
Homework 4 for #70240413

“Statistical Machine Learning”

Instructor: Prof. Jun Zhu

June 10, 2015

1 Sparse Learning

1.1 Problem 1

For a quadratic function Q(w) = L(w;X), please show the following two optimization problems are equiva-

lent for some values of λ and t, where Ω(w) = ‖w‖1.

min
w

Q(w) + λ · Ω(w) (1)

min
w

Q(w) (2)

s.t. Ω(w) ≤ t

1.2 Problem 2

Implementation of Lasso.

1.2.1 Lasso Model

Consider the problem

min
ω∈Rp

‖y −Xw‖22 + λ‖w‖1, y ∈ Rn, X ∈ Rn×p, (3)

where X is the feature matrix. Each row of X is a data vector and each column of X represents a feature.

y represents the vector of all outputs. w is the feature weight.

1.2.2 Solver

Many algorithms can be used to solve the Lasso problem, such as subgradient descent, proximal methods,

coordinate descent, etc. In this section, you are required to use proximal method. Please give your derivation
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Figure 1: Regularization path of lasso

of the solver and implement it.

1.2.3 Bonus (optional)

You can implement subgradient descent(SGD) or Coordinate Descent (CD) on lasso and give some comparison

with the proximal method, in terms of time efficiency and solutions.

1.2.4 Data

The diabetes dataset is provided1. In this dataset, the matrices x train and x test correspond to X matrix

in Eqn. 3. The matrices y train and y test correspond to y in Eqn. 3.

1.2.5 Evaluation&Tips

Draw regularization path [1] (variation of each dimension in ω when tuning λ). You may need to tune λ to

get the sparsity and please see Fig. 1 as an example.

2 Dirichlet Process

2.1 Problem 1

Consider the Chinese restaurant process CRP(α), compute the expected number of tables occupied when

there are n seated customers.

1http://www.cse.msu.edu/~cse847/assignments/diabetes.mat
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2.2 Problem 2

The Pitman-Yor process is closely related to the Dirichlet Process. Recall that in the stick-breaking con-

struction for the Dirichlet Process, we define an infinite sequence of Beta random variables as follows:

βi ∼ Beta(1, α0), i = 1, 2, . . . (4)

Then we define an infinite sequence of mixing proportions as follows:

π1 = β1 (5)

πk = βk
∏
j<k

(1− βj), k = 2, 3, . . . (6)

Under the Pitman-Yor process, the infinite sequence of Beta random variables is defined as

βk ∼ Beta(1− d, α+ kd), k = 1, 2, . . . (7)

where 0 ≤ d < 1 is a discount parameter. As in the Dirichlet Process, we complete the description of the

Pitman-Yor process via

G ∼
∞∑
k=1

πkδφk
(8)

θi|G ∼ G (9)

Based on above definitions, please show that the expectation of the total number of occupied tables in the

Chinese restaurant scales as O(αnd) under the Pitman-Yor process PY(d, α,G0).

NOTE: This result shows that for natural phenomena that follow power-law distribution, the Pitman-Yor

process may be a better choice for a prior than the Dirichlet Process.

2.3 Problem 3

Implementation of Gibbs sampling for Dirichlet process mixture.

2.3.1 DP Mixture Model

You are supposed to use DP Mixture to do clustering on the data D = {xi}Ni=1.

For this dataset, we have K(≤ N) components and membership indicator {zi}Ni=1. It should be noted

that K might change during the iterations. Data points at each component follows a Normal distribution

with parameter φi = (µi,Σi), i = 1, 2, ...,K, p(xi|zi = k, µk,Σk) ∼ N (µk,Σk). Then the DP mixture model

has the following posterior distribution:

p(φ, z|D) ∝ p0(z)p0(φ)p(D|φ, z) (10)
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For the prior of z, the Chinese Restaurant Process representation is used. For the prior of φ, Normal-

Inverse-Wishart prior(NIW) is usually chosen as the conjugate prior.

For the Gibbs sampling method, you can either collapse φ or not. For simplicity, you can fix Σ = I and

you only need to set the prior of µ as normal prior N (0, σ2I) instead of the NIW prior. For more details,

please see [2].

2.3.2 Dataset

You can generate the mixture of Gaussian by yourself, for example, altogether 300 data points and 3

mixtures with equal data size. The gaussian components are taken as 2-dimensional using the parameter

µ1 = (2.4, 2), µ2 = (−1.8, 2.4), µ3 = (−0.2,−2.6) and all covariance matrices are set as I.

2.3.3 Evaluation

You need to give some visualization of the clustering. You also need to investigate the following two measures:

• Difference between actual number of clusters K and expected number of clusters Ep0 [K(n, α)]:

D(K;α) = K − Ep0 [K(N)] where Ep0 [K(N,α)] is what you get from 2.1

• Mahalanobis distance of all data points to their centers:

DM (D; z,φ) =
∑n
i=1 |(xi − µzi)>Σ−1(xi − µzi)|

1
2

Please report the curves of the 2 measures during the whole Gibbs sampling process.
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