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Abstract

Bayesian matrix completion has been studied based on a low-
rank matrix factorization formulation with promising results.
However, little work has been done on Bayesian matrix com-
pletion based on the more direct spectral regularization for-
mulation. We fill this gap by presenting a novel Bayesian
matrix completion method based on spectral regularization.
In order to circumvent the difficulties of dealing with the or-
thonormality constraints of singular vectors, we derive a new
equivalent form with relaxed constraints, which then leads us
to design an adaptive version of spectral regularization fea-
sible for Bayesian inference. Our Bayesian method requires
no parameter tuning and can infer the number of latent fac-
tors automatically. Experiments on synthetic and real datasets
demonstrate encouraging results on rank recovery and col-
laborative filtering, with notably good results for very sparse
matrices.

Introduction

Matrix completion has found applications in many situa-
tions, such as collaborative filtering. Let Zm×n denote
the data matrix with m rows and n columns, of which
only a small number of entries are observed, indexed by
Ω ⊂ [m] × [n]. We denote the possibly noise corrupted
observations of Z on Ω as PΩ(X), where PΩ is a projec-
tion operator that retains entries with indices from Ω and
replaces others with 0. The matrix completion task aims
at completing missing entries of Z based on PΩ(X), under
the low-rank assumption rank(Z) � min(m,n). When a
squared-error loss is adopted, it can be written as solving:

min
Z

1

2σ2
‖PΩ(X − Z)‖2F + λ rank(Z), (P0)

where ‖PΩ(A)‖2F =
∑

(i,j)∈Ω a2ij ; λ is a positive regular-
ization parameter; and σ2 is the noise variance.

Unfortunately, the term rank(Z) makes P0 NP-hard.
Therefore, the nuclear norm ‖Z‖∗ has been widely adopted
as a convex surrogate (Fazel 2002) to the rank function to
turn P0 to a convex problem:

min
Z

1

2σ2
‖PΩ(X − Z)‖2F + λ ‖Z‖∗ . (P1)
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Though P1 is convex, the definition of nuclear norm
makes the problem still not easy to solve. Based on a varia-
tional formulation of the nuclear norm, it has been popular to
solve an equivalent and easier low-rank matrix factorization
(MF) form of P1:

min
A,B

1

2σ2
‖PΩ(X −ABᵀ)‖2F +

λ

2
(‖A‖2F + ‖B‖2F ). (1)

Though not joint convex, this MF formulation can be solved
by alternately optimizing over A and B for local optima.

As the regularization terms of MF are friendlier than
the nuclear norm, many matrix factorization methods have
been proposed to complete matrices, including maximum-
margin matrix factorization (M3F) (Srebro, Rennie, and
Jaakkola 2004; Rennie and Srebro 2005) and Bayesian prob-
abilistic matrix factorization (BPMF) (Lim and Teh 2007;
Salakhutdinov and Mnih 2008). Furthermore, the simplicity
of the MF formulation helps people adapt it and general-
ize it; e.g., (Xu, Zhu, and Zhang 2012; 2013) incorporate
maximum entropy discrimination (MED) and nonparamet-
ric Bayesian methods to solve a modified MF problem.

In contrast, there are relatively fewer algorithms to di-
rectly solve P1 without the aid of matrix factorization. Such
methods need to handle the spectrum of singular values.
These spectral regularization algorithms require optimiza-
tion on a Stiefel manifold (Stiefel 1935; James 1976), which
is defined as the set of k-tuples (u1,u2, · · · ,uk) of or-
thonormal vectors in R

n. This is the main difficulty that has
prevented the attempts, if any, to develop Bayesian methods
based on the spectral regularization formulation.

Though matrix completion via spectral regularization is
not easy, there are potential advantages over the matrix fac-
torization approach. One of the benefits is the direct control
over singular values. By imposing various priors on singu-
lar values, we can incorporate abundant information to help
matrix completion. For example, Todeschini et al. (Todes-
chini, Caron, and Chavent 2013) put sparsity-inducing priors
on singular values, naturally leading to hierarchical adap-
tive nuclear norm (HANN) regularization, and they reported
promising results.

In this paper, we aim to develop a new formulation of
the nuclear norm, hopefully having the same simplicity as
MF and retaining some good properties of spectral regular-
ization. The idea is to prove the orthonormality insignifi-
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cance property of P1. Based on the new formulation, we de-
velop a novel Bayesian model via a sparsity-inducing prior
on singular values, allowing various dimensions to have
different regularization parameters and automatically infer
them. This involves some natural modifications to our new
formulation to make it more flexible and adaptive, as peo-
ple typically do in Bayesian matrix factorization. Empiri-
cal Bayesian methods are then employed to avoid parameter
tuning. Experiments about rank recovery on synthetic matri-
ces and collaborative filtering on some popular benchmark
datasets demonstrate competitive results of our method in
comparison with various state-of-the-art competitors. No-
tably, experiments on synthetic data show that our method
performs considerably better when the matrices are very
sparse, suggesting the robustness offered by using sparsity-
inducing priors.

Relaxed Spectral Regularization
Bayesian matrix completion based on matrix factorization
is relatively easy, with many examples (Lim and Teh 2007;
Salakhutdinov and Mnih 2008). In fact, we can view (1) as a
maximum a posterior (MAP) estimate of a simple Bayesian
model, whose likelihood is Gaussian, i.e., for (i, j) ∈ Ω,
Xij ∼ N ((ABᵀ)ij , σ2), and the priors on A and B are
also Gaussian, i.e., p(A) ∝ exp(−λ ‖A‖2F /2) and p(B) ∝
exp(−λ ‖B‖2F /2). It is now easy to do the posterior infer-
ence since the prior and likelihood are conjugate.

However, the same procedure faces great difficulty when
we attempt to develop Bayesian matrix completion based
on the more direct spectral regularization formulation P1.
This is because the prior p(Z) ∝ exp(−λ ‖Z‖∗) is not
conjugate to the Gaussian likelihood (or any other com-
mon likelihood). To analyze p(Z) more closely, we can
conduct singular value decomposition (SVD) on Z to get
Z =

∑r
k=1 dkukv

ᵀ
k , where �d := {dk : k ∈ [r]} are singular

values; U := {uk : k ∈ [r]} and V := {vk : k ∈ [r]} are
orthonormal singular vectors on Stiefel manifolds. Though
we can define a factorized prior p(Z) = p(�d)p(U)p(V ), any
prior on U or V (e.g., the uniform Haar prior (Todeschini,
Caron, and Chavent 2013)) needs to deal with a Stiefel man-
ifold, which is highly nontrivial.

In fact, handling distributions embedded on Stiefel mani-
folds still remains a largely open problem, though some re-
sults (Byrne and Girolami 2013; Hoff 2009; Dobigeon and
Tourneret 2010) exist in the literature of directional statis-
tics. Fortunately, as we will prove in Theorem 1 that the
orthonormality constraints on U and V are not necessary for
spectral regularization. Rather, the unit sphere constraints
‖uk‖ ≤ 1 and ‖vk‖ ≤ 1, for all k ∈ [r], are sufficient to get
the same optimal solutions to P1. We call this phenomenon
orthonormality insignificance. We will call spectral regu-
larization with orthonormality constraints relaxed by unit
sphere constraints relaxed spectral regularization.

Orthonormality insignificance for spectral
regularization

We now present an equivalent formulation of the spectral
regularization in P1 by proving its orthornormality insignif-

icance property.
With the SVD of Z, we first rewrite P1 equivalently as

P1′ to show all constraints explicitly:

min
�d,U,V

1

2σ2

∥∥∥∥∥PΩ

(
X −

r∑
k=1

dkukv
ᵀ
k

)∥∥∥∥∥
2

F

+ λ

r∑
k=1

dk (P1′)

s.t. dk ≥ 0, ‖uk‖ = 1, ‖vk‖ = 1, ∀k ∈ [r]

uᵀ
i uj = 0, vᵀ

i vj = 0, ∀i, j ∈ [r] and i �= j,

where r = min(m,n). Then, we can have an equivalent for-
mulation of P1 as summarized in Theorem 1, which lays the
foundation for the validity of relaxed spectral regularization.
Theorem 1. Let s be the optimal value of P1 (P1′), and let
t be the optimal value of P2 as defined below:

min
α,β,�d

1

2σ2

∥∥∥∥∥PΩ

(
X −

r∑
k=1

dkαkβ
ᵀ
k

)∥∥∥∥∥
2

F

+ λ

r∑
k=1

dk (P2)

s.t. dk ≥ 0, ‖αk‖2 ≤ 1, ‖βk‖2 ≤ 1, ∀k ∈ [r],

Then, we have s = t. Furthermore, suppose an optimal so-
lution for P2 is (�d∗,α∗,β∗), then Z∗ =

∑r
k=1 d

∗
kα

∗
kβ

∗ᵀ
k

is also an optimal solution for P1. Similarly, for any opti-
mal solution Z† for P1, there exists a decomposition Z† =∑r

k=1 d
†
kα

†
kβ

†
k

ᵀ
optimal for P2.

Sketch of the proof. Let Z∗ =
∑r

k=1 d
∗
kα

∗
kβ

∗
k
ᵀ be an opti-

mal solution for P2 with the optimal value t. Since P1′ is
basically the same optimization problem as P2 with stricter
constraints, we have s ≥ t.

Conduct singular value decomposition to obtain Z∗ =∑r
k=1 σ

∗
ku

∗
kv

∗
k
ᵀ and we can prove that ‖Z∗‖∗ =∑r

k=1 σ
∗
k ≤ ∑r

k=1 d
∗
k. If

∑r
k=1 σ

∗
k <

∑r
k=1 d

∗
k, then we

can plug Z∗ into P1 to get a smaller value than t, contradict-
ing s ≥ t. As a result,

∑r
k=1 σ

∗
k =

∑r
k=1 d

∗
k and s = t.

Furthermore, since s = t and plugging Z∗ into P1 can
lead to a value at least as small as t, we conclude that Z∗ is
also an optimal solution for P1. Let Z† be any optimal solu-
tion for P1, we can also prove that there is a decomposition
Z† =

∑r
k=1 d

†
kα

†
kβ

†
k

ᵀ
to be an optimal solution for P2.

The formal proof and some remarks are provided in the
supplementary material1.

Now we have justified the orthonormality insignificance
property of spectral regularization. As a result, P2 serves to
be another equivalent form of P1, similar to the role played
by MF. This relaxed spectral regularization formulation lies
somewhere between MF and spectral regularization, since it
has more (but easily solvable) contraints than MF and still
retains the form of SVD. As discussed before, it is easier
to conduct Bayesian inference on a posterior without strict
orthonormality constraints, and therefore models on relaxed
spectral regularization are our focus of investigation.

In addition, Theorem 1 can be generalized to arbitrary
loss besides squared-error loss, which means it is as widely
applicable as MF. See Remark 2 in the supplementary mate-
rial for more details.

1See http://bigml.cs.tsinghua.edu.cn/~yangsong/papers/AAAI
/GASR-supp.pdf
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Adaptive relaxed spectral regularization

Based on the relaxed spectral regularization formulation in
Theorem 1, a Bayesian matrix completion algorithm similar
to BPMF can be directly derived. Let the priors of αk, βk
be uniform Haar priors within unit spheres; and the prior of
dk’s to be exponential distributions, then the posterior has
exactly the same form as P2. Such an algorithm should have
similar performance to BPMF.

Instead of building models on P2 exactly, we consider an-
other modified form where each dk has its own positive reg-
ularization parameter γk. Obviously this is a generalization
of relaxed spectral regularization and admits it as a special
case. We define the adaptive relaxed spectral regularization
problem as

min
�d,U,V

1

2σ2

∥∥∥∥∥PΩ

(
X −

r∑
k=1

dkukv
ᵀ
k

)∥∥∥∥∥
2

F

+

r∑
k=1

γkdk (P3)

s.t. dk ≥ 0, ‖uk‖2 ≤ 1, ‖vk‖2 ≤ 1, k ∈ [r].

Such a variation is expected to be more flexible and bet-
ter at bridging the gap between the nuclear norm and the
rank functions, thus being more capable of approximating
rank regularization than the standard nuclear norm. Sim-
ilar ideas arose in (Todeschini, Caron, and Chavent 2013)
before and was called hierarchical adaptive nuclear norm
(HANN). But note that although we propose a similar ap-
proach to HANN, our regularization is substantially differ-
ent because of the relaxed constraints.

However, P3 may be harder to solve than the original P2
due to the difficulty in hyperparameter tuning, since adaptive
regularization introduces dramatically more hyperparame-
ters. We will build hierarchical priors for these hyperpa-
rameters and derive a Bayesian algorithm for solving P3 and
inferring hyperparameters simultaneously in the following
section.

Bayesian Matrix Completion via Adaptive

Relaxed Spectral Regularization

Probabilistic model

We now turn P3 into an equivalent MAP estimation task.
Naturally, the squared-error loss in P3 corresponds to the
negative logarithm of the Gaussian likelihood, Xij ∼
N (

∑r
k=1 dkukivkj , σ

2), where uki denotes the ith term in
uk; likewise for vkj . For priors, we adopt uniform Haar pri-
ors on U and V within unit spheres, and exponential priors
on �d, as summarized below:

p̃(uk) =

{
1, ‖uk‖ ≤ 1

0, ‖uk‖ > 1
, ∀k ∈ [r]

p̃(vk) =

{
1, ‖vk‖ ≤ 1

0, ‖vk‖ > 1
, ∀k ∈ [r]

p(dk | γk) = γke
−γkdk , dk ≥ 0, ∀k ∈ [r]

where p̃ denotes an unnormalized probability density func-
tion (p.d.f.). It can be checked that under this probabilis-
tic model, the negative log posterior p.d.f. with respect to
(�d, U, V ) is exactly proportional to P3.

Figure 1: The graphical model for adaptive relaxed spec-
tral regularization, where PΩ(A) = {aij | (i, j) ∈ Ω} and
P⊥
Ω (A) = {aij | (i, j) �∈ Ω}.

Now we precede to treat regularization coefficients �γ :=
{γk : k ∈ [r]} as random variables and assume gamma pri-
ors on them, i.e., p(γk) ∝ γa−1

k e−bγk , γk ≥ 0, ∀k ∈ [r].
This has two obvious advantages. First, it includes �γ into
the Bayesian framework so that values of these coefficients
can be inferred automatically without being tuned as hy-
perparameters. Second, the prior on dk after marginaliz-
ing out γk’s becomes p(dk) =

∫∞
0

p(dk | γk)p(γk)dγk =
aba

(dk+b)a+1 , which is effectively a Pareto distribution. This
distribution has a heavier tail compared to the exponential
distribution (Todeschini, Caron, and Chavent 2013), and is
therefore expected to be better at sparsity-inducing (Bach et
al. 2012).

The graphical model is shown in Figure 1, where we ex-
plicitly separate the observed entries of X , i.e., PΩ(X),
and the unobserved ones, i.e., P⊥

Ω (X). Due to the condi-
tional independency structure, we can simply marginalize
out P⊥

Ω (X) and get the joint distribution

p(�d, U, V,�γ, PΩ(X) | a, b, σ)

∝
(

1

2σ2

)|Ω|/2
exp

⎡
⎣− 1

2σ2

∥∥∥∥∥PΩ(X −
r∑

k=1

dkukv
ᵀ
k)

∥∥∥∥∥
2

F

⎤
⎦

·
r∏

k=1

ba

Γ(a)
γa
ke

−(b+dk)γk , (2)

with all the variables implicitly constrained to their corre-
sponding valid domains.

Inference

We now present the GASR (Gibbs sampler for Adaptive Re-
laxed Spectral Regularization) algorithm to infer the poste-
rior, make predictions, and estimate the hyperparameters via
Monte Carlo EM (Casella 2001).

Posterior Inference Let N (μ, σ2; a, b) denote the normal
distribution N (μ, σ2) truncated in [a, b]. We infer the pos-
terior distribution p(�γ, �d, U, V | a, b, σ, PΩ(X)) via a Gibbs
sampler as explained below:
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Sample �γ: The conditional distributions for regulariza-
tion coefficients �γ are gamma distributions. We sample �γ by
the formula γk ∼ Γ(a+ 1; b+ dk), k ∈ [r].

Sample �d: Conditioned on (�γ, U, V ), the distribution
for each dα (α ∈ [r]) is a truncated Gaussian, dα ∼
N (−B

A , σ2

A ; 0,∞), where A =
∑

(i,j)∈Ω (uαivαj)
2 and

B =
∑

(i,j)∈Ω

(∑
k �=α dkuαiukivαjvkj −Xijuαivαj

)
+

σ2γα.
Sample U and V : Given the other variables, the dis-

tribution for each element in uα’s (or vα’s) is a trun-
cated Gaussian, uαβ ∼ N

(
−D

C , σ2

C ;−ρ, ρ
)
, α ∈

[m], β ∈ [r], where C =
∑

(β,j)∈Ω d2αv
2
αj , D =∑

(β,j)∈Ω

(∑
k �=α dαdkukβvαjvkj − dαXβjvαj

)
and ρ =√

1−∑
k �=β u

2
αk. A similar procedure can be derived to

sample vαβ and is therefore omitted here.
The time complexity of this Gibbs sampler is O(|Ω|r2)

per iteration. Although there is a unified scheme on
sampling truncated distributions by cumulative distribution
function (c.d.f.) inversion, we did not use it due to numer-
ical instabilities found in experiments. In contrast, simple
rejection sampling methods prove to work well.

Prediction With the posterior distribution, we can com-
plete the missing elements using the posterior mean:

E
[
P⊥
Ω (X) | PΩ(X), a, b, σ

]
=

∫
· · ·

∫
E

[
P⊥
Ω (X) | PΩ(X), a, b, σ,�γ, U, V, �d

]
· p(�γ, �d, U, V | a, b, σ, PΩ(X))d�γd�ddUdV.

This integral is intractable. But we can use samples to ap-
proximate the integral and complete the matrix. Since we
use the Gaussian likelihood, we have

E

[
P⊥
Ω (X) | PΩ(X), a, b, σ,�γ, U, V, �d

]
=

r∑
k=1

dkukv
ᵀ
k .

As a result, we can represent missing elements as xij =
〈∑r

k=1 dkukivkj〉 , (i, j) ∈ Ω⊥, which is the posterior sam-
ple mean of P⊥

Ω (X). Here we denote the sample mean for
f(x) as 〈f(x)〉 := 1

n

∑n
i=1 f(xi), with xi being individual

samples and n being the number of samples.

Hyperparameter Estimation We choose the hyper-
parameters (a, b, σ) by maximizing model evidence
p(PΩ(X) | a, b, λ). Since direct optimization is in-
tractable, we adopt an EM algorithm, with latent variable
L := (�d, U, V,�γ). In order to compute the joint expecta-
tion with respect to PΩ(X) and L, we use Monte Carlo
EM (Casella 2001), which can fully exploit the samples
obtained in the Gibbs sampler.

The expectation of PΩ(X) and L with respect to p(L |

PΩ(X)) can be written as

Ep(L|PΩ(X)) [ln p(PΩ(X), L)]

= E

[
ln p(�d, U, V,�γ, PΩ(X) | a, b, σ)

]

≈ −|Ω| lnσ − 1

2

〈∥∥∥∥∥PΩ

(
X −

r∑
k=1

dkukv
ᵀ
k

)∥∥∥∥∥
2

F

〉

+
r∑

i=1

[a ln b− ln Γ(a) + a〈ln γi〉 − b〈γi〉] + C, (3)

where C is a constant. Eq. (3) can be maximized with re-
spect to a, b, σ using Newton–Raphson method. The fix-
point equations are

at+1 = at − Ψ(at)− ln (rat/
∑

i〈γi〉)−
∑

i〈ln γi〉/r
Ψ′(at)− 1/at

bt+1 =
rat+1∑r
i=1〈γi〉

σ2 =
1

|Ω|

〈∥∥∥∥∥PΩ

(
X −

r∑
k=1

dkukv
ᵀ
k

)∥∥∥∥∥
2

F

〉
,

where Ψ(x) and Ψ′(x) are digamma and trigamma functions
respectively. In our experiments, we found the results not
very sensitive to the number of samples used in 〈·〉, so we
fixed it to 5.

Experiments

We now present experimental results on both synthetic and
real datasets to demonstrate the effectiveness on rank recov-
ery and matrix completion.

Experiments on synthetic data

We have two experiments on synthetic data, one is for rank
recovery, the other is for examining how well the algorithms
perform in situations that matrices are very sparse.

In both experiments, we generate standard normal random
matrices Am×q and Bn×q and produce a rank-q matrix Z =
ABᵀ. Then we corrupt Z with standard Gaussian noise to
get the observations X , using a signal to noise ratio of 1.

Rank recovery In this experiment, we set m = 10q and
n = 10q. The algorithm was tested with q ranging from 5 to
45. We set the rank truncation r to 100, which is sufficiently
large for all data. For each matrix Z, the iteration number
was fixed to 1000 and the result was averaged from last 200
samples (with first 800 discarded as burn-in). We simply
initialize our sampler with uniformly distributed U and V

with norms fixed to 0.9 and all �d fixed to zero. We run our
Gibbs sampler on all the entries of X to recover Z.

In the spectral regularization formulation, we can get the
number of latent factors by simply counting the number of
nonzero dk’s. However, since our method uses MCMC sam-
pling, it is diffcult to find some dk to vanish exactly. In-
stead of counting nonzero elements of (d1, d2, · · · , dr) di-
rectly, we sort the tuple in an ascending order and try to
locate w = argmaxk≥2 dk/dk−1 and then discard the set
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Figure 2: (a) Experiment on 200× 200 synthetic matrix shows that vectors tend to get orthonormalized. We measure the mean
values of inner products and norms of all column vectors in U and V for each single iteration. The fluctuations at the beginning
are due to initialization. (b) The recovered rank of a 200×200 synthetic matrix with rank 20. Following the principle presented
in main text, we conclude that the number of latent factors is 20, matching the ground truth. (c) Rank recovery results on
synthetic data, with solid line representing the ground truth.

{dk : dk < dw}. As a result, the recovered rank is r−w+1.
The middle panel of Figure 2 provides an example about
how to determine the number of latent factors.

The results of this experiment are summarized in Fig-
ure 2(c), showing that the recovered ranks are fairly aligned
with the ground truth. Our algorithm performs perfectly well
when the true rank is relatively small and slightly worse
when the rank gets higher. This may be due to that larger
rank requires more iterations for convergence.

We also illustrate how vectors get orthonormalized auto-
matically on one of our synthetic matrices in Figure 2(a).
The orthonormality of vectors are measured by the average
values of their 	2 norms and inner products with each other.
Figure 2(a) shows that U and V get nearly orthonormalized
after only one iteration. This phenomenon indicates that the
vectors still tend to get orthonormalized even in the hierar-
chial Bayesian model.

Different missing rates We generate matrices of different
sizes and different missing rates to test the performance of
our method, in comparison with BPMF, as it is the only one
that can compete with GASR on real datasets, as illustrated
in detail in the next section.

The Root Mean Squared Error (RMSE) results are listed
in Table 1. The deviations and some additional settings are
reported in supplementary material. We can see that GASR
is considerably better than BPMF when the observed ele-
ments of a matrix are of a small number, demonstrating the
robust estimates of GASR via sparsity-inducing priors.

Collaborative filtering on real datasets

We test our algorithm on the MovieLens 1M2 and
EachMovie datasets, and compare results with various
strong competitors, including max-margin matrix factor-
ization (M3F) (Rennie and Srebro 2005), infinite prob-
abilistic max-margin matrix factorization (iPM3F) (Xu,

2MovieLens datasets can be downloaded from
http://grouplens.org/datasets/movielens/.

Table 1: Results on different missing rates

Setting m = 500, n = 500, r = 30, q = 5

Missing-Rates 90% 80% 50% 0%

BPMF 1.6842 0.3210 0.1304 0.0933
GASR 0.1992 0.1321 0.0841 0.0724

Setting m = 1000, n = 1000, r = 50, q = 10

Missing-Rates 90% 80% 50% 0%

BPMF 0.9422 0.2396 0.1105 0.0859
GASR 0.2513 0.1688 0.1270 0.1115

Zhu, and Zhang 2012), softImpute (Mazumder, Hastie,
and Tibshirani 2010), softImpute-ALS (“ALS” for “al-
ternating least squares”) (Hastie et al. 2014), hierarchi-
cal adaptive soft impute (HASI) (Todeschini, Caron, and
Chavent 2013) and Bayesian probabilistic matrix factoriza-
tion (BPMF) (Salakhutdinov and Mnih 2008).

The MovieLens 1M dataset contains 1,000,209 ratings
provided by 6,040 users on 3,952 movies. The ratings are
integers from {1, 2, 3, 4, 5} and each user has at least 20
ratings. The EachMovie dataset consists of 2,811,983 rat-
ings provided by 74,424 users on 1,648 movies. As in (Mar-
lin 2004), we removed duplicates and discarded users with
less than 20 ratings. This left us with 36,656 users. There
are 6 possible ratings from 0 to 1 and we mapped them to
{1, 2, · · · , 6}.

Protocol: We randomly split the dataset into 80% train-
ing and 20% test. We further split 20% training data for val-
idation for M3F, iPM3F, SoftImpute, SoftImpute-ALS and
HASI to tune their hyperparameters. BPMF and GASR
can infer hyperparameters from training data and thus do
not need validation. We measure the performance using
both RMSE and normalized mean absolute error (NMAE),
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Figure 3: Convergence of NMAE on real datasets. We only
show results on our first data partitions.

where NMAE (Goldberg et al. 2001) is defined as

NMAE =
1

|Ωtest|

∑
(i,j)∈Ωtest

|Xij − Zij |
max(X)−min(X)

, (4)

and Ωtest is the index set of entries for testing.
Implementation details: The number of iterations of

our sampler is fixed to 100 and the point estimates of
E
[
P⊥
Ω (X)

]
are taken from the average of all 100 samples.

We initialize our algorithm by generating uniformly dis-
tributed items for U and V and set all dk to 0. We also scale
the norms of uk and vk to 0.9 for initialization. Figure 3
shows that our sampler converges after a few iterations with
this fairly naı̈ve initialization.

We use the R package softImpute for SoftImpute and
SoftImpute-ALS, and use the code provided by the corre-
sponding authors for M3F, iPM3F, HASI and BPMF. The
hyperparameters for M3F, iPM3F, SoftImpute, SoftImpute-
ALS and HASI are selected via grid search on the validation
set. We randomly initialize all methods except HASI for
which the initialization is the result of SoftImpute, as sug-
gested in (Todeschini, Caron, and Chavent 2013). The re-
sults of BPMF are the averages over 100 samples, the same
as ours.

For all the algorithms, we set the maximum number of it-
erations to 100. The rank truncation r for MovieLens 1M
and EachMovie is set to 30, where we follow the setting
in (Todeschini, Caron, and Chavent 2013) and find in ex-
periments that larger r does not lead to significant improve-
ments.

Results: Table 2 presents the averaged NMAE and RMSE
over 5 replications and their standard deviations.3 Overall,
we can see that our GASR achieves superior performance
than most of the baselines. More specifically, we have the
following observations:

3The NMAE of HASI on MovieLens is slightly different from
that in (Todeschini, Caron, and Chavent 2013), which was 0.172,
still inferior to ours. This may be due to differences in parameter
selecting methods.

First, GASR is comparable to BPMF, the state-of-the-
art Bayesian method for low-rank matrix completion, on
the MovieLens dataset; while it outperforms BPMF on the
EachMovie dataset, with the observation that EachMovie
dataset (97.8% missing) is sparser than MovieLens (95.8%
missing). On both datasets, GASR also obtains much
lower RMSE than iPM3F, a state-of-the-art nonparamet-
ric Bayesian method based on IBP (Griffiths and Ghahra-
mani 2011) for matrix completion. Such results demon-
strate the promise of performing Bayesian matrix comple-
tion via spectral regularization. Furthermore, GASR pro-
duces sparser solutions due to its sparsity-inducing priors
on �d. The ranks it infers on MovieLens and EachMovie are
both 10 on average, but the numbers of latent factors inferred
by iPM3F are both 30, which is the rank truncation level.
It is reported in (Xu, Zhu, and Zhang 2013) with a similar
setting that the optimal latent dimensions inferred by Gibbs
iPM3F, a Gibbs sampling version for iPM3F model without
rank truncations, are around 450 for MovieLens and 200 for
EachMovie, which are much larger than ours.

Second, compared to HASI, a non-Bayesian method that
adopts similar adaptive spectral regularization, and the other
non-Bayesian methods based on squared-error losses (i.e.,
SoftImpute and SoftImpute-ALS), we achieve much better
results on both datasets, demonstrating the advantages of
Bayesian inference. Moreover, the better performance of
HASI over SoftImpute demonstrates the benefit of adaptiv-
ity.

Finally, the max-margin based methods (i.e., M3F and
iPM3F) have slightly better performance on NMAE but
much worse results on RMSE than our GASR. One possi-
ble reason is that these methods are based on the maximum-
margin criterion, which naturally minimizes absolute errors,
while our method (and the others) is based on minimizing
a squared-error loss. Another reason, which may be the
most important one, is that both M3F and iPM3F predict in-
teger values while our method (and the others) gives real
value predictions. We found that simply rounding these real
value predictions to integers can greatly improve the perfor-
mance on NMAE. For example, our GASR gives NMAE
value 0.1569± 0.0006 and 0.1877± 0.0003 respectively on
MovieLens and EachMovie datasets after rounding predic-
tions to nearest integers.

Conclusions and Discussions

We present a novel Bayesian matrix completion method with
adaptive relaxed spectral regularization. Our method ex-
hibits the benefits of hierarchical Bayesian methods on infer-
ring the parameters associated with adaptive relaxed spectral
regularization, thereby avoiding parameter tuning. We esti-
mate hyperparameters using Monte Carlo EM. Our Gibbs
sampler exhibits good performance both in rank inference
on synthetic data and collaborative filtering on real datasets.

Our method is based on a new formulation in Theorem 1.
These results can be further generalized to other noise poten-
tials with minor effort. For the Gibbs sampler, we can also
extend to non-Gaussian potentials as long as this potential
has a regular p.d.f. that enables efficient sampling.
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Table 2: Experimental results of various methods on the MovieLens and EachMovie datasets.

MovieLens EachMovie

Algorithm NMAE RMSE NMAE RMSE

M3F 0.1652± 0.0004 0.9644± 0.0012 0.1932± 0.0003 1.4598± 0.0019
iPM3F 0.1604± 0.0004 0.9386± 0.0024 0.1819± 0.0006 1.3760± 0.0034

SoftImpute 0.1829± 0.0002 0.9469± 0.0009 0.2039± 0.0002 1.2948± 0.0037
SoftImpute-ALS 0.1783± 0.0001 0.9196± 0.0013 0.2018± 0.0004 1.2757± 0.0008

HASI 0.1813± 0.0002 0.9444± 0.0011 0.1992± 0.0003 1.2612± 0.0016
BPMF 0.1663± 0.0002 0.8460± 0.0006 0.2012± 0.0001 1.2363± 0.0007
GASR 0.1673± 0.0005 0.8528± 0.0025 0.1930± 0.0009 1.2015± 0.0044

Finally, though we stick to Gibbs sampling in this paper, it
would be interesting to investigate other Bayesian inference
methods based on Theorem 1 since it gets rid of many dif-
ficulties related to Stiefel manifolds. Such an investigation
may lead to more scalable algorithms with better conver-
gence property. Furthermore, better initialization methods
other than uniformly generated random numbers may lead
to much faster convergence, e.g., results from several itera-
tions of HASI can usually provide a good starting point.
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