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Abstract—Relational topic models (RTMs) provide a probabilistic generative process to describe both the link structure and

document contents for document networks, and they have shown promise on predicting network structures and discovering latent topic

representations. However, existing RTMs have limitations in both the restricted model expressiveness and incapability of dealing with

imbalanced network data. To expand the scope and improve the inference accuracy of RTMs, this paper presents three extensions:

1) unlike the common link likelihood with a diagonal weight matrix that allows the-same-topic interactions only, we generalize it to

use a full weight matrix that captures all pairwise topic interactions and is applicable to asymmetric networks; 2) instead of doing

standard Bayesian inference, we perform regularized Bayesian inference (RegBayes) with a regularization parameter to deal with

the imbalanced link structure issue in real networks and improve the discriminative ability of learned latent representations; and 3)

instead of doing variational approximation with strict mean-field assumptions, we present collapsed Gibbs sampling algorithms for

the generalized relational topic models by exploring data augmentation without making restricting assumptions. Under the generic

RegBayes framework, we carefully investigate two popular discriminative loss functions, namely, the logistic log-loss and the

max-margin hinge loss. Experimental results on several real network datasets demonstrate the significance of these extensions on

improving prediction performance.

Index Terms—Statistical network analysis, relational topic models, data augmentation, regularized Bayesian inference

Ç

1 INTRODUCTION

MANY scientific and engineering fields involve analyz-
ing large collections of data that can be well described

by networks, where vertices represent entities and edges
represent relationships or interactions between entities.
Such data include online social networks, protein interac-
tion networks, academic paper citation and coauthorship
networks, etc. As the availability and scope of network data
increase, statistical network analysis (SNA) has attracted a
considerable amount of attention (see [17] for a comprehen-
sive survey). Among the many SNA tasks, link prediction
[4], [25] is a most fundamental one that estimates the link
structure of networks based on partially observed links
and/or entity attributes (if exist). Link prediction could pro-
vide useful predictive models for suggesting friends to
social network users or citations to scientific articles.

Many link prediction methods have been proposed,
including the work on designing similarity measures [25]
that are used to rank unobserved links and those on learn-
ing supervised classifiers with well-conceived features [19],
[26]. Though specific domain knowledge can be used to
design effective feature representations, feature engineering
is generally a labor-intensive process. In order to expand
the scope and improve the ease of applicability of machine
learning methods, fast growing efforts have been made to

learn feature representations from data [6]. Along this line,
recent work on link prediction has focused on learning
latent variable models, including both parametric [2], [20],
[21] and nonparametric Bayesian methods [31], [40].
Though these methods could model the network structures
well, little attention has been paid to account for observed
attributes of the entities, such as the text contents of papers
in a citation network or the contents of web pages in a
hyperlinked network. One work that accounts for both text
contents and network structures is the relational topic mod-
els (RTMs) [8], an extension of latent Dirichlet allocation
(LDA) [7] to predicting link structures among documents as
well as discovering their latent topic structures.

Though powerful, existing RTMs have some assump-
tions that could limit their applicability and inference accu-
racy. First, RTMs define a symmetric link likelihood model
with a diagonal weight matrix that allows the-same-topic
interactions only, and the symmetric nature could also
make RTMs unsuitable for asymmetric networks. Second,
by performing standard Bayesian inference under a gener-
ative modeling process, RTMs do not explicitly deal with
the common imbalance issue in real networks, which nor-
mally have only a few observed links while most entity
pairs do not have links, and the learned topic representa-
tions could be weak at predicting link structures. Finally,
RTMs and other variants [27] apply variational methods to
estimate model parameters with mean-field assumptions
[24], which are normally too restrictive to be realistic in
practice.

To address the above limitations, this paper presents dis-
criminative relational topic models, which consist of three
extensions to improving RTMs:

1) We relax the symmetric assumption and define the
generalized relational topic models (gRTMs) with a
full weight matrix that allows all pairwise topic interac-
tions and is more suitable for asymmetric networks;

� N. Chen, J. Zhu, F. Xia and B. Zhang are with the MOE Key lab of Bioin-
formatics, Bioinformatics Division and Center for Synthetic & Systems
Biology, Center for Brain Inspired Computing Research (CBICR),
TNLIST, Department of Computer Science and Technology, State Key Lab
of Intelligent Technology and Systems, Tsinghua University, Beijing
100084 China. E-mail: {ningchen, dcszj, dcszb}@mail.tsinghua.edu.cn,
xia.fei09@gmail.com.

Manuscript received 11 Sept. 2013; revised 15 Sept. 2014; accepted 25 Sept.
2014. Date of publication 30 Sept. 2014; date of current version 4 Apr. 2015.
Recommended for acceptance by J. Ye.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TPAMI.2014.2361129

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 5, MAY 2015 973

0162-8828� 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2) We perform regularized Bayesian inference (Reg-
Bayes) [42] that introduces a regularization parame-
ter to deal with the imbalance problem in common
real networks;

3) We present a collapsed Gibbs sampling algorithm
for gRTMs by exploring the classical ideas of data
augmentation [11], [14], [39].

Ourmethods are generic, in the sense thatwe can use various
loss functions to learn discriminative latent representations.
This paper focuses on two types of popular loss functions,
namely, logistic log-loss and max-margin hinge loss. For the
max-margin loss, the resulting max-margin RTMs are new
contributions to the field of statistical network analysis.

For posterior inference, we present efficient Markov chain
Monte Carlomethods for both types of loss functions by intro-
ducing auxiliary variables. For the logistic log-loss, we intro-
duce a set of Polya-Gamma random variables [34], one per
training link, to derive an exact mixture representation of the
logistic link likelihood; while for the hinge loss, we introduce
a set of generalized inverse Gaussian variables [12] to derive a
mixture representation of the corresponding unnormalized
likelihood. Then, we integrate out the intermediate Dirichlet
variables and derive the local conditional distributions for
collapsed Gibbs sampling analytically. These “augment-and-
collapse” algorithms are simple and efficient. More impor-
tantly, they do not make any restricting assumptions on the
desired posterior distribution. Experimental results on sev-
eral real networks demonstrate that these extensions are
important and can significantly improve the performance.

The rest paper is structured as follows. Section 2 summa-
rizes related work. Section 3 presents the generalized RTMs
with both log-loss and hinge loss. Section 4 presents the
“augment-and-collapse” Gibbs sampling algorithms for
both loss functions. Section 5 presents experimental results.
Finally, Section 6 concludes with future directions discussed.

2 RELATED WORK

Probabilistic latent variable models have been widely devel-
oped for modeling link relationships between documents, as
they share nice properties on dealing with missing attributes
anddiscovering representative latent structures. For instance,
RTMs [8] capture both text contents and network relations for
document link prediction; Topic-Link LDA [27] performs
topic modeling and author community discovery in an
unified framework; Link-PLSA-LDA [32] combines probabi-
listic latent semantic analysis (PLSA) [23] and LDA into a sin-
gle framework to explicitly model the topical relationship
between documents; Others include Pairwise-Link-LDA [33],
Copycat and Citation Influence models [13], latent topic
hypertext models [1], Block-LDA models [5], etc. One shared
goal of the aforementioned models is link prediction. For
static networks, our focus in this paper, this problem is usu-
ally formulated as inferring the missing links given the other
observed ones. However, very few studies explicitly impose
discriminative training, and many models suffer from the
common imbalance issue in sparse networks (e.g., the num-
ber of unobserved links is much larger than that of the
observed ones). In this paper, we build our approaches
by exploring the nice framework of regularized Bayesian
inference [43], under which one could easily introduce

posterior regularization and do discriminative training in a
cost sensitivemanner.

Another under-addressed problem in most probabilistic
topic models for link prediction [8], [27] is the intractability of
posterior inference due to the non-conjugacy between the
prior and link likelihood (e.g., logistic likelihood). Existing
approaches using variational inference with mean field
assumption are often too restrictive in practice. Recently, [34]
and [35] show that by making use of the ideas of data aug-
mentation, the intractable likelihood (either a logistic likeli-
hood or the one induced from a hinge loss) could be
expressed as a marginal of a higher-dimensional distribution
with augmented variables that leads to a scale mixture of
Gaussian components. These strategies have been success-
fully explored to develop efficient Gibbs samplers for super-
vised topicmodels [41], [44]. This paper further explores data
augmentation techniques to do collapsed Gibbs sampling for
our discriminative relational topic models. Please note that
our methods could also be applied to many of the aforemen-
tioned relational latent variable models. Finally, this paper is
a systematical generalization of the conference paper [9].

3 GENERALIZED RTMS

We consider document networks with binary link struc-
tures. Let D ¼ fðwi;wj; yijÞgði;jÞ2I be a training set, where

wi ¼ fwingNi
n¼1 denote the words in document i and yij is the

link label (either 0 or 1).1 A relational topic model consists

of an LDA model [7] for describing the words W ¼ fwigDi¼1

and a classifier for considering link structures y ¼ fyijgði;jÞ2I .
Let K be the number of topics and each topic FFk is a multi-
nomial distribution over a V -word vocabulary. For Bayesian
RTMs, the topics are samples drawn from a Dirichlet prior,
FFk � DirðbbÞ. The generating process can be described as:

1) For each document i ¼ 1; 2; . . . ; D:
a) draw a topic mixing proportion uui � DirðaaÞ
b) for each word n ¼ 1; 2; . . . ; Ni:

i) draw a topic assignment zin � MultðuuiÞ
ii) draw the observed word win � MultðFFzinÞ

2) For each pair of documents ði; jÞ 2 I :
a) draw a link indicator yij � pð:jzi; zj; hhÞ, where

zi ¼ fzingNi
n¼1.

We have used Multð�Þ to denote a multinomial distribution;
and used FFzin to denote the topic selected by the non-zero

entry of zin, a K-dimensional binary vector with only one
entry equaling to 1.

Previous work has defined the link likelihood as

pðyij ¼ 1 j zi; zj; hhÞ ¼ s hh>ðzi � zjÞ
� �

; (1)

where zi ¼ 1
Ni

PNi
n¼1 zin is the average topic assignments of

document i; s is the sigmoid function; and � denotes ele-
mentwise product. In [8], other choices of s such as the
exponential function and the cumulative distribution func-
tion of the normal distribution were also used, as long as it
is a monotonically increasing function with respect to the

1. Our setting is slightly different from [8], which only models
observed links while introducing an artificial penalty for unobserved
links in order to learn a predictive model. Our setting is common in sta-
tistical network analysis [19], [26], [31], [40].
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weighted inner product between zi and zj. Here, we focus
on the commonly used logistic likelihood model [27], [31],
as no one has shown consistently superior performance
than others. The reason why RTMs define the link likeli-
hood on z rather than uu is clear in [8].

3.1 The Full RTM Model

Since hh>ðzi � zjÞ ¼ z>i diagðhhÞzj, the standard RTM learns a
diagonal weight matrix which only captures the-same-topic
interactions, i.e., there is a non-zero contribution to the link
likelihood only when documents i and j have the same
topic. One example of the fitted diagonal matrix on the Cora
citation network [8] is shown in Table 1, where each row
corresponds to a topic and we show the representative
words for the topic at the right hand side. Due to the pos-
itiveness of the latent features (i.e., zi) and the competition
between the diagonal entries, some of hk will have positive
values while some are negative. The negative interactions
may conflict our intuitions of understanding a citation net-
work, where we would expect that papers with the same
topics tend to have citation links. Furthermore, by using a
diagonal weight matrix, the model is symmetric, i.e., the
probability of a link from document i to j is the same as

the probability of a link from j to i. The symmetry property
does not hold for many networks, e.g., citation networks.

To make RTMs more expressive and applicable to asym-
metric networks, the first simple extension is to define the
link likelihood as

pðyij ¼ 1 j zi; zj; UÞ ¼ s vij

� �
; (2)

where vij ¼ z>i Uzj is the discriminant function value,
defined with a full K �K weight matrix U . Fig. 1 presents
the plate graph for a pair of documents. Using the algorithm
to be presented, an example of the learned U matrix on the
same Cora network is shown in Table 2. We can see that by
allowing all pairwise topic interactions, all the diagonal entries
are positive,2 while most off-diagonal entries are negative.
This is consistent with our intuition that documents with
the same topics tend to have citation links, while documents
with different topics are less likely to have citation links. We
also note that there are some documents with generic topics
(e.g., topic 4) that have positive link interactions with almost
all others.

3.2 Regularized Bayesian Inference

Given D, we let Z ¼ fzigDi¼1 and QQ ¼ fuuigDi¼1 denote all the
topic assignments and mixing proportions respectively.
To fit RTM models, maximum likelihood estimation has
been used with an EM algorithm [8]. We consider Bayesian
inference [21], [31] to get the posterior distribution

pðQQ;Z;FF; U j DÞ / p0ðQQ;Z;FF; UÞpðD jZ;FF; UÞ;

Fig. 1. A plate graph of Bayesian gRTMs, where �ij is an augmented
variable used for sampling; a, b, and n are hyper-parameters.

TABLE 2
Learned Weight Matrix of 10-Topic gRTM and Representative Words Corresponding with Topics

TABLE 1
Learned Diagonal Weight Matrix of 10-Topic RTM and Representative Words Corresponding with Topics

2. The positivity is not guaranteed in general. It is determined
by the data.
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where pðD jZ;FF; UÞ ¼ pðWjZ;FFÞpðy jZ; UÞ is the likelihood
of the observed data and p0ðQQ;Z;FF; UÞ ¼ p0ðUÞ½Qi pðuui jaaÞQ

n pðzin j uuiÞ�
Q

k pðFFkjbbÞ is the prior distribution defined by
the model. One common issue with this estimation is that
real networks are highly imbalanced—the number of posi-
tive links is much smaller than the number of negative links.
For example, less than 0:1 percent document pairs in the
Cora network have positive links.

To deal with this imbalance issue, we propose to do regu-
larized Bayesian inference [42] which offers an extra free-
dom to handle the imbalance issue in a cost-sensitive
manner. Specifically, we define a Gibbs classifier for binary
links as follows.

1) A latent predictor. If the weight matrix U and topic
assignments Z are given, we build a classifier using
the latent prediction rule

ŷij j zi;zj;U ¼ Iðvij > 0Þ; (3)

where Ið�Þ is an indicator function that equals to 1 if
predicate holds otherwise 0. Then, the training error
of this latent prediction rule is

ErrðU;ZÞ ¼
X

ði;jÞ2I
Iðyij 6¼ ŷij j zi;zj;UÞ:

Since directly optimizing the training error is hard, a
convex surrogate loss is commonly used in machine
learning. Here, we consider two popular examples,
namely, the logistic log-loss and the hinge loss

R1ðU;ZÞ ¼ �
X

ði;jÞ2I
log pðyijjzi; zj; UÞ;

R2ðU;ZÞ ¼
X

ði;jÞ2I
max 0; ‘� ~yijvij

� �
;

where ‘ð	 1Þ is a cost parameter that penalizes a
wrong prediction and ~yij ¼ 2yij � 1 is a transforma-
tion of the 0=1 binary links to be �1=þ 1 for notation
convenience.

2) Expected loss. Since both U and Z are hidden varia-
bles, we infer a posterior distribution qðU;ZÞ that has
the minimal expected loss

R1ðqðU;ZÞÞ ¼ Eq R1ðU;ZÞ½ � (4)

R2ðqðU;ZÞÞ ¼ Eq R2ðU;ZÞ½ �: (5)

Remark 1. Note that both loss functions R1ðU;ZÞ and
R2ðU;ZÞ are convex over the parameters U when the
latent topics Z are fixed. The hinge loss is an upper
bound of the training error, while the log-loss is not.
Many comparisons have been done in the context of clas-
sification [36]. Our results will provide a careful compari-
son of these two loss functions in the context of relational
topic models.

Remark 2. Both R1ðqðU;ZÞÞ and R2ðqðU;ZÞÞ are good surro-
gate loss for the expected link prediction error

ErrðqðU;ZÞÞ ¼ Eq ErrðU;ZÞ½ �;

of a Gibbs classifier that randomly draws a model U from
the posterior distribution q and makes predictions [28],
[16]. The expected hinge loss R2ðqðU;ZÞÞ is also an upper
bound of ErrðqðU;ZÞÞ.
With the above Gibbs classifiers, we define the gener-

alized relational topic models as solving the RegBayes
problem

min
qðU;QQ;Z;FFÞ2P

LðqðU;QQ;Z;FFÞÞ þ cRðqðU;ZÞÞ; (6)

where LðqÞ ¼ KLðqðU;QQ;Z;FFÞjjp0ðU;QQ;Z;FFÞÞ � Eq½log pðW jZ;FFÞ� is
an information theoretical objective; c is a positive regulari-
zation parameter controlling the influence from link struc-
tures; and P is the space of normalized distributions. In fact,
minimizing the single term of LðqÞ results in the posterior
distribution of the vanilla LDA without considering link
information. For the second term, we have usedR to denote
a generic loss function, which can be either the log-loss R1

or the hinge-loss R2. Note that the Gibbs classifiers and the
LDA likelihood are coupled by sharing the latent topic
assignments Z, and the strong coupling makes it possible to
learn a posterior distribution that can describe the observed
words well and make accurate predictions.

To better understand the above formulation, we define
the unnormalized likelihood for links:

c1ðyij j zi; zj; UÞ ¼ pcðyij j zi; zj; UÞ ¼ ecyijvij

ð1þ evijÞc ; (7)

c2ðyij j zi; zj; UÞ ¼ exp �2c maxð0; 1� yijvijÞ
� �

: (8)

The likelihood c1 is normalized if c ¼ 1. Then, the inference
problem (6) can be written as

min
qðU;QQ;Z;FFÞ2P

LðqðU;QQ;Z;FFÞÞ � Eq log cðy jZ; UÞ½ �; (9)

where cðyjZ; UÞ ¼Qði;jÞ2I c1ðyijjzi; zj; UÞ if using log-loss
and cðyjZ; UÞ ¼Qði;jÞ2I c2ðyijjzi; zj; UÞ if using hinge loss.

We can show that the optimum solution of problem (6) or
the equivalent problem (9) is the posterior distribution with
link information

qðU;QQ;Z;FFÞ ¼ p0ðU;QQ;Z;FFÞpðW jZ;FFÞcðy jZ; UÞ
fðy;WÞ ;

where fðy;WÞ is the normalization constant to make q as a
normalized distribution.

Therefore, by solving problem (6) or (9) we are in fact
doing Bayesian inference with a generalized likelihood,
which is a powered version of the likelihood (2) when using
the log-loss. The flexibility of using regularization parame-
ters can play a significant role in dealing with imbalanced
network data as we shall see in experiments. For example,
we can use a larger c value for sparse positive links, while
using a smaller c for dense negative links. This simple strat-
egy has been shown effective in learning classifiers [3] and
link prediction models [40] with highly imbalanced data.
Finally, for the logistic log-loss an ad hoc generative story
can be described as in RTMs, where c can be understood as
the pseudo-count of a link.
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4 AUGMENT AND COLLAPSE SAMPLING

For gRTMs with either the log-loss or hinge loss, exact infer-
ence is intractable due to the non-conjugacy between the
prior and the likelihood. Previous inference methods for the
standard RTMs use variational techniques with mean-field
assumptions. For example, a variational EM algorithm was
developed in [8] with the factorization assumption,

qðU;QQ;Z;FFÞ ¼ qðUÞ�Qi qðuuiÞ
Q

n qðzinÞ
�Q

k qðFFkÞ, which can

be too restrictive to be realistic in practice. In this section,
we present simple and efficient Gibbs samplers without any
restricting assumptions on q. Our “augment-and-collapse”
sampling algorithms rely on a data augmentation reformu-
lation of the RegBayes problem (9).

Before a full exposition of the algorithms, we summarize
the high-level ideas. For the likelihood cðy jZ; UÞ, it is not
easy to derive a sampling algorithm directly. Instead, we
develop our algorithms by introducing auxiliary variables,
which lead to a scale mixture of Gaussian components and
analytic conditional distributions for Bayesian inference
without an accept/reject ratio.

4.1 Sampling Algorithm for the Log-Loss

For the case with the log-loss, our algorithm represents an
extension of Polson et al.’s approach [34] to deal with
the highly non-trivial Bayesian latent variable models for
relational data analysis.

4.1.1 Formulation with Data Augmentation

Let us first introduce the Polya-Gamma variables [34].

Definition 3. A random variableX has a Polya-Gamma distribu-
tion, denoted byX�PGða; bÞ, if

X ¼ 1

2p2

X1
m¼1

gm

ðm� 1=2Þ2 þ b2=ð4p2Þ ;

where ða > 0; b 2 RÞ are parameters and each gm � Gða; 1Þ is
an independent Gamma random variable.

Then, using the ideas of data augmentation [34], we have
the following results

Lemma 4. The likelihood can be expressed as

c1ðyij j zi; zj; UÞ ¼ 1

2c
eðkijvijÞ

Z 1

0

e
�
�ijv

2
ij

2

� �
pð�ij j c; 0Þd�ij;

where kij ¼ cðyij � 1=2Þ and �ij is a Polya-Gamma variable
with parameters a ¼ c and b ¼ 0.

Lemma 4 indicates that the posterior distribution of the
generalized Bayesian logistic relational topic models, i.e.,
qðU;QQ;Z;FFÞ, can be expressed as the marginal of a higher
dimensional distribution that includes the augmented varia-
bles ��. The complete posterior distribution is

qðU; ��;QQ;Z;FFÞ ¼ p0ðU;QQ;Z;FFÞpðW jZ;FFÞcðy; �� jZ; UÞ
fðy;WÞ ;

where the unnormalized distribution of y and �� iscðy; ��jZ; UÞ ¼Q
ði;jÞ2I exp

�
kijvij �

�ijv
2
ij

2

�
pð�ij j c; 0Þ.

4.1.2 Inference with Collapsed Gibbs Sampling

Although we can do Gibbs sampling to infer the complete
posterior qðU; ��;QQ;Z;FFÞ and thus qðU;QQ;Z;FFÞ by ignoring
��, the mixing rate would be slow due to the large sample
space. An effective way to reduce the sample space and
improve mixing rates is to integrate out the intermediate
Dirichlet variables ðQQ;FFÞ [18] and build a Markov chain
whose equilibrium distribution is the collapsed distribution
qðU; ��;ZÞ. For gRTMs, the collapsed posterior distribution is

qðU; ��;ZÞ / p0ðUÞpðW;Z jaa;bbÞcðy; �� jZ; UÞ

¼ p0ðUÞ
YK
k¼1

dðCk þ bbÞ
dðbbÞ

YD
i¼1

dðCi þ aaÞ
dðaaÞ

�
Y

ði;jÞ2I
exp
�
kijvij �

�ijv
2
ij

2

�
pð�ij j c; 0Þ;

where

dðxÞ ¼
QdimðxÞ

i¼1
GðxiÞ

G
�PdimðxÞ

i¼1
xi

�

with Gð�Þ being the Gamma function, Ct
k is the number of

times the term t being assigned to topic k over the whole

corpus and Ck ¼ fCt
kgVt¼1; C

k
i is the number of times that

terms are associated with topic k within the ith document

and Ci ¼ fCk
i gKk¼1. Then, the conditional distributions used

in collapsed Gibbs sampling are as follows.
For U . we define zij ¼ vecðziz>j Þ and hh ¼ vecðUÞ for clar-

ity, where vecðAÞ is a vector concatenating the row vectors
of matrix A. Then, we have the discriminant function value

vij ¼ hh>zij. For the common isotropic Gaussian prior

p0ðUÞ ¼Qkk0 N ðUkk0 ; 0; n
2Þ, i.e., p0ðhhÞ ¼

QK2

m¼1 Nðhm; 0; n2Þ,
we have

qðhh jZ; ��Þ / p0ðhhÞ
Y

ði;jÞ2I
exp kijhh

>zij � �ijðhh>zijÞ2
2

 !

¼ Nðhh;mm;SSÞ;
(10)

where SS ¼ � 1
n2
I þPði;jÞ2I �ijzijz

>
ij

��1
and mm ¼ SS

�P
ði;jÞ2I kijzij

�
.

Therefore, we can easily draw a sample from a K2-dimen-
sional multivariate Gaussian distribution. The inverse can
be robustly done using Cholesky decomposition. Since K is
normally not large, the inversion is relatively efficient, espe-
cially when the number of documents is large. We will pro-
vide empirical analysis in the experiment section. Note that
for large K this step can be a practical limitation. But fortu-
nately, there are good parallel algorithms for Cholesky
decomposition [15], which can be used for applications
with largeK values.

For Z: the conditional distribution of Z is

qðZ jU; ��Þ /
YK
k¼1

dðCk þ bbÞ
dðbbÞ

YD
i¼1

dðCi þ aaÞ
dðaaÞ

Y
ði;jÞ2I

c1ðyij j��;ZÞ;

where c1ðyij j��;ZÞ ¼ expðkijvij �
�ijv

2
ij

2 Þ. By canceling com-
mon factors, we can derive the local conditional of one vari-
able zin given others Z: as:
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q
�
zkin ¼ 1 jZ:;U; ��; win ¼ t

� / ðCt
k;:n þ btÞðCk

i;:n þ akÞP
t C

t
k;:n þ

PV
t¼1 bt

�
Y
j2Nþ

i

c1

�
yij j��;Z:; zkin ¼ 1

�

�
Y
j2N�

i

c1

�
yji j��;Z:; zkin ¼ 1

�
;

(11)

where C�
�;:n indicates that term n is excluded from the corre-

sponding document or topic; and Nþ
i ¼ fj : ði; jÞ 2 Ig and

N�
i ¼ fj : ðj; iÞ 2 Ig denote the neighbors of document i in

the training network. For symmetric networks, Nþ
i ¼ N�

i ,
only one part is sufficient. We can see that the first term is
from the LDA model for observed word counts and the sec-
ond term is from the link structures y.

Algorithm 1. for gRTMs with Logistic Log-Loss

1: Initialization: set �� ¼ 1 and randomly draw zdn from a uni-
form distribution.

2: form ¼ 1 toM do
3: draw hh (i.e., U) from the distribution (10)
4: for i ¼ 1 toD do
5: for each word n in document i do
6: draw a topic from distribution (11)
7: end for
8: end for
9: for ði; jÞ 2 I do
10: draw �ij from distribution (12).
11: end for
12: end for

For ��. The conditional distribution of the augmented var-
iables �� is a Polya-Gamma distribution

qð�ij jZ; UÞ / exp ��ijv
2
ij

2

 !
p �ij j c; 0
� � ¼ PG �ij; c;vij

� �
: (12)

The equality is achieved by using the construction definition
of the general PGða; bÞ class through an exponential tilting of
the PGða; 0Þ density [34]. To draw samples from the Polya-
Gamma distribution, a naive implementation using the infi-
nite sum-of-Gamma representation is not efficient and it
also involves a potentially inaccurate step of truncating the
infinite sum. Here we adopt the method proposed in [34],
which draws the samples from the closely related exponen-
tially tilted Jacobi distribution.

With the above conditional distributions, we can con-
struct a Markov chain which iteratively draws samples of hh
(i.e., U) using Eq. (10), Z using Eq. (11) and �� using Eq. (12)
as shown in Algorithm 1, with an initial condition. In our
experiments, we initially set �� ¼ 1 and randomly draw Z
from a uniform distribution. In training, we run the Markov
chain for M iterations (i.e., the so-called burn-in stage).

Then, we draw a sample Û as the final classifier to make
predictions on testing data. After training, we also get a

MAP estimate of the topics F̂F, f̂kt / Ct
k þ bt, which will be

used in testing in Section 4.3. As we shall see in practice, the
Markov chain converges to stable prediction performance
with a few burn-in iterations.

4.2 Sampling Algorithm for the Hinge Loss

Now, we present an “augment-and-collapse” Gibbs sam-
pling algorithm for the gRTMs with the hinge loss. The
algorithm represents an extension of the recent techniques
[41] to relational data analysis.

4.2.1 Formula with Data Augmentation

As we do not have a closed-form of the expected margin
loss, it is hard to deal with the expected hinge loss in Eq. (5).
Here, we develop a collapsed Gibbs sampling method
based on a data augmentation formulation of the expected
margin loss to infer the posterior distribution

qðU;QQ;Z;FFÞ ¼ p0ðU;QQ;Z;FÞpðWjZ;FÞcðyjZ; UÞ
fðy;WÞ ;

where fðy;WÞ is the normalization constant and cðyjZ; UÞ ¼Q
sði;jÞ2I c2ðyij j zi; zj; UÞ in this case. Specifically, we have

the following data augmentation representation of the
unnormalized likelihood [35]:

c2ðyijjzi; zj; UÞ ¼
Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffi
2p�ij

p exp �ð�ij þ czijÞ2
2�ij

( )
d�ij;

where zij ¼ ‘� yijvij. It indicates that the posterior distribu-
tion qðU;QQ;Z;FFÞ can be expressed as the marginal of a
higher dimensional posterior distribution that includes the
augmented variables ��:

qðU; ��;QQ;Z;FFÞ ¼ p0ðU;QQ;Z;FFÞpðW jZ;FFÞcðy; �� jZ; UÞ
fðy;WÞ ;

where the unnormalized distribution of y and �� is

cðy; ��jZ; UÞ ¼Qði;jÞ2I
1ffiffiffiffiffiffiffiffiffi
2p�ij

p exp
�
� ð�ijþczijÞ2

2�ij

�
:

4.2.2 Inference with Collapsed Gibbs Sampling

Similar as in the log-loss case, although we can sample the
complete distribution qðU; ��;QQ;Z;FFÞ, the mixing rate would
be slow due to the high dimensional sample space. Thus, we
reduce the sample space and improve mixing rate by inte-
grating out the intermediate Dirichlet variables ðQQ;FFÞ and
building a Markov chain whose equilibrium distribution is
the resulting marginal distribution qðU; ��;ZÞ. Specifically,
the collapsed posterior distribution is

qðU; ��;ZÞ / p0ðUÞpðW;Z jaa;bbÞ
Y
i;j

fðyij; �ij j zi; zj; UÞ

¼ p0ðUÞ
YD
i¼1

dðCi þ aaÞ
dðaaÞ

YK
k¼1

dðCk þ bbÞ
dðbbÞ

�
Y

ði;jÞ2I

1ffiffiffiffiffiffiffiffiffiffiffi
2p�ij

p exp �ð�ij þ czijÞ2
2�ij

( )
:

Then we could get the conditional distribution using the
collapsed Gibbs sampling as following:

For U . We use the similar notations, hh ¼ vecðUÞ and

zij ¼ vecðziz>j Þ. For the commonly used isotropic Gaussian

prior, p0ðUÞ ¼Qk;k0 N ðUk;k0 ; 0; n
2Þ, the posterior distribution

of qðU jZ; ��Þ or qðhh jZ; ��Þ is still a Gaussian distribution:
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qðhh jZ; �Þ / p0ðUÞ
Y

ði;jÞ2I
exp �ð�ij þ czijÞ2

2�ij

 !

¼ Nðhh;mm;SSÞ
(13)

where SS ¼ � 1
n2
I þ c2

P
ði;jÞ2I

zijz
>
ij

�ij

��1 and mm ¼ SS
�
c
P

ði;jÞ2I yij
ð�ijþc‘Þ

�ij
zij
�
.

For Z. the conditional posterior distribution of Z is

qðZ jU; ��Þ /
YD
i¼1

dðCi þ aaÞ
dðaaÞ

YK
k¼1

dðCk þ bbÞ
dðbbÞ

Y
ði;jÞ2I

c2ðyij j��;ZÞ;

where c2ðyijj��;ZÞ ¼ expð� ð�ijþczijÞ2
2�ij

Þ. By canceling common
factors, we can derive the local conditional of one variable
zin given others Z: as:

qðzkin ¼ 1 jZ:;U; ��; win ¼ tÞ /
�
Ct

k;:n þ bt

��
Ck

i;:n þ ak

�
P

t C
t
k;:n þ

PV
t¼1 bt

�
Y
j2Nþ

i

c2

�
yij j��;Z:; zkin ¼ 1

�

�
Y
j2N�

i

c2

�
yji j��;Z:; zkin ¼ 1

�
:

(14)

Again, we can see that the first term is from the LDA model
for observed word counts and the second term is from the
link structures y.

For ��. due to the independence structure among the aug-
mented variables when Z and U are given, we can derive
the conditional posterior distribution of each augmented
variable �ij as:

qð�ij jZ; UÞ / 1ffiffiffiffiffiffiffiffiffiffiffi
2p�ij

p exp �ð�ij þ czijÞ2
2�ij

 !

¼ GIG �ij;
1

2
; 1; c2z2ij

	 

;

(15)

where GIGðx; p; a; bÞ ¼ Cðp; a; bÞxp�1expð� 1
2 ðbx þ axÞÞ is a

generalized inverse Gaussian distribution [12] and Cðp; a; bÞ
is a normalization constant. Therefore, we can derive that

��1
ij follows an inverse Gaussian distribution

p
�
��1
ij jZ; U� ¼ IG ��1

ij ;
1

cjzijj
; 1

 !
;

where IGðx; a; bÞ ¼
ffiffiffiffiffiffiffiffi
b

2px3

q
expð� bðx�aÞ2

2a2x
Þ for a; b > 0.

With the above conditional distributions, we can con-
struct a Markov chain which iteratively draws samples of
the weights hh (i.e., U) using Eq. (13), the topic assignments
Z using Eq. (14) and the augmented variables �� using
Eq. (15), with an initial condition which is the same as in the
case of the logistic log-loss. To sample from an inverse
Gaussian distribution, we apply the efficient transformation
method with multiple roots [30].

Remark 5. We note that the Gibbs sampling algorithms for
both the hinge loss and logistic loss have a similar struc-
ture. But they have different distributions for the aug-
mented variables. As we shall see in experiments,
drawing samples from the different distributions for ��
will have different efficiency.

4.3 Prediction

Since gRTMs account for both text contents and network
structures, we can make predictions for each of them condi-
tioned on the other [8]. For link prediction, given a test
document w, we need to infer its topic assignments z in
order to apply the classifier (3). This can be done with a
collapsed Gibbs sampling method, where the conditional
distribution is

p
�
zkn ¼ 1 j z:n

� / f̂kwn

�
Ck

:n þ ak

�
;

Ck
:n is the times that the terms in this document w are

assigned to topic k with the nth term excluded; and F̂F is a
point estimate of the topics, computed in the training phase,
as detailed in Section 4.1. To initialize, we randomly set
each word to a topic, and then run the Gibbs sampler until
some stopping criterion is met, e.g., the relative change of
likelihood is less than a threshold (e.g., 1e-4 in our experi-
ments). Note that this sampler is unaware of the links,
which are missing for testing documents.

For word prediction, we need to infer the conditional dis-
tribution with the links to training data

pðwn j y;D; F̂F; ÛÞ ¼
X
k

f̂kwn
p
�
zkn ¼ 1 j y;D; Û

�
: (16)

This can be done by drawing a few samples of zn using the

conditional distribution pðzkn ¼ 1jy;D; ÛÞ, and compute the

empirical mean of f̂kwn
using the sampled zn. The number

of samples is determined by running a Gibbs sampler until
some stopping criterion is met, e.g., the relative change of
likelihood is less than 1e-4 in our experiments.

5 EXPERIMENTS

We present both quantitative and qualitative results on real
networks to demonstrate the efficacy of our discriminative
RTMs. We also present extensive sensitivity analysis with
respect to various parameters.

5.1 Datasets and Setups

We report on three public document networks3:

1) The Cora data [29] consists of abstracts of 2,708 com-
puter science research papers, with links between
documents that cite each other. In total, the Cora cita-
tion network has 5,429 positive links, and the dictio-
nary consists of 1,433 words.

2) TheWebKB data [10] contains 877 webpages from the
computer science departments of different universi-
ties, with links between webpages that are hyper-
linked. In total, the network has 1,608 positive links
and the dictionary has 1,703 words.

3) The Citeseer data [37] consists of 3,312 scientific pub-
lications with 4,732 positive links, and the dictionary
contains 3,703 unique words.

Since many baseline methods have been outperformed
by RTMs on the same datasets [8], we focus on evaluating
the effects of the various extensions in the discriminative

3. http://www.cs.umd.edu/projects/linqs/projects/lbc/index.
html
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gRTMs with log-loss (denoted by Gibbs-gRTM) and hinge
loss (denoted by Gibbs-gMMRTM) by comparing with vari-
ous special cases:

1) Var-RTM. The standard RTMs (i.e., c ¼ 1) with a
diagonal logistic likelihood and a variational EM
algorithm with mean-field assumptions [8];

2) Gibbs-gRTM. The Gibbs-gRTM model with a full
weight matrix and the Gibbs sampler in Algorithm 1
for the logistic link likelihood;

3) Gibbs-RTM. The Gibbs-gRTM model with a diagonal
weight matrix and the Gibbs sampler in Algorithm 1
for the logistic link likelihood;

4) Approx-gRTM. The Gibbs-gRTM model with fast
approximation on sampling Z;4

5) Gibbs-gMMRTM. The Gibbs-gMMRTM model with a
full weight matrix and the “augment-and-collapse”
Gibbs sampler for the hinge loss;

6) Gibbs-MMRTM. The Gibbs-gMMRTM model with a
diagonal weight matrix and the “augment-and-
collapse” Gibbs sampler for the hinge loss;

7) Approx-gMMRTM. The Gibbs-gMMRTM model with
fast approximation on sampling Z, which is similar
to Approx-gRTM.

For Var-RTM, we follow the setup [8] and use positive
links only as training data; to deal with the one-class prob-
lem, a regularization penalty was used, which in effect
injects some number of pseudo-observations (each with a
fixed uniform topic distribution). The penalty is chosen via
cross-validation on training data. For the other models,
including Gibbs-gRTM, Gibbs-RTM, Approx-gRTM, Gibbs-
gMMRTM, Gibbs-MMRTM, and Approx-gMMRTM, we
instead draw some unobserved links as negative examples.
Though subsampling normally results in imbalanced data-
sets, the regularization parameter c in our discriminative
gRTMs can effectively address it, as we shall see. Here, we
fix c at 1 for negative examples, while we tune it for positive
examples via cross-validation on training data. All the train-
ing and testing time are fairly calculated on a desktop com-
puter with four 3.10 GHz processors and 4G RAM.

5.2 Quantitative Results

We first report the overall results of link rank, word rank, and
AUC (area under the ROC curve) to measure the prediction
performance, following the setups in [8]. Link rank is com-
puted as follows: For test document i : i ¼ 1; . . . ; D0, we

Fig. 2. Results of various models with different numbers of topics on the Cora citation dataset.

Fig. 3. Results of various models with different numbers of topics on the WebKB dataset.

Fig. 4. Results of various models with different numbers of topics on the Citeseer dataset.

4. The approximation method moves the calculation of the link like-
lihood term c1 in Eq. (11) outside of the inner for-loop in steps 5-7 in
Algorithm 1, and caches it for sampling all the word topics in each doc-
ument. The other steps of the Gibbs sampler remain intact.
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compute the likelihood of the link between i and the train-
ing document j; ðj ¼ 1; . . . ;DÞ by Eq. (2) with the inferred
zi in Section 4.3, and sort the training documents in a
descending order of the likelihoods. Let rij be the rank of
training document j. The average link rank is computed as

ðPD0
i¼1

PD
j¼1 Iðyij ¼ 1ÞrijÞ=ð

PD0
i¼1

PD
j¼1 Iðyij ¼ 1ÞÞ. Similarly,

word rank is defined as the average rank of the ground-
truth words in testing documents where the vocabulary is
sorted according to the word likelihood in Eq. (16) given
their links to the training documents. Therefore, lower link
rank and word rank are better, and higher AUC value is bet-
ter. The test documents are completely new that are not
observed during training. In the training phase all the words
along with their links of the test documents are removed.

5.2.1 Results with the Log-Loss

Figs. 2, 3, and 4 show the five-fold average results and stan-
dard deviations of various models on all the three datasets
with varying numbers of topics. For the RTM models using
collapsed Gibbs sampling, we randomly draw 1 percent of
the unobserved links as negative training examples, which
leads to imbalanced training sets. We can see that the gener-
alized Gibbs-gRTM can effectively deal with the imbalance
and achieve significantly better results on link rank and
AUC scores than all other competitors. For word rank, all
the RTM models using Gibbs sampling perform better than
the RTMs using variational EM methods when the number
of topics is larger than 5.

The outstanding performance of Gibbs-gRTM is due to
many possible factors. For example, the superior perfor-
mance of Gibbs-gRTM over the diagonal Gibbs-RTM dem-
onstrates that it is important to consider all pairwise topic
interactions to fit real network data; and the superior perfor-
mance of Gibbs-RTM over Var-RTM shows the benefits of
using the regularization parameter c in the regularized

Bayesian framework and a collapsed Gibbs sampling algo-
rithm without restricting mean-field assumptions.5

To single out the influence of the proposed Gibbs sam-
pling algorithm, we also present the results of Var-RTM and
Gibbs-RTM with c ¼ 1, both of which randomly sample
0:2 percent unobserved links6 as negative examples on the
Cora dataset. We can see that by using Gibbs sampling with-
out restricting mean-field assumptions, Gibbs-RTM (neg
0:2 percent) outperforms Var-RTM (neg 0:2 percent) that
makes mean-field assumptions when the number of topics is
larger than 10.We defermore careful analysis of other factors
in the next section, including c and the subsampling ratio.

We also note that the cost we pay for the outstanding
performance of Gibbs-gRTM is on training time, which is
much longer than that of Var-RTM because Gibbs-gRTM
has K2 latent features in the logistic likelihood and more
training link pairs, while Var-RTM has K latent features
and only uses the sparse positive links as training examples.
Fortunately, we can apply a simple approximate method in
sampling Z as in Approx-gRTM to significantly improve
the training efficiency, while the prediction performance is
not sacrificed much. In fact, Approx-gRTM is still signifi-
cantly better than Var-RTM in all cases, and it has compara-
ble link prediction performance with Gibbs-gRTM on the
WebKB dataset, when K is large. Table 3 further shows the
training time spent on each sub-step of the Gibbs sampler of
Gibbs-gRTM. We can see that the step of sampling Z takes
most of the time (>70 percent); and the steps of sampling Z

Fig. 5. Results of various models with different numbers of topics on the Cora dataset.

Fig. 6. Results of various models with different numbers of topics on the Citeseer dataset.

5. Gibbs-RTM doesn’t outperform Var-RTM on Citeseer because
they use different strategies of drawing negative samples. If we use the
same strategy (e.g., randomly drawing 1 percent negative samples),
Gibbs-RTM significantly outperforms Var-RTM.

6. Var-RTM performs much worse if using 1 percent negative links,
while Gibbs-RTM could obtain similar performance due to its effective-
ness in dealing with imbalance.
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and hh take more time as K increases, while the step of sam-
pling �� takes almost a constant time whenK changes.

5.2.2 Results with the Hinge Loss

Figs. 5 and 6 show the five-fold average results with stan-
dard deviations of the RTMs with hinge loss, comparing
with the RTMs with log-loss on Cora and Citeseer datasets.7

We can see that the discriminative RTM models with hinge
loss (i.e., Gibbs-gMMRTM and Gibbs-MMRTM) obtain com-
parable predictive results (e.g., link rank and AUC scores)
with the RTMs using log-loss (i.e., Gibbs-gRTM and Gibbs-
RTM). And owing to the use of a full weight matrix, Gibbs-
gMMRTM obtains superior performance over the diagonal
Gibbs-MMRTM. These results verify the fact that the max-
margin RTMs can be used as a competing alternative
approach for network link prediction. For word rank, all the
RTMmodels using Gibbs sampling perform similarly.

As shown in Fig. 7, one superiority of the max margin
Gibbs-gMMRTM is that the time cost of drawing �� is
cheaper than that in Gibbs-gRTM with log-loss. Specifically,
the time of drawing �� in Gibbs-gRTM is about 10 times lon-
ger than Gibbs-gMMRTM (Fig. 7a). This is because sam-
pling from a Polya-gamma distribution in Gibbs-gRTM
needs a few steps of iteration for convergence, which takes
more time than the constant time sampler of an inverse
Gaussian distribution [30] in Gibbs-gMMRTM. We also
observe that the time costs for drawing hh (Fig. 7b) in
Gibbs-gRTM and Gibbs-gMMRTM are comparable.8 As
most of the time is spent on drawing Z and hh, the total
training time of the RTMs with the two types of losses
are similar (gMMRTM is slightly faster on Citeseer).
Fortunately, we can also develop Approx-gMMRTM by
using a simple approximate method in sampling Z to
greatly improve the time efficiency (Figs. 5 and 6), and the

prediction performance is still very compelling, especially
on the Citeseer dataset.

5.3 Sensitivity Analysis

To provide more insights about our discriminative RTMs,
we present a careful analysis of various factors.

5.3.1 Hyper-Parameter c

Figs. 8 and 10 show the prediction performance of the diag-
onal Gibbs-RTM and Gibbs-MMRTMwith different c values
on both Cora and Citeseer datasets,9 and Figs. 9 and 11
show the results of the generalized Gibbs-gRTM and Gibbs-
gMMRTM. For Gibbs-RTM and Gibbs-MMRTM, we can see
that the link rank decreases and AUC scores increase when
c becomes larger and the prediction performance is stable in
a wide range (e.g., 2 
 ffiffiffi

c
p 
 6). But the RTM model (i.e.,

c ¼ 1) using Gibbs sampling doesn’t perform well due to its
ineffectiveness in dealing with imbalanced network data. In
Figs. 9 and 11, we can observe that when 2 
 c 
 10, the
link rank and AUC scores of Gibbs-gRTM achieve the local
optimum, which performs much better than the perfor-
mance of Gibbs-gRTM when c ¼ 1. In general, we can see
that both Gibbs-gRTM and Gibbs-gMMRTM need a smaller
c to get the best performance. This is because by allowing
all pairwise topic interactions, Gibbs-gRTM and Gibbs-
gMMRTM are much more expressive than Gibbs-RTM and
Gibbs-MMRTM with a diagonal weight matrix; and thus
easier to over-fit when c gets large.

For all the proposed models, the word rank increases
slowly with the growth of c. This is because a larger c value
makes the model more concentrated on fitting link struc-
tures and thus the fitness of observed words sacrifices a bit.

Fig. 8. Performance of Gibbs-RTM with different c values on the Cora
dataset.

Fig. 7. Time complexity of drawing ll and hh on the Citeseer dataset.

Fig. 9. Performance of Gibbs-gRTM with different c values on the Cora
dataset.

TABLE 3
Split of Training Time on Cora Dataset

Sample Z Sample ll Sample U

K = 10 331.2 (73.55%) 55.3 (12.29%) 67.8 (14.16%)
K = 15 746.8 (76.54%) 55.0 (5.64%) 173.9 (17.82%)
K = 20 1300.3 (74.16%) 55.4 (3.16%) 397.7 (22.68%)

7. The result on WebKB dataset is similar, but omitted for saving
space. Please refer to Fig. 16 in Appendix, which can be found on the
Computer Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2014.2361129.

8. Sampling Z also takes comparable time; omitted for space.
9. We have similar observations on the WebKB dataset, again omit-

ted for saving space.
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But if we compare with the variational RTM (i.e., Var-RTM)
as shown in Figs. 2 and 4, the word ranks of all the four pro-
posed RTMs using Gibbs sampling are much lower for all
the c values we have tested. This suggests the advantages of
the collapsed Gibbs sampling algorithms.

5.3.2 Burn-In Steps

Figs. 12 and 13 show the sensitivity of Gibbs-gRTM and
Gibbs-gMMRTMwith respect to the number of burn-in iter-
ations, respectively. We can see that the link rank and AUC
scores converge fast to stable optimum points with about
300 iterations. The training time grows almost linearly with
respect to the number of burn-in iterations. We have similar
observations for the diagonal Gibbs-RTM, Gibbs-MMRTM,
and Approximate RTMs with fast approximation. In the
previous experiments, we have set the burn-in steps at 400
for Cora and Citeseer, which is sufficiently large.

5.3.3 Subsample Ratio

Fig. 14 shows the influence of the subsample ratio on the
performance of Gibbs-gRTM on the Cora data. In total, less

than 0:1 percent links are positive on the Cora networks. We
can see that by introducing the regularization parameter c,
Gibbs-gRTM can effectively fit various imbalanced network
data and the different subsample ratios have a weak influ-
ence on the performance of Gibbs-gRTM. Since a larger sub-
sample ratio leads to a bigger training set, the training time
increases as expected.

The above analysis focuses on a single parameter. Fig. 15
presents the sensitivity of Gibbs-gRTM to the 2d joint config-
uration of c and subsampling ratio, when the topic number
is 20. We can see that increasing c to be larger than 1 leads to
significant improvements on link prediction. However, the
best c value is not necessarily depending on the subsampling
ratio. In fact, for all the subsampling ratios we tested, the
optimal c value ranges from 4 to 16. One possible reason is
that for relational data, the links are not i.i.d data; instead,
they are strongly correlated in our RTM models. Therefore,

Fig. 10. Performance of Gibbs-MMRTM with different c values on the
Citeseer dataset.

Fig. 11. Performance of Gibbs-gMMRTM with different c values on the
Citeseer dataset.

Fig. 12. Performance of Gibbs-gRTM with different burn-in steps on the
Cora dataset.

Fig. 13. Performance of Gibbs-gMMRTM with different burn-in steps on
the Citeseer dataset.

Fig. 14. Performance of Gibbs-gRTM with different numbers of negative
training links on the Cora dataset.

Fig. 15. Performance of Gibbs-gRTM with respect to c value and sub-
sampling ratio on the Cora dataset.
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simply counting the numbers (i.e., the subsampling ratio) is
not very meaningful in order to obtain a balanced learning
problem. The best c value should be chosen via cross-valida-
tion. We have similar observations on Gibbs-gMMRTM and
other models, omitted for saving space.

5.4 Link Suggestion

As in [8], Gibbs-gRTM can suggest links for a new docu-
ment (i.e., test data) based on its text contents. Table 4 shows
the example suggested citations for two query documents:
1) “Competitive environments evolve better solutions for
complex tasks” and 2) “Planning by Incremental Dynamic
Programming” in Cora data using Gibbs-gRTM and Var-
RTM. The query documents are not observed during train-
ing, and suggestion results are ranked by the values of link
prediction likelihood between the training documents and
the given query. We can see that Gibbs-gRTM outperforms
Var-RTM in terms of identifying more ground-truth links.
For query 1, Gibbs-gRTM finds four truly linked documents
(five in total) in the top-8 suggested results, while Var-RTM
finds three. For query 2, Gibbs-gRTM finds two while Var-
RTM does not find any. In general, Gibbs-gRTM outper-
forms Var-RTM on the link suggestion task across the whole
corpus. We also observe that the suggested documents

which are not truly linked to the query document are also
very related to it semantically.

6 CONCLUSIONS AND DISCUSSIONS

We have presented discriminative relational topic models
(gRTMs and gMMRTMs) which consider all pairwise topic
interactions and are suitable for asymmetric networks. We
perform regularized Bayesian inference that introduces a reg-
ularization parameter to control the imbalance issue in com-
mon real networks and gives a freedom to incorporate two
popular loss functions (i.e., logistic log-loss and hinge loss).
We also presented a simple “augment-and-collapse” sam-
pling algorithm for the proposed discriminative RTMs with-
out restricting assumptions on the posterior distribution.
Experiments on real network data demonstrate significant
improvements on prediction tasks. The time efficiency can be
significantly improvedwith a simple approximationmethod.

For future work, we are interested in making the sam-
pling algorithm scalable to large networks by using distrib-
uted architectures [38] or doing online inference [22].
Moreover, developing nonparametric RTMs to avoid model
selection problems (i.e., automatically resolve the number
of latent topics in RTMs) is an interesting direction. Finally,

TABLE 4
Top 8 Link Predictions Made by Gibbs-gRTM and Var-RTM on the Cora Dataset

Query: Competitive environments evolve better solutions for complex tasks

Coevolving High Level Representations

Gibbs-gRTM

Strongly typed genetic programming in evolving cooperation strategies
Genetic Algorithms in Search, Optimization and Machine Learning
Improving tactical plans with genetic algorithms
Some studies in machine learning using the game of Checkers
Issues in evolutionary robotics: From Animals to Animats
Strongly Typed Genetic Programming
Evaluating and improving steady state evolutionary algorithms on constraint satisfaction problems

Coevolving High Level Representations

Var-RTM

A survey of Evolutionary Strategies
Genetic Algorithms in Search, Optimization and Machine Learning
Strongly typed genetic programming in evolving cooperation strategies
Solving combinatorial problems using evolutionary algorithms
A promising genetic algorithm approach to job-shop scheduling, rescheduling, and open-shop scheduling problems
Evolutionary Module Acquisition
An Empirical Investigation of Multi-Parent Recombination Operators in Evolution Strategies

Query: Planning by Incremental Dynamic Programming

Learning to predict by the methods of temporal differences

Gibbs-gRTM

Neuronlike adaptive elements that can solve difficult learning control problems
Learning to Act using Real- Time Dynamic Programming
A new learning algorithm for blind signal separation
Planning with closed-loop macro actions
Some studies in machine learning using the game of Checkers
Transfer of Learning by Composing Solutions of Elemental Sequential Tasks
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our current focus is on static networks, and it is interesting
to extend the models to deal with dynamic networks, where
incorporating time varying dependencies is a challenging
problem to address.
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