
Homework 3 for #70240413

“Statistical Machine Learning”

Instructor: Prof. Jun Zhu

May 15, 2015

1 Probabilistic Graphical Models

1.1 Marginal Inference for HMM

Given the following Hidden Markov Model (Fig. 1) which indicates a factorized
full probability distribution as follows,

p(x, y) = p(x1, x2, · · · , xT , y1, y2, · · · , yT ) (1)

= p(y1)p(x1|y1)p(y2|y1)p(x2|y2) · · · p(yT |yT−1)p(xT |yT ), (2)

please show how to compute the following conditional queries for t = 1, · · · , T :

1. p(yt|x1, · · · , xt) (this is called a “filtering”; Note that each of these is
conditioned only on observations up to time step t.)

2. p(yt|x1, · · · , xT ).

Hint: you may want to use recursions and to use the results from 1 to answer 2.

Figure 1: Hidden Markov Model
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1.2 Message Passing on a Tree

Consider the DGM in Fig. 2 which represents the following fictitious biological
model. Each Gi represents the genotype of a person: Gi = 1 if they have a
healthy gene and Gi = 2 if they have an unhealthy gene. G2 and G3 represent
the descendants of G1 and therefore may inherit this specific gene from G1.
Xi ∈ R is a continuous measure of blood pressure, which is low if the person is
healthy or high if unhealthy.

Figure 2: A simple DAG representing inherited diseases

We define the CPDs as follows

P (G1) = (0.5, 0.5) (3)

P (Gi|G1) =

(
0.9 0.1
0.1 0.9

)
(i = 2, 3) (4)

p(Xi|Gi = 1) = N (Xi|µ = 55, σ2 = 10) (i = 1, 2, 3) (5)

p(Xi|Gi = 2) = N (Xi|µ = 65, σ2 = 10) (i = 1, 2, 3) (6)

1. Suppose you only observe X2 = 50. What is the posterior belief on G1,
i.e., P (G1|X2 = 50)?

2. Now suppose you observe bothX2 = 50 andX3 = 50. What is P (G1|X2, X3)?
Explain your answer intuitively.
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2 Learning Theory

2.1 VC Dimension

Consider the instance space X to be R2. Please derive the VC dimension of the
following hypothesis space:

H = {All the axes-parallel rectangles in R2, where points inside the rectangle
are classified as positive.}.

2.2 Generalization Bound

Consider a learning problem in which instances X = R are all the real numbers,
and the hypothesis space H = {(a < x < b)|a, b ∈ R} is composed of all the
intervals in R. What is the probability that a hypothesis h ∈ H consistent with
m instances x1, · · · , xm will have an error of at least ε?

Note: you can use the theoretical results from the lecture notes directly.

3 Topic Modeling

For the LDA model illustrated in the lecture notes P. 55, derive the collapsed
Gibbs sampling algorithm for posterior inference. By “collapsed” we mean to
first integrate out Θ (topic mixing proportions) and Φ (topics) to perform Gibbs
sampling only with p(Z|W,α, β) and, after obtaining a good estimate of Z (topic
assignments), to then compute the posterior of Θ and Φ through p(Θ|Z,α) and
p(Φ|W,Z, β). Hint: be sure to leverage the conjugacy between the Dirichlet and
the Multinomial.

Please implement the sampling algorithm and test it on the “20newsgroup”
dataset1.

Set the number of topics K to be 5, 10, 20, 30 respectively and show the
most-frequent words in each topic for each case. Compare your results with the
mixture-of-multinomials model in Homework 1, report the differences and try
to explain why.

Bonus: Think about how to specify the prior distributions in LDA (lecture
notes P. 17). How do you choose the hyperparameters α and β? Try subjective
priors or empirical priors as well and observe the difference.

1http://ml.cs.tsinghua.edu.cn/~wenbo/data/20newsgroup_train.zip
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