
φ(yi|x̃i,θ) = exp{−2 max(0, ζi)} be the pseudo likelihood
of the ith instance1. Using the ideas of data augmentation
[Polson et al., 2011; Zhu et al., 2014], the pseudo-likelihood
can be expressed as

φ(yi|x̃i,θ) =

∫ ∞
0

1√
2πλi

exp

{
− (λi + ζi)

2

2λi

}
dλi, (5)

Using Eq. (5) and Jensen’s inequality, a variational upper
bound of Eq. (4) can be derived as

L(θ, q(λ)) =
1

2

n∑
i=1

{
−H(λi) +

1

2
Eq[log λi]

+ Eq
[

1

2λi
Ep(αi|η)(λi + ζi)

2

]}
+ γ,

(6)

where H(λi) is the entropy of the variational distribution
q(λi), Eq[·] is the expectation over q(λ) =

∏
i q(λi) and

γ is some constant. Then, an EM algorithm can be used to
optimize the upper bound iteratively.

However, all the existing MCF methods have treated the
dropout levels (i.e., η) as fixed unknown parameters. Further-
more, to avoid an explosive searching space for a good value
of η, a simplifying assumption is often made that η = η · 1,
where 1 is the D-dimensional vector with all elements being
the unit 1. Then, the single parameter η can be effectively
searched via cross-validation.

3 Bayesian feature noising model
We now present a Bayesian feature noising model, which
flexibly treats the noise levels as random variables, with each
dimension denoting the importance of the corresponding fea-
ture, and all the noise levels share a common prior to avoid
overparameterization. By doing this, our model captures both
the local and global properties, that is, each feature dimension
or feature group has its own noise level (i.e., locality), while
all the noise levels share a common prior (i.e., globality).

3.1 The feature-specific case
We first consider the most flexible case, where each feature
dimension has its own noise level. The extension to consider-
ing grouping structures will be presented in next section.

1The factor 2 doesn’t affect; it is simply for simplicity.



We follow the similar setup as in the MCF framework to
corrupt the features. Here, we treat η as random variables,
following some prior p0(η). The graphical structure of a
Bayesian feature noising model is illustrated in Fig. 1. Then,
the joint distribution of the Bayesian noising model is:

p(y,η,α|x,θ) = p0(η)

n∏
i=1

p(yi|xi,αi,θ)p(αi|η), (7)

where p(yi|xi,αi,θ) = p(yi|x̃i,θ) is per-sample likelihood,
either logistic or the one derived from the hinge-loss. Let
p0(η) be a non-informative prior. Then, we have the marginal
likelihood (therefore the expected empirical riskR(y;X,θ)):

log p(y|X,θ) = Ep(η|y,X,θ)
[
log

p(y,η|X,θ)

p(η|y,X,θ)

]
, (8)

which is unfortunately intractable due to the non-conjugacy
between the prior and likelihood and the high-dimensional
integral. Here, we introduce a lower bound for the log-
likelihood. Then, we can use the coordinate ascent (EM) al-
gorithm for finding a local maxima. Specifically, using the
Jensen inequality, we can get a lower bound of Eq. (8):

L(θ) = H(η) + Ep(η|y,X,θ)
[

log p0(η)

+

n∑
i=1

Ep(αi|η) [log p(yi|xi,αi,θ)]

]
,

(9)

whereH(η) is the entropy of the posterior of the noise levels,
i.e., p(η|y,X,θ). And p(η|y,X,θ) is:

p(η|y,X,θ) =
p0(η)

∏n
i=1 Ep(αi|η) [p(yi|xi,αi,θ)]

p(y|X,θ)
. (10)

But it is still hard to compute the true posterior p(η|y,X,θ)
and the expectation over it. We solve the problem by using
Laplace methods, that is, we approximate the posterior with
a Dirac delta function δη̂(η), which is centered at the MAP
estimator of η, that is, η̂ = argmaxη log p(η|y,X,θ).

For maximizing the logarithm of Eq. (10), we can in-
troduce a Jensen bound or data augmentation bound as the
previous works [Maaten et al., 2013; Chen et al., 2014],
by noting that −

∑n
i=1 logEp(αi|η) [p(yi|xi,αi,θ)] has the

same formulation as the loss function in MCF framework if
a Jensen bound is introduced. However, it will be quite time-
consuming. Here we use a loose but easy to compute and very
informative lower bound. Specifically, omitting the irrelevant
terms, we can rewrite the logarithm of Eq. (10) as

log p0(η) +

n∑
i=1

log

{∑
αi

p(αi|η)p(yi|xi,αi,θ)

}
. (11)

Recall that in the corrupted likelihood xi ◦ αi is an entity,
which implies p(yi|xi,αi,θ) stays unchanged for any αid ∈
{0, 1} when xid = 0. So we can rewrite the dropout distribu-
tion as p(αi|η) =

∏D
d=1(1− ηd)αidI(xid 6=0)η

(1−αid)I(xid 6=0)
d .

Then, let α̂i = argmaxαi
log p(yi|xi,αi,θ). We get a lower

bound of Eq. (11):

L(η) = log p0(η) +

n∑
i=1

log {p(α̂i|η)p(yi|xi, α̂i,θ)} .(12)

The nice property of this lower bound (12) is that if a loss
function has no coupling among the features (e.g., the hinge
loss and the logistic loss), the solution of η̂i has a closed-
form. Take the hinge loss as an example. We have the follow-
ing optimization problem to estimate α̂i:

α̂i = argmax
αi∈{0,1}D

{−(`− yiθT(xi ◦αi))+}

= argmax
αi∈{0,1}D

yiθ
T(xi ◦αi), (13)

whose solution is:

α̂id =

{
I(yiθdxid > 0), xid 6= 0

Any value, xid = 0
. (14)

Then, maximizing the bound L(η) in Eq. (12) leads to the
closed-form solution:

η̂d =

∑n
i=1 I(yiθdxid < 0)∑n
i=1 I(xid 6= 0)

. (15)

For the logistic loss, the optimization problem will be

α̂i = argmin
α∈{0,1}D

n∑
i=1

log(1 + e−yiθ
T(xi◦αi))

= argmax
α∈{0,1}D

yiθ
T(xi ◦αi), (16)

which has the same solution as in Eq. (14), and thereby the
same update rule for η in Eq. (15).

The update rule in Eq. (15) has an intuitive interpretation.
In the numerator, yiθdxid is the contribution of the d-th fea-
ture to the prediction score of the i-th training data. Since
the task is binary classification, we only consider the sign of
this contribution instead of its magnitude. In the denomina-
tor, the indicator function I(xid 6= 0) acts as a normalizer
— if xid = 0, there is no need to consider its contribution
since in dropout this feature will certainly be deleted (i.e.,
x̃id = 0); but if xid 6= 0, the corresponding feature-wise
score should normalize the importance to 1 because of the in-
dicator function we use in the numerator. Thus, the basic idea
of this update rule is that if the d-th feature always makes pos-
itive contributions, its dropout level is very low, meaning that
we assume this feature is more discriminative in classification
task than other features.

In Eq. (15) we omit p0(η) since we assume it non-
informative. In fact, there are many cases in which there
is some prior knowledge we can use. For example, in the
“nightmare at test time” scenario [Globerson and Roweis,
2006], the test data is the corrupted version of the training
data where the features of the test data are dropped with some
fixed probability. Our framework can handle these cases
by introducing an informative prior (e.g., the beta distribu-
tion Beta(a,b)) to provide a smoothing version of update
rule. Formally, let µd = ad−1

ad+bd−2 be the prior mode and
md = ad + bd − 2 be the measure of importance of the prior.
Then we can parametrize Beta(a,b) with (µ,m) and the up-
date rule will be

η̂d =

∑n
i=1 I(yiθdxid < 0) + µdmd∑n

i=1 I(xid 6= 0) +md
, (17)



which is a weighted summation between the prior mode and
empirical mode. By doing so, we can incorporate the prior
knowledge into our model with the price of introducing 2D
extra hyperparameters. The number of hyperparameters can
be reduced to 2 if we assign all the features with the same
Beta prior. We use the latter setting in the experiments.

Once we have an estimate η̂ of the noise levels, plug it into
Eq. (9), omit the unrelated terms and reverse the sign, we get
the corrupted empirical loss

R(y;X,θ, η̂) = −
n∑
i=1

Ep(αi|η̂) [log p(yi|xi,αi,θ)] .(18)

This is exactly the loss function (4) in the MCF framework,
except that we are using more flexible feature-specific noise
levels η and learn them from data. Then, we can follow the
idea for solving Eq. (4) over θ. By doing so, we get a coor-
dinate ascent algorithm for finding MLE of Eq. (8). Specif-
ically, for hinge loss, our algorithm iteratively performs the
following steps:

For η: update the noise levels η with Eq. (15) for the non-
informative prior case, or Eq. (17) for the Beta prior case.

For q(λ): infer the variational distribution q(λ) by opti-
mizing Eq. (6), which is an upper bound of Eq. (18). The
solution is

q(λi) ∼ GIG
(
λi;

1

2
, 1,Ep[ζ2i ]

)
, (19)

where GIG(x; p, a, b) ∝ xp−1 exp(− 1
2 ( bx + ax)) is the gen-

eralized inverse Gaussian distribution and the term Ep[ζ2i ] has
an analytical form for the dropout noise [Chen et al., 2014].

For θ: plugging the results of q(λi) into Eq. (6), adding
the regularizer and ignoring irrelevant terms, we get the fol-
lowing objective:

L[θ] = c · ||θ||22 +
1

2

n∑
i=1

Ep(αi|η)

[
ζi +

1

2
Eq[λ−1i ]ζ2i

]
, (20)

where Eq[λ−1i ] = 1/Ep[ζ2i ] by the distribution (19). Then, we
update θ by minimizing L[θ] over θ. As noted by [Chen et
al., 2014], the objective L[θ] can be denoted as a re-weighted
quadratic loss and has the closed-form solution. However,
to avoid high-dimensional matrix inversion, the numerical
methods (e.g., L-BFGS [Liu and Nocedal, 1989]) are often
more efficient to solve this problem. For logistic loss, the up-
date equations for q(λ) and θ are slightly different and can
be found in [Chen et al., 2014].

In summary, our algorithm runs the above three steps iter-
atively until convergence or reaching some threshold. Com-
pared to the iteratively re-weighted least square (IRLS) algo-
rithm in MCF framework, our algorithm adds the extra step
of updating η in each iteration. Since the cost of updating
η is linear to the data size and feature dimension, the overall
complexity is almost the same as the ordinary MCF method
with a fixed noise level.

3.2 The group-specific case
We now extend the above ideas to consider the case where the
features are partitioned intoM groups and the features within

the same group share the same noise level. For simplicity, we
consider the case where groups have no overlapping. Specif-
ically, let G1, . . . , GM represents a partition of the features.
The dropout noise distribution is

p(αi|η) =

M∏
j=1

∏
k∈Gj

(1− ηj)αikη1−αik
j . (21)

We can build a similar Bayesian feature noising model as be-
fore, and the loss function over θ has the same formulation.
The only difference is on η. Now, the update rule for η is

η̂j =

n∑
i=1

∑
k∈Gj

I(yiθkxik < 0)

n∑
i=1

∑
k∈Gj

I(xik 6= 0)
. (22)

This update rule is a smoothing version of Eq. (15) for the
feature-specific case. Intuitively, the group dropout level av-
erages the empirical dropout level of each feature, represent-
ing the common trend of features in the same group and mit-
igating the influence of the extreme cases (i.e. the feature-
specific dropout level of some feature is very different from
the other most features in the same group). This property
reflects our intuition that the features within the same group
should have very similar behaviour: to assign them with the
same dropout level ηj , we model the common properties; To
let each feature has its own indicator variable αik, k ∈ Gj ,
we allow them to have their own behaviour to some extent.

We note that the group-specific case is the intermediate ver-
sion. When M = 1, all the features share the same dropout
level — this is the assumption that previous work makes.
When M = D, each feature has its own dropout level —
this is the assumption that the feature-specific model makes.

4 Experiments
We present the experimental results of our Bayesian feature
noising models, with comparison to the ordinary methods
with dropout noise on a wide range of tasks, including: (1)
binary classification on the Amazon review datasets [Blitzer
et al., 2007] using the feature-specific noising model and on
the MEMset donor dataset2 using the group-specific nois-
ing model; (2) multi-class classification on the 20 News-
group dataset3; and (3) the “nightmare at test time” sce-
nario [Globerson and Roweis, 2006] on the MNIST dataset4.

4.1 Binary classification: Feature-specific case
The Amazon review datasets have been widely adopted to
evaluate the MCF methods [Maaten et al., 2013; Chen et
al., 2014]. We consider the Books and DVD datasets. Each
dataset consists of review documents in a 20,000 dimensional
feature space under a bag-of-words representation, and the
corresponding label denotes the altitude of the review. Fol-
lowing the previous settings, we choose 2,000 documents for
training and the other about 4,000 documents for testing.

2Available at: http://genes.mit.edu/burgelab/maxent/ssdata/
3Available at: http://people.csail.mit.edu/jrennie/20Newsgroups/
4Available at: http://yann.lecun.com/exdb/mnist/



(a) books (b) dvd

Figure 2: Dropout noise level versus classification error on
the Amazon review datasets

We compare with the Dropout-Logistic and Dropout-SVM
algorithm[Chen et al., 2014], which use `2-norm as the reg-
ularizer and have proven to achieve state-of-the-art perfor-
mance on the Amazon datasets. We apply our Bayesian up-
date rule on them to build our BayesDropout-Logistic and
BayesDropout-SVM algorithms. All the models are learned
by an EM algorithm with the same optimizing iteration using
data augmentation bounds [Chen et al., 2014], implemented
in C++ using L-BFGS methods [Liu and Nocedal, 1989]. We
run the algorithms with 640 iterations, which are sufficiently
large for all methods to converge.

Fig. 2 shows the test errors of various methods with dif-
ferent dropout levels, where for Dropout-Logistic/SVM these
noise levels are hyper-parameters while for our methods they
are the initial values. The zero dropout level case of Dropout-
Logistic/SVM corresponds to the logistic regression/SVM
with an `2-norm regularizer. We can see that no matter what
the initial noise level is, our Bayesian methods converge to
a good enough local minima, which is almost independent
of the initial values. Therefore, there is no need for us to
tune the dropout levels. Furthermore, we may get better
results because of the flexibility of our methods on captur-
ing the difference among features by using feature-specific
noise levels, instead of the single one shared by all features
in Dropout-Logistic/SVM. Finally, if we use cross-validation
to find the best dropout level for Dropout-SVM or Dropout-
Logistic, the computational cost will be much higher than that
of our Bayesian methods since a single run of each method
has a similar cost (e.g., the training time for our model is
32s, while the baseline needs 24s to learn a single model) but
doing cross-validation needs learning multiple models, i.e.,
multiple runs of the method, as detailed in Sec. 3.1.

4.2 Binary classification: Group-specific case
The MEMset Donor dataset was built for donor splice site
detection, which plays an important role in gene finding al-
gorithms. Splice sites are the regions between coding (ex-
ons) and noncoding (introns) DNA segments. The 5 end of
an intron is called a donor splice site and the 3 end an ac-
ceptor splice site. The training set consists of 8,415 true and
179,438 false human donor sites, and the testing set contains
4,208 true and 89,717 false donor sites. Each instance is of
length 7 and factored with 4 levels {A, T,G,C}. We refer

Figure 3: Results on the MEMset donor dataset.

the readers to [Yeo and Burge, 2004] for more details.
Here we follow the setup in [Meier et al., 2008], which

splits the original training set into a balanced training set
(5,610 true and 5,610 false instances) and an unbalanced val-
idation set (2,805 true and 59,804 false instances) which has
the same true/false ratio as the testing set. The data are rep-
resented as a collection of all factor interactions up to degree
2, leading to a 2,604-dimensional feature space. The features
are partitioned into 63 groups of sizes varying from 4 to 43.
Each instance is sparse and has 63 non-zero features. We
train the models on the balanced training set, then use the
validation set to choose the best threshold τ for classifier out-
put over the trained model. That is, we assign the instance
xi with 1 when p(yi = 1|xi, θ) > τ and 0 otherwise. The
performance is measured with correlation coefficient. Details
can be found in [Meier et al., 2008].

We remove the `2-norm regularizer from Dropout-Logistic
and BayesDropout-Logistic here to compare our methods
with group lasso which uses the group-wise `1,2-norm as reg-
ularizer equally. Fig. 3 shows that the dropout noise is help-
ful for improving the performance, and the group-specific
method can achieve better performance than the feature-
specific method. We note that the best result using the lo-
gistic group-lasso over 2 interactions is 0.6593 [Meier et al.,
2008] and over 4 interactions (27,896 groups in a 22,458,100-
dimensional space) is 0.663 [Roth and Fischer, 2008]. There-
fore, our results are competitive with the results of group-
lasso. Moreover, our methods don’t need to tune the regular-
ization parameter since there is no regularization terms.

4.3 Multi-class Classification
We report the results on the 20 Newsgroup dataset for multi-
class classification. The dataset consists of news documents
in 20 different newsgroups, with the training set contain-
ing 11,269 instances and the testing set containing 7,505 in-
stances. We adopt the “one-vs-all” strategy [Rifkin and Klau-
tau, 2004], which is effective to do the multi-class classifi-
cation with the binary classifier. However, we should note
that in the “one-vs-all” case, the positive instances and the
negative instances are unbalanced when learning each binary
classifier. So, we set different weights for the contribution of
the positive and negative instances in Eq. (15) corresponding
to the ratio r of numbers between the positive and negative
instances to make balance:

η̂d =

∑n
i=1 I(yiθdxid < 0) (I(yi > 0) + rI(yi < 0))∑n
i=1 I(xid 6= 0) (I(yi > 0) + rI(yi < 0))

.



Figure 4: Classification error on the 20 Newsgroup dataset.

(a) Logistic loss (b) Hinge loss

Figure 5: The nightmare at test time phenonmenon on
MNIST dataset. Numbers in brackets are dropout levels.

Since there is no obvious grouping structure in the feature
space, we report the results of our feature-specific Bayesian
model, again with comparison to the strong baselines of
Dropout-Logistic and Dropout-SVM. As Fig. 4 shows, our
Bayesian model can achieve almost as well as the best per-
formance of the baselines, without the need for tuning the
dropout levels. An interesting thing to note is that the perfor-
mance of the baselines is insensitive to the dropout level in a
wide range. That may be one reason why there is no explicit
improvement using the Bayesian model.

4.4 Nightmare at test time
The “nightmare at test time” scenario is one of the common
settings for testing the robustness of learning [Globerson and
Roweis, 2006]. We follow the setup of [Maaten et al., 2013;
Chen et al., 2014] to evaluate our Bayesian methods on
MNIST dataset, which has 60,000 training and 10,000 test-
ing handwritten character images with labels from 0 to 9.

Delete ratio 0 0.1 0.3 0.5 0.7 0.9

Dropout-Logistic 7.94 8.77 9.94 12.07 16.58 32.23
Bayes-Logistic-I 9.84 10.10 10.50 12.43 15.63 33.38
Bayes-Logistic-II 7.97 8.74 9.68 11.98 16.02 31.76

Dropout-SVM 8.14 8.55 9.78 12.04 15.63 31.74
Bayes-SVM-I 9.86 10.24 10.57 12.25 15.41 32.89
Bayes-SVM-II 7.99 8.40 9.73 11.77 15.51 31.03

Table 1: Error rates (%) on the MNIST dataset with dif-
ferent delete ratios, where Bayes-SVM/Logistic-I denotes
our Bayesian models with uninformative prior and Bayes-
SVM/Logistic-II uses a Beta prior as detailed in text.

Each image is represented by 28× 28 pixels, and most of the
pixel values are close to zero. We train the model on the full
training set with “one-vs-all” strategy, and evaluate the per-
formance on different versions of test set in which a certain
level of the features are randomly deleted (i.e., set to zero)
while keeping the label invariant.

Fig. 5(a) and 5(b) present the results of our Bayesian meth-
ods with an uninformative prior, comparing to the baselines
(i.e., Dropout-Logistic/SVM) with different dropout levels.
We can see that there is an obvious improvement when the
delete ratio is around 0.5, while the performance for too low
or too high delete rates is not very good. There are two pos-
sible reasons. First, the noise levels learnt by our methods
are on the relative sense. That is, they only reflect the rel-
ative importance among features since we do not know the
ground level (i.e., the delete ratio). With no information about
the ground level, the learnt levels will approximately center
around 0.5. As shown in Table 1, if we provide the informa-
tion of the ground level (i.e., delete ratio) as an informative
prior,5 our Bayesian methods achieve better performance than
the baselines for almost every delete ratio. Another reason is
that when the delete ratio is low, there is no benefit to apply
dropout noise, as we can find in Fig. 5(a) and 5(b) that when
the dropout level is greater than 0.3, there is an improvement
for using dropout.

5 Conclusions and Future Work
We present the Bayesian feature noising model for learn-
ing with corrupted features. Our methods can flexibly allow
feature-specific or group-specific noise levels and adaptively
update these noise level parameters. Empirical results on var-
ious datasets demonstrate the effectiveness of our methods on
learning accurate classifiers without extensive tuning of the
noise levels. In some cases, our methods achieve improved
accuracy due to the flexibility on capturing feature-wise dif-
ferences.

For future work, we are interested in the deep connection
with feature-wise boosting [O’Sullivan et al., 2000]. We are
also interested in extending our techniques to learning deep
networks with an adaptive dropout noise.
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5We use Beta prior in which we set the prior mode for each
feature µd according to the delete ratio and the importance md =
λ
∑n
i=1 I(xid 6= 0) to be proportional to the number of non-zero

entries of one feature, and tune λ via cross-validation. That is, we
do a linear combination of the trained dropout level and the prior
mode, which is independent with the number of non-zero entries
of one feature, and the update rule Eq. (17) can be rewritten as
η̂d = 1

1+λ
ηd +

λ
1+λ

µd.
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