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Abstract

We propose Laplace max-margin Markov
networks (LapM3N), and a general class of
Bayesian M3N (BM3N) of which the LapM3N
is a special case with sparse structural bias,
for robust structured prediction. BM3N gen-
eralizes extant structured prediction rules
based on point estimator to a Bayes-predictor
using a learnt distribution of rules. We
present a novel Structured Maximum Entropy
Discrimination (SMED) formalism for com-
bining Bayesian and max-margin learning of
Markov networks for structured prediction,
and our approach subsumes the conventional
M3N as a special case. An efficient learn-
ing algorithm based on variational inference
and standard convex-optimization solvers for
M3N, and a generalization bound are offered.
Our method outperforms competing ones on
both synthetic and real OCR data.

1. Introduction

In recent years, log-linear models based on compos-
ite features that explicitly exploit the structural de-
pendencies among elements in high-dimensional in-
puts (e.g., DNA strings, text sequences, image lat-
tices) and structured interpretational outputs (e.g.,
gene segmentation, natural language parsing, scene de-
scription) have gained substantial popularity in learn-
ing structured predictions from complex data. Ma-
jor instances of such models include the conditional
random fields (CRFs) (Lafferty et al., 2001), Markov
networks (MNs) (Taskar et al., 2003), and other spe-
cialized graphical models (Altun et al., 2003). Adding
to the flexibilities and expressive power of such mod-
els, different learning paradigms have been explored,
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such as maximum likelihood estimation (Lafferty et al.,
2001), and max-margin learning (Altun et al., 2003;
Taskar et al., 2003; Tsochantaridis et al., 2004).

For domains with complex feature space, it is often
desirable to pursue a “sparse” representation of the
model that leaves out irrelevant features. Learning
such a sparse model is key to reduce the rick of over-
fitting and achieve good generalizability. In likelihood-
based estimation, sparse model fitting has been exten-
sively studied. A commonly used strategy is to add an
L1-penalty to the likelihood function, which can also
be viewed as a MAP estimation under a Laplace prior.
Recent work along this line includes (Lee et al., 2006;
Wainwright et al., 2006; Andrew & Gao, 2007).

This progress notwithstanding, little progress has been
made so far on learning sparse MNs or log-linear
models in general based on the max-margin principle,
which is arguably a more desirable paradigm for train-
ing highly discriminative structured prediction models
in a number of application contexts. While sparsity
has been pursued in maximum margin learning of cer-
tain discriminative models such as SVM that are “un-
structured” (i.e., with a univariate output), by using
L1-regularization (Bennett & Mangasarian, 1992) or
by adding a cardinality constraint (Chan et al., 2007),
generalization of these techniques to structured output
space turns out to be extremely non-trivial. For exam-
ple, although it appears possible to formulate sparse
max-margin learning as a convex optimization prob-
lem as for SVM, both the primal and dual problems
are hard to solve since there is no obvious way to ex-
ploit the conditional independence structures within a
regularized MN to efficiently deal with the typically
exponential number of margin constraints. Another
empirical insight as we will show in this paper is that
the L1-regularized estimation is not so robust. Dis-
carding the features that are not completely irrelevant
can potentially hurt generalization ability.

In this paper, we propose a new formalism
called Structured Maximum Entropy Discrimination
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(SMED), which offers a general framework to com-
bine Bayesian learning and max-margin learning of
log-linear models for structured prediction. SMED is
a generalization of the maximum entropy discrimina-
tion (Jaakkola et al., 1999) methods originally devel-
oped for classification to the broader problem of struc-
tured learning. It facilitates posterior inference of a
full distribution of feature coefficients (i.e., weights),
rather than a point-estimate as in the standard max-
margin Markov network (M3N) (Taskar et al., 2003),
under a user-specified prior distribution of the coeffi-
cients and generalized maximum margin constraints.
One can use the learned posterior distribution of co-
efficients to form a Bayesian max-margin Markov net-
work (BM3N) that is equivalent to a weighted sum
of differentially parameterized M3Ns, or one can ob-
tain a MAP BM3N. We show that, by using a Laplace
prior for the feature coefficients, the resulting BM3N
is effectively a “sparse” max-margin Markov network,
which we refer to as a Laplace M3N (LapM3N). But
unlike the L1-regularized maximum likelihood estima-
tion, where sparsity is due to a hard threshold intro-
duced by the Laplace prior (Kaban, 2007), the effect of
Laplace prior in LapM3N is a biased posterior weight-
ing of the parameters. Smaller parameters are shrunk
more and thus robust estimation is achieved when the
data have irrelevant features. The Bayesian formalism
also makes the LapM3N less sensitive to regularization
constants. Interestingly, a trivial assumption on the
prior distribution of the coefficients, i.e., a standard
(zero-mean and identity covariance) normal, reduces
BM3N to the standard M3N, as shown in Theorem 3.

The paper is structured as follows. The next section
reviews the basic structured prediction formalism and
sets the stage for our model. Sec. 3 presents the
SMED formalism and basic results on BM3N. Sec. 4
presents LapM3N and a novel learning algorithm. Sec.
5 presents a generalization bound of BM3N. Sec. 6
shows empirical results. Sec. 7 concludes this paper.

2. Preliminaries

Consider a structured prediction problem such as nat-
ural language parsing, image understanding, or DNA
decoding. The objective is to learn a predictive func-
tion h : X 7→ Y from a structured input x ∈ X (e.g.,
a sentence or an image) to a structured output y ∈ Y
(e.g., a sentence parsing or a scene annotation), where
Y = Y1 × · · · × Yl with Yi = {y1, . . . , ymi} represents
a combinatorial space of structured interpretations of
multi-facet objects. For example, Y could correspond
to the space of all possible instantiations of the part-of-
speech (POS) tagging in the parse tree of a sentence,
or the space of all possible ways of labeling entities

over some segmentation of an image. The prediction
y ≡ (y1, . . . , yl) is structured because each individual
label yi ∈ Yi within y must be determined in the con-
text of other labels yj 6=i, rather than independently as
in a standard classification problem.

Let F : X × Y 7→ R represent a discriminant function
over the input-output pairs from which one can
define the predictive function h. A common choice
of F is a linear model, which is based on a set of
feature functions fk : X × Y 7→ R and their weights
wk, i.e., F (x,y; w) = w>f(x,y). Given F , the
prediction function h is typically defined in terms of
an optimization problem that maximizes F over the
response variable y given input x:

h0(x; w) = arg max
y∈Y(x)

F (x,y; w). (1)

Depending on the specific choice of the objective func-
tion C(w) for estimating the parameter w (e.g., likeli-
hood, or margin), incarnations of the general struc-
tured prediction formalism described above can be
seen in models such as the CRFs (Lafferty et al., 2001),
where C(w) is the conditional likelihood of the true
structured label; and the M3N (Taskar et al., 2003),
where C(w) is the margin between the true label and
any other label. Recent advances in structured pre-
diction has introduced regularizations of C(w) in the
CRF context, so that a sparse w can be learned (An-
drew & Gao, 2007). To the best of our knowledge, ex-
isting max-margin structured prediction methods uti-
lize a single discriminant function F ( · ; w) defined
by the “optimum” estimate of w, similar to a prac-
tice in Frequentist statistics. In this paper, we pro-
pose a Bayesian version of the predictive rule in Eq.
(1) so that the prediction function h can be obtained
from a posterior mean over multiple (indeed infinitely
many) F ( · ; w); and we also propose a new for-
malism and objective C(w) that lead to a Bayesian
M3N, which subsumes the standard M3N as a spe-
cial case, and can achieve a posterior shrinkage effect
on w that resembles L1-regulatiztion. To our knowl-
edge, although sparse graphical model learning based
on various likelihood-based principles has recently re-
ceived substantial attention (Lee et al., 2006; Wain-
wright et al., 2006), learning sparse networks based on
the maximum margin principle has not yet been suc-
cessfully explored. Our proposed method represents
an initial foray in this important direction.

Before dwelling into exposition of the proposed ap-
proach, we end this section with a brief recapitulation
of the basic M3N that motivates this work, and pro-
vides a useful baseline that grounds the proposed ap-
proach. Under a max-margin framework, given train-
ing data D = {〈xi,yi〉}Ni=1, we obtain a point estimate
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of the weight vector w by solving the following max-
margin problem P0 (Taskar et al., 2003):

P0 (M3N) : min
w,ξ

1
2
‖w‖2 + C

N∑
i=1

ξi

s.t. ∀i,∀y 6= yi : w>∆fi(y) ≥ ∆`i(y)− ξi, ξi ≥ 0 ,
where ∆fi(y) = f(xi,yi) − f(xi,y) and w>∆fi(y) is
the “margin” between the true label yi and a predic-
tion y, ∆`i(y) is a loss function with respect to yi, and
ξi is a slack variable that absorbs errors in the train-
ing data. Various loss functions have been proposed in
the literature (Tsochantaridis et al., 2004). In this pa-
per, we adopt the hamming loss used in (Taskar et al.,
2003): ∆`i(y) =

∑|xi|
j=1 I(yj 6= yij), where I(·) is an

indicator function that equals to one if the argument
is true and zero otherwise. The optimization prob-
lem P0 is intractable because the feasible space for w,
F0 = {w : w>∆fi(y) ≥ ∆`i(y) − ξi; ∀i,∀y 6= yi}, is
defined by O(N |Y|) number of constraints, and Y it-
self is exponential to the size of the input x. Exploring
sparse dependencies among individual labels yi in y,
as reflected in the specific design of the feature func-
tions (e.g., based on pair-wise labeling potentials), and
convex duality of the objective, efficient algorithms
based on cutting-plane (Tsochantaridis et al., 2004) or
message-passing (Taskar et al., 2003) have been pro-
posed to obtain an approximate optimum solution. As
described shortly, these algorithms can be directly em-
ployed as subroutines in solving our proposed model.

3. Bayesian Maximum Margin Markov
Networks

In this paper, we take a Bayesian approach and learn
a distribution p(w), rather than a point estimate of
w, in a max-margin manner. For prediction, we take
the average over all the possible models, that is:

h1(x) = arg max
y∈Y(x)

∫
p(w)F (x,y; w) dw . (2)

Now, the open question is how we can devise an ap-
propriate objective function over p(w), in a similar
spirit as the L2-norm cost over w in P0, that leads
to an optimum estimate of p(w). Below, we present a
structured maximum entropy discrimination (SMED)
framework that facilitates the estimation of a Bayesian
M3N defined by p(w). As we show in the sequel, our
Bayesian max-margin learning formalism offers several
advantages like the PAC-Bayes generalization guaran-
tee and estimation robustness.

3.1. SMED and the Bayesian M3N

Given a training set D, analogous to the feasible
space F0 for weight vector w in an M3N (i.e., problem
P0), the feasible subspace F1 of weight distribution

p(w) is defined by a set of expected margin constraints:
F1 = {p(w) : 〈∆Fi(y; w)−∆`i(y)〉p(w) ≥ −ξi, ∀i,y 6= yi},

where ∆Fi(y; w) = F (xi,yi; w)−F (xi,y; w) and 〈·〉p
denotes the expectations with respect to p.

To choose the best distribution p(w) from F1, the
maximum entropy principle suggests that one can con-
sider the distribution that minimizes its relative en-
tropy with respect to some chosen prior p0, as mea-
sured by the Kullback-Leibler divergence, KL(p||p0) =
〈log(p/p0)〉p. To accommodate the discriminative pre-
diction problem we concern, instead of minimizing the
usual KL, we optimize the generalized entropy (Dud́ık
et al., 2007; Lebanon & Lafferty, 2001), or a regular-
ized KL-divergence, KL(p(w)||p0(w)) + U(ξ), where
U(ξ) is a closed proper convex function over the slack
variables. This leads to the following Structured Max-
imum Entropy Discrimination Model:

Definition 1 (The Structured Maximum En-
tropy Discrimination Model) Given training data
D = {〈xi,yi〉}Ni=1, a discriminant function F (x,y; w),
a loss function ∆`x(y), and an ensuing feasible sub-
space F1 (defined above) for parameter distribution
p(w), the SMED model that leads to a prediction
function of the form of Eq. (2) is defined by the
following generalized relative entropy minimization
with respect to a parameter prior p0(w):

P1 : min
p(w),ξ

KL(p(w)||p0(w)) + U(ξ)

s.t. p(w) ∈ F1, ξi ≥ 0,∀i.
The P1 defined above is a variational optimization
problem over p(w) in a subspace of valid parameter
distributions. Since both the KL and the function U
in P1 are convex, and the constraints in F1 are lin-
ear, P1 is a convex program, which can be solved via
applying the calculus of variations to the Lagrangian
to obtain a variational extremum, followed by a dual
transformation of P1. Due to space limit, a detailed
derivation is given in an extended version of this paper,
and below we state the main results as a theorem.
Theorem 2 (Solution to SMED) The variational
optimization problem P1 underlying the SMED model
gives rise to the following optimum distribution of
Markov network parameters w:
p(w) =

1

Z(α)
p0(w) exp{

X
i,y

αi(y)[∆Fi(y; w)−∆`i(y)]}, (3)

where the Lagrangian multipliers αi(y) (corresponding
to constraints in F1) can be obtained by solving the
dual problem of P1:

D1 : max
α
− logZ(α)− U?(α)

s.t. αi(y) ≥ 0, ∀i, ∀y,

where U?(·) represents the conjugate of the slack func-
tion U(·), i.e., U?(α) = supξ

(∑
i,y αi(y)ξi − U(ξ)

)
.
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For a closed proper convex function φ(µ), its conjugate
is defined as φ?(ν) = supµ[ν>µ − φ(µ)]. In problem
D1, by convex duality, the log normalizer logZ(α) can
be shown to be the conjugate of the KL-divergence.
If the slack function is U(ξ) = C‖ξ‖ = C

∑
i ξi,

it is easy to show that U?(α) = I∞(
∑

y αi(y) ≤
C, ∀i), where I∞(·) is a function that equals to zero
when its argument holds true and infinity otherwise.
Here, the inequality corresponds to the trivial solu-
tion ξ = 0, that is, the training data are perfectly
separative. Ignoring this inequality does not affect
the solution since the special case ξ = 0 is still in-
cluded. Thus, the Lagrangian multipliers αi(y) in
the dual problem D1 comply with the set of con-
straints that

∑
y αi(y) = C, ∀i. Another example

is U(ξ) = KL(p(ξ)||p0(ξ)) by introducing uncertainty
on the slack variables (Jaakkola et al., 1999). Some
other U functions and their dual functions are studied
in (Lebanon & Lafferty, 2001; Dud́ık et al., 2007).

The optimum parameter distribution p(w) defined by
Eq. (3), along with the predictive function h1(x; w)
given by Eq. (2), jointly form what we would like to
call a Bayesian M3N (BM3N). The close connection
of BM3N and M3N is suggested by the striking isomor-
phisms of the opt-problem P1, the feasible space F1,
and the predictive function h1 underlying an BM3N,
to their counterparts P0, F0, and h0, respectively, un-
derlying an M3N. Indeed, by making a special choice
of a parameter prior in Eq. (3), based on the above
discussion of conjugate functions in D1, we arrive at
a reduction of D1 to an M3N optimization problem.
The following theorem makes this explicit.

Theorem 3 (Reduction of BM3N to M3N)
Assuming F (x,y; w) = w>f(x,y), U(ξ) =

∑
i ξi,

and p0(w) = N (w|0, I), where I denotes an identity
matrix, then the Lagrangian multipliers αi(y) are
obtained by solving the following dual problem:

max
α

X
i,y

αi(y)∆`i(y)− 1

2
‖
X
i,y

αi(y)∆fi(y)‖2

s.t.
X
y

αi(y) = C; αi(y) ≥ 0, ∀i, ∀y,

which, when applied to h1, lead to a predictive function
that is identical to h0(x; w) given by Eq. (1).
Proof: (sketch) Replacing p0(w) in Eq. (3) with
N (w|0, I), we can obtain the following closed-form
expression of the Z(α) in p(w):Z

1

(2π)
K
2

exp{−w>w

2
+
X
i,y

αi(y)[w>∆fi(y)−∆`i(y)]} dw

= exp

„
−
X
i,y

αi(y)∆`i(y) +
1

2
‖
X
i,y

αi(y)∆fi(y)‖2
«
.

As we have stated, the constraints
∑

y αi(y) = C are
due to the conjugate of U(ξ) =

∑
i ξi.

Theorem 3 shows that in the supervised learning set-
ting, M3N is subsumed by the SMED model, and can
be viewed as a special case of a Bayesian M3N when
the slack function is linear and the parameter prior is
a standard normal. As described later, this connec-
tion renders many existing techniques for solving the
M3N directly applicable for solving the BM3N. Note
that although the distribution p(w) in Eq. (3) has the
same form as that of Bayesian CRFs (Qi et al., 2005),
the underlying principles are fundamentally different.

Recent trend in pursuing “sparse” graphical mod-
els has led to the emergence of regularized version
of CRFs (Andrew & Gao, 2007) and Markov net-
works (Lee et al., 2006; Wainwright et al., 2006). Inter-
estingly, while such extensions have been successfully
implemented by several authors in maximum likeli-
hood learning of various sparse graphical models, they
have not yet been explored in the context of maxi-
mum margin learning. Such a gap is not merely due
to a negligence. Indeed, learning a sparse M3N can be
significantly harder as we discuss below.

As Theorem 3 reveals, an M3N corresponds to a BM3N
with a standard normal prior for the weight vector w.
To encourage a sparse model, when using zero-mean
normal prior, the weights of irrelevant features should
peak around zero with very small variances. However,
the isotropy of the variances in all dimensions in the
standard normal prior makes M3N infeasible to adjust
the variances in different dimensions to fit sparse data.
One way to learn a sparse model is to adopt the strat-
egy of L1-SVM to use L1-norm instead of L2-norm (a
detailed description of this formulation and the duality
derivation is available in the extended version of this
paper). However, in both the primal and dual of an
L1-regularized M3N, there is no obvious way to exploit
the sparse dependencies among variables of the MN
in order to efficiently deal with typically exponential
number of constraints, which makes direct optimiza-
tion or LP-formulation expensive. In this paper, we
adopt the SMED framework that directly leads to a
Bayesian M3N, and employ a Laplace prior for w to
learn a Laplace M3N. When fitted to training data, the
parameter posterior p(w) under a Laplace M3N has a
shrinkage effect on small weights, which is similar to
the L1-regularizer in an M3N. Although exact learning
of a Laplace M3N is still very hard, we show that it can
be efficiently approximated by a variational inference
procedure based on existing methods.

4. Laplace M3N

The Laplace prior is p0(w) =
∏K
k=1

√
λ

2 e−
√
λ|wk| =(√

λ
2

)K
e−
√
λ‖w‖. The Laplace density is heavy tailed
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and peaked at zero. Thus, it encodes the prior belief
that the distribution of w is strongly peaked around
zero. Another nice property is that the Laplace den-
sity is log-convex, which can be exploited to get convex
estimation problems like LASSO (Tibshirani, 1996).

4.1. Variational Learning with Laplace Prior

Although in principle we have a closed-form solution
of p(w) in Theorem 2, the parameters αi(y) are hard
to estimate when using the Laplace prior. As we shall
see in Section 4.2, exact integration will lead to a dual
function that is difficult to maximize. Thus, we present
a variational approximate learning approach.

Our approach is based on the hierarchical interpre-
tation (Figueiredo, 2003) of the Laplace prior, that
is, each wk has a zero-mean Gaussian distribution
p(wk|τk) = N (wk|0, τk) and the variance τk has an
exponential hyper-prior density,

p(τk|λ) =
λ

2
exp

{
− λ

2
τk
}
, for τk ≥ 0.

Let p(w|τ) =
∏K
k=1 p(wk|τk), p(τ |λ) =

∏K
k=1 p(τk|λ),

then, p0(w) =
∫
p(w|τ)p(τ |λ) dτ . Using the hier-

archical representation and applying the Jensen’s
inequality, we get the following upper bound:

KL(p||p0) = −H(p)− 〈log

Z
p(w|τ)p(τ |λ) dτ 〉p

≤ −H(p)− 〈
Z
q(τ) log

p(w|τ)p(τ |λ)

q(τ)
dτ 〉p

, L(p(w), q(τ)),

where q(τ) is a variational distribution which is used
to approximate p(τ |λ).

Substituting this upper bound for the KL in P1, we
now solve the following problem,

min
p(w)∈F1;q(τ);ξ

L(p(w), q(τ)) + U(ξ). (4)

This problem can be solved with an iterative minimiza-
tion algorithm alternating between p(w) and q(τ), as
outlined in Algorithm 1, and detailed below.

Algorithm 1 Variational Bayesian Learning

Input: data D = {〈xi,yi〉}Ni=1, constants C and λ, iter-
ation number T
Output: posterior mean 〈w〉Tp
Initialize 〈w〉1p ← 0, Σ1

w ← I
for t = 1 to T − 1 do

Step 1: solve (5) or (6) for 〈w〉t+1
p = Σtwη; update

〈ww>〉t+1
p ← Σtw + 〈w〉t+1

p (〈w〉t+1
p )>.

Step 2: use (7) to update Σt+1
w ← diag(

q
〈w2

k
〉t+1
p

λ
).

end for

Step 1: Keep q(τ) fixed, we optimize (4) with respect
to p(w). Taking the same procedure as in solving P1,

we get the posterior distribution p(w) as follows,

p(w)∝ exp{
Z
q(τ) log p(w|τ) dτ − b} · exp{w>η − L}

∝ exp{−1

2
w>〈A−1〉qw − b+ w>η − L}

= N (w|µw,Σw),

where η =
∑
i,y αi(y)∆fi(y), L =

∑
i,y αi(y)∆`i(y),

A = diag(τk), and b = KL(q(τ)||p(τ |λ)) is a constant.
The posterior mean and variance are 〈w〉p = µw =
Σwη and Σw = (〈A−1〉q)−1 = 〈ww>〉p − 〈w〉p〈w〉>p ,
respectively. The dual parameters α are estimated by
solving the following dual problem:

max
α

X
i,y

αi(y)∆`i(y)− 1

2
η>Σwη (5)

s.t.
X
y

αi(y) = C; αi(y) ≥ 0, ∀i, ∀y.

This dual problem can be directly solved using exist-
ing algorithms developed for M3N, such as (Taskar
et al., 2003; Bartlett et al., 2004). Alternatively, we
can solve the following primal problem:

min
w,ξ

1

2
w>Σ−1

w w + C

NX
i=1

ξi (6)

s.t. w>∆fi(y) ≥ ∆`i(y)− ξi; ξi ≥ 0, ∀i, ∀y 6= yi.

It is easy to show that the solution of problem (6) leads
to the posterior mean of w under p(w). The primal
problem can be solved with subgradient (Ratliff et al.,
2007) or extragradient (Taskar et al., 2006) methods.

Step 2: Keep p(w) fixed, we optimize (4) with respect
to q(τ). Take the derivative of L with respect to q(τ)
and set it to zero, then we get q(τ) =

∏K
k=1 q(τk).

Each q(τk) is computed as follows:

∀k : q(τk) ∝ p(τk|λ) exp
{
〈log p(wk|τk)〉p

}
∝ N (

√
〈w2

k〉p|0, τk) exp(−1
2
λτk).

The normalization factor is
∫
N (
√
〈w2

k〉p|0, τk) ·
λ
2 exp(− 1

2λτk) dτk =
√
λ

2 exp(−
√
λ〈w2

k〉p). The ex-
pectations 〈τ−1

k 〉q required in calculating 〈A−1〉q are
calculated as follows,

〈 1

τk
〉q =

Z
1

τk
q(τk) dτk =

s
λ

〈w2
k〉p

. (7)

We iterate between the above two steps until conver-
gence. Then, we use the posterior distribution p(w) to
make prediction. For irrelevant features, the variances
should converge to zeros and thus lead to a sparse esti-
mation. The intuition behind this iterative minimiza-
tion algorithm is as follows. First, we use a Gaussian
distribution to approximate the Laplace distribution
and thus get a QP problem that is analogous to that
of M3N; then, the second step updates the covariance
matrix in the QP problem with an exponential hyper-
prior on the variance.
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4.2. Insights

To see how the Laplace prior affects the posterior dis-
tribution, we do the following calculations. Substitute
the hierarchical representation of the Laplace prior
into p(w) in Theorem 2, and we get:

Z(α) =

Z Z
p(w|τ)p(τ |λ) dτ · exp{w>η − L}dw

=

Z
p(τ |λ)

Z
p(w|τ) · exp{w>η − L} dw dτ

= exp{−L}
KY
k=1

λ

λ− η2
k

, (8)

where ηk =
∑
i,y αi(y)(fk(xi,yi) − fk(xi,y)) and an

additional constraint is ∀k, η2
k < λ. Otherwise, the

integration is infinity. Using the result (8), we can get:
∂logZ
∂αi(y)

= µ>∆fi(y)−∆`i(y), (9)

where µ is a column vector and µk = 2ηk

λ−η2
k
, ∀1 ≤ k ≤

K. An alternative way is using the definition of Z :
Z =

∫
p0(w) · exp{w>η − L} dw . We can get:

∂logZ

∂αi(y)
= 〈w〉>p ∆fi(y)−∆`i(y). (10)

Comparing Eqs. (9) and (10), we get 〈w〉p = µ, that
is, 〈wk〉p = 2ηk

λ−η2
k
, ∀1 ≤ k ≤ K. Similar calculation

can lead to the result that in M3N (standard normal
prior) 〈w〉p = η. Figure 1 shows the posterior means
(any dimension) when the priors are standard normal,
Laplace with λ = 4, and Laplace with λ = 6. We
can see that with a Laplace prior, the parameters are
shrunk around zero. The larger the λ value is, the
greater the shrinkage effect. For a fixed λ, the shape
of the posterior mean is smoothly nonlinear but no
component is explicitly discarded, that is, no weight is
set to zero. This is different from the shape of a L1-
regularized maximum likelihood estimation (Kaban,
2007) where an interval exists around the origin and
parameters falling into this interval are set to zeros.

Note that if we use the exact integration as in Eq. (8),
the dual problem D1 will maximize L−

∑K
k=1 log λ

λ−η2
k

.

Since η2
k appears within a logarithm, the optimization

problem would be very hard to solve. Thus, we turn
to a variational approximation method.

5. Generalization bound

The PAC-Bayes bound (Langford et al., 2001) provides
a theoretical motivation to learn an averaging model
as in P1 which minimizes the KL-divergence and si-
multaneously satisfies the discriminative classification
constraints. To apply it to our structured learning
setting, we assume that the discriminant functions are
bounded, that is, F ∈ H : X × Y → [−c, c] for all w,

Figure 1. Posterior mean with different priors against the
estimation of M3N (i.e. with the standard normal prior).

where c is a positive constant. Recall that our aver-
aging model is h(x,y) = 〈F (x,y; w)〉p(w). We define
the margin of an example (x,y) for such a function h
as M(h,x,y) = h(x,y) − maxy′ 6=y h(x,y′). Clearly,
the model h makes a wrong prediction on (x,y) only
if M(h,x,y) ≤ 0. Let Q be a distribution over X ×Y,
and let D be a sample of N examples randomly drawn
from Q. We have the following PAC-Bayes theorem.

Theorem 4 (PAC-Bayes Bound of BM3N) Let
p0 be any continuous probability distribution over H
and let δ ∈ (0, 1). If F ∈ H : X × Y → [−c, c] for all
w, then with probability at least 1 − δ over random
samples D of Q, for very distribution p over H and
for all margin thresholds γ > 0:

PrQ(M(h,x,y) ≤ 0) ≤ PrD(M(h,x,y) ≤ γ)

+O

„r
γ−2KL(p||p0) ln(N |Y|) + lnN + ln δ−1

N

«
.

Here, PrQ(.) stands for 〈.〉Q and PrD(.) stands for the
empirical average on D. The proof follows the same
structure as the original PAC-Bayes bound proof, with
consideration of the margins. Due to space limit, de-
tails of the proof are given in the extended paper.

6. Experiments

In this section, we present some empirical results of
LapM3N on both synthetic and real data sets. We
compare LapM3N with M3N, CRFs, L1-regularized
CRFs (L1-CRFs), and L2-regularized CRFs (L2-
CRFs). We use the quasi-Newton method (Andrew
& Gao, 2007) to learn L1-CRFs.

6.1. Synthetic Data Sets

6.1.1. I.I.D Features

The first experiment is conducted on synthetic se-
quence data with 100 i.i.d features. We generate three
types of data sets with 10, 30, and 50 relevant features.
For each setting, we randomly generate 10 linear-chain
CRFs with 8 binary labeling states. The feature func-
tions include: a real valued state-feature function over
a one dimensional input feature and a class label; and
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Figure 2. Evaluation results on data sets with i.i.d features.

4 (2× 2) binary transition-feature functions capturing
pairwise label dependencies. For each model we gen-
erate a data set of 1000 samples. For each sample,
we first independently draw the 100 features from a
standard normal distribution, and then apply a Gibbs
sampler to assign a label sequence with 5000 iterations.

For each data set, we randomly draw a part as train-
ing data and use the rest for testing. The numbers
of training data are 30, 50, 80, 100, and 150. The
QP problem is solved with the exponentiated gradient
method (Bartlett et al., 2004). In all the following ex-
periments, the regularization constant of L1-CRFs and
L2-CRFs is chosen from {0.01, 0.1, 1, 4, 9, 16} by a 5-
fold cross-validation in training. For LapM3N, we use
the same method to choose λ from 20 roughly evenly
spaced values between 1 and 268. For each setting, the
average over 10 data sets is the final performance.

The results are shown in Figure 2. All the results of
LapM3N are achieved with 3 iterations of the varia-
tional learning. Under different settings LapM3N con-
sistently outperforms M3N and performs comparably
with L1-CRFs. But note that the synthetic data come
from simulated CRFs. Both L1-CRFs and L2-CRFs
outperform the un-regularized CRFs. One interesting
result is that M3N and L2-CRFs perform comparably.
This is reasonable because as derived by Lebanon and
Lafferty (2001) and noted by Globerson et al. (2007)
the L2-regularized MLE of CRFs has a similar con-
vex dual as that of M3N. The only difference is the
loss they try to optimize. CRFs optimize the log-loss
while M3N optimizes the hinge-loss. As the number of
training data increase, all the algorithms consistently
get higher performance. The advantage of LapM3N is
more obvious when there are fewer relevant features.

6.1.2. Correlated Features

In reality, most data sets contain redundancy and the
features are usually correlated. So, we evaluate our
models on synthetic data sets with correlated features.
We take the similar procedure as in generating the
data sets with i.i.d features to first generate one linear-
chain CRF model. Then, we use the CRF model to
generate 10 data sets of which each sample has 30 rele-
vant features. The 30 relevant features are partitioned
into 10 groups. For the features in each group, we first
draw a real-value from a standard normal distribution

Figure 3. Results on data sets with 30 relevant features.

and then ‘spoil’ the feature with a random Gaussian
noise to get 3 correlated features. The noise Gaussian
has a zero mean and standard variance 0.05. Here
and in all the remaining experiments, we use the sub-
gradient method (Ratliff et al., 2007) to solve the QP
problem in both M3N and LapM3N. We use the learn-
ing rate and complexity constant that are suggested by
the authors, that is, αt = 1

2β
√
t

and C = 200β, where
β is a parameter we introduced to adjust αt and C.
We do K-fold CV on each data set and take the av-
erage over the 10 data sets as the final results. Like
(Taskar et al., 2003), in each run we choose one part
to do training and test on the rest K-1 parts. We vary
K from 20, 10, 7, 5, to 4. In other words, we use 50,
100, about 150, 200, and 250 samples during the train-
ing. We use the same grid search to choose λ and β
from {9, 16, 25, 36, 49, 64} and {1, 10, 20, 30, 40, 50, 60}
respectively. Results are shown in Figure 3. We can
get the same conclusions as in the previous results.

6.2. Real-World OCR Data Set

The OCR data set is partitioned into 10 subsets for 10-
fold CV (Taskar et al., 2003; Ratliff et al., 2007). We
randomly select N samples from each fold for our ex-
periments. We vary N from 100, 150, 200, to 250, and
denote the selected data sets by OCR100, OCR150,
OCR200, and OCR250 respectively. When β = 4
on OCR100 and OCR150, β = 2 on OCR200 and
OCR250, and λ = 36, results are shown in Figure 4.

Overall, as the number of training data increases, all
algorithms achieve lower error rates and smaller vari-
ances. Generally, LapM3N consistently outperforms
all the other models. M3N outperforms the standard,
non-regularized, CRFs and the L1-CRFs. Again, L2-
CRFs perform comparably to M3N. This is a bit sur-
prising but still reasonable due to the understanding
of their only difference on loss functions (Globerson
et al., 2007). By examining the prediction accuracy,
we can see an obvious over-fitting in CRFs and L1-
CRFs. In contrast, L2-CRFs are very robust. This
is because unlike the synthetic data sets, features in
real-world data are usually not completely irrelevant.
In this case, putting small weights to zero as in L1-
CRFs will hurt generalization ability and also lead to
instability to regularization constants as shown later.
Instead, L2-CRFs do not put small weights to zero but
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Figure 4. Evaluation results on OCR data set with differ-
ent numbers of selected data.

Figure 5. Error rates of different models on OCR100 with
different regularization constants. From left to right, the
regularization constants are 0.0001, 0.001, 0.01, 0.1, 1, 4,
9, 16, and 25 for L1-CRFs and L2-CRFs, and for M3N and
LapM3N they are 1, 4, 9, 16, 25, 36, 49, 64, and 81.

shrink them towards zero as in LapM3N. The non-
regularized MLE can also easily lead to over-fitting.

6.3. Sensitivity to Regularization Constants

Figure 5 shows the error rates of different models on
OCR100. From the results, we can see that the L1-
CRFs are much sensitive to the regularization con-
stants. However, L2-CRFs, M3N, and LapM3N are
much less sensitive. Among all the models, LapM3N
is the most stable one. The stability of LapM3N is due
to the posterior weighting instead of hard-thresholding
to set small weights to zero as in L1-CRFs.

7. Conclusions

We proposed a Structured Maximum Entropy Discrim-
ination formalism for Bayesian max-margin learning
in structured prediction. This formalism gives rise to
a general class of Bayesian M3Ns and subsumes the
standard M3N as a spacial case where the predictive
model is assumed to be linear and the parameter prior
is a standard normal. We show that the adoption of
a Laplace prior of the parameter leads to a Laplace
M3N that enjoys properties expected from a sparsi-
fied Bayesian M3N. Unlike the L1-regularized MLE
which sets small weights to zeros to achieve sparsity,
LapM3N weights the parameters a posteriori. Features
with smaller weights are shrunk more. This posterior
weighting effect makes LapM3N more stable with re-
spect to the magnitudes of the regularization coeffi-
cients and more generalizable.
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