
Supervised Learning
Classification

[70240413 Statistical Machine Learning, Spring, 2015]

Jun Zhu
dcszj@mail.tsinghua.edu.cn

http://bigml.cs.tsinghua.edu.cn/~jun

State Key Lab of Intelligent Technology & Systems

Tsinghua University

March 24, 2015

Supervised Learning
Task: learn a predictive function

“Experience” or training data:

Feature space Label space

Words in documents

“Sports”

“News”

“Politics”

…

Market information

up to time t

Share price

“$ 20.50”

f< xd; yd >gD
d=1; xd 2 X ; yd 2 Y

Supervised Learning – classification

Feature space Label space

Words in documents

“Sports”

“News”

“Politics”

…

“Tool”

“Animal”

…

Discrete Labels

Stimulus response

Supervised Learning – regression

Feature space Label space

Market information

up to time t

Share price

“$ 20.50”

Continuous Labels

Temperature

“42o F”

(session, location, time …)

How to learn a classifier?

C1
C2

K-NN: a Non-parametric approach

?

Properties of K-NN

Simple

Strong consistency results:

 With infinite data, the error rate of K-NN is at most twice the

optimal error rate (i.e., Bayes error rate)

Note: Bayes error rate – the minimum achievable error rate

given the distribution of the data

Issues of K-NN

Computationally intensive for large training sets

 Clever nearest neighbor search helps

Selection of K

Distance metric matters a lot

 Aware of the metric learning field

K-NN for regression

A weighted average is an estimate; where the weight is the inverse distance

?

A Parametric Method

Binary classification can be viewed as the task of separating

classes in feature space:

wTx + b = 0

wTx + b < 0
wTx + b > 0

f(x) = sign(wTx + b)

Linear Separators

Which of the linear separators is optimal?

Classification Margin

Distance from example xi to the separator is

Examples closest to the hyperplane are support vectors.

Margin ρ of the separator is the distance between supporting
hyperplanes.

r

ρ

Max-margin Classification

Maximizing the margin is good according to intuition and PAC theory.

Implies that only support vectors matter; other training examples are

ignorable.

Linear SVM

Let training set be

separated by a hyperplane with margin ρ. Then for each

training example (xi, yi):

For support vector xs the above inequality is an equality.

After rescaling w and b by ρ/2, we obtain that distance

between each xs and the hyperplane is

wTxi + b ≤ - ρ/2 if yi = -1

wTxi + b ≥ ρ/2 if yi = 1
yi(w

Txi + b) ≥ ρ/2

Linear SVM

Then the margin can be expressed through (rescaled) w and

b as:

w

2
2 r

Classification rule:

classify as: +1 if

- 1 if

universe if

explodes

Observations

We can assume b=0

This is the same as:

Classification rule:

classify as: +1 if

- 1 if

universe if

explodes

The Primal Hard SVM

Given training dataset:

Assume that D is linearly separable

Prediction:

This is a QP problem (d-dimensional)

(Quadratic cost function, linear constraints)

Constrained Optimization

Lagrange Multiplier

Move the constraint to objective function – Lagrangian

Solve:

Constraint is active when

Lagrange Multiplier – dual variables

Solving:

We get:

When , constraint is tight

From Primal to Dual

Primal problem:

Lagrange function:

The Lagrange Problem

The Lagrange problem:

The Dual Problem

The Dual Hard SVM

Optimal solution:

Prediction:

The Problem with Hard SVM

It assumes samples are linearly separable …

How about if the data is not linearly separable?

0 x

The Problem with Hard SVM

If the data is not linearly separable, adding new features

might make it linearly separable

 Now drop this “augmented” data into our linear SVM!

0

x2

x

The Problem with Hard SVM

It assumes samples are linearly separable

Solutions:

 User feature transformation to a higher-dim space

 Overfitting

 Soft margin SVM instead of hard SVM

 Next slides

Hard SVM

The hard SVM problem can be rewritten:

From Hard to Soft Constraints

Instead of using hard constraints (linearly separable)

We can try to solve the soft version of it:

 The loss is only 1 instead of ∞ if misclassify an instance

Problems with 0/1 loss

It is not convex in

 It is not convex in , either

We like convex functions …

Approximation of the step function

Approximation of 0/1 loss

Piecewise linear approximation (hinge loss, convex, nonsmooth)

 we want

Quadratic approximation (square-loss, convex, smooth)

Huber loss (combine the above two, convex, smooth)

The Hinge loss approximation of 0/1 loss

 where:

 The hinge loss upper bounds the 0/1 loss

Geometric interpretation: slack variables

ξi

ξi

The Primal Soft SVM problem

Equivalently:

The Primal Soft SVM problem

Equivalently:

Dual Soft SVM (using hinge loss)

Lagrange multipliers

Lagrange function

Dual Soft SVM (using hinge loss)

We get:

Dual problem:

Dual Soft SVM (using hinge loss)

This is the same as the dual hard SVM problem, except that

we have additional constraints

SVM in the dual space

Solve the dual problem

The primal solution

Prediction

Why it is called Support Vector Machines?

Hard-SVM:

KKT conditions (complementary slackness condition):

Why it is called Support Vector Machines?

Hard SVM:

 Only need to store support vectors to predict labels of test data

Support vectors in Soft SVM

Margin support vectors

Nonmargin support vectors

ξi

ξi

Dual Sparsity

Only few Lagrange multipliers (dual variables) can be

non-zero

What about multiple classes?

One vs All

Learn multiple binary classifiers separately:

 class k vs. rest

Prediction:

Problems with One vs All?

(1) The weights may not be based on the same scale

 Note: is also a solution

(2) Imbalance issue when learning each binary classifier

 Much more negatives than positives

One vs One

Learn K(K-1)/2 binary classifiers

Prediction:

 Majority voting

Ambiguity issue!

Learning 1 Joint Classifier

Simultaneously learn 3 sets of weights

Margin: gap between true class and nearest other class

Learning 1 Joint Classifier

Simultaneously learn 3 sets of weights

Joint optimization:

Prediction:

What you need to know

Maximizing margin

Derivation of SVM formulation

Slack variables and hinge loss

Relationship between

 0/1 loss

 Hinge loss

Tackling multiple class

 One vs. All

 Multiclass SVMs

SVM for Regression

Training data

Still learn a hyper-plane (linear model)

Squared error is the popular loss

 a smooth function – no sparsity

A piecewise linear approximation (-insensitive loss)

SVM in the dual space

Without offset b:

With offset b:

Why solve the dual SVM?

The dual problem has simpler constraints

There some quadratic programming algorithms that can solve

the dual fast, especially in high-dimensions (d >> N)

 See [Bottou & Lin, 2007] for a summary of dual SVM solvers

 Be aware of the fast algorithms directly solving the primal

problem, e.g., cutting-plane, stochastic subgradient, etc.

More importantly, the Kernel Trick!!

Nonlinear SVM
Datasets that are linearly separable with some noise work out great:

But what are we going to do if the dataset is just too hard?

How about… mapping data to a higher-dimensional space:

0 x

0 x

0

x2

x

Non-linear SVMs: Feature Spaces

General idea: the original feature space can always be mapped
to some higher-dimensional feature space where the training set
is separable:

Φ: x→φ(x)

Dot Product of Polynomials

Polynomials of degree exactly d:

d=1:

d=2:

In general:

The Kernel Trick
Linear SVM relies on inner product between vectors

If map every data point into high-dimensional space via Φ: x
→ Φ(x), the inner product becomes:

A kernel function is a function that is equivalent to an inner
product in some feature space.

The feature mapping is not explicitly needed as long as we
can compute the dot product using some Kernel K

What functions are kernels?

For some function K(xi,xj) checking that K(xi,xj)= φ(xi)
Tφ(xj)

can be cumbersome.

Mercer’s theorem:

Every semi-positive definite symmetric function is a kernel

Semi-positive definite symmetric functions correspond to a semi-

positive definite symmetric Gram matrix:

K(x1,x1) K(x1,x2) K(x1,x3) … K(x1,xn)

K(x2,x1) K(x2,x2) K(x2,x3) K(x2,xn)

… … … … …

K(xn,x1) K(xn,x2) K(xn,x3) … K(xn,xn)

K =

Example Kernel Functions
Linear: K(xi,xj)= xi

Txj
 Mapping Φ: x → Φ(x), where Φ(x) is x itself

Polynomial of power p: K(xi,xj)= (1+ xi
Txj)

p

 Mapping Φ: x → Φ(x), where Φ(x) has dimensions

Gaussian (radial-basis function):

K(xi,xj) =

 Mapping Φ: x→ Φ(x), where Φ(x) is infinite-dimensional: every point is
mapped to a function; combination of functions for support vectors is the
separator.

Higher-dimensional space still has intrinsic dimensionality d, but linear
separators in it correspond to non-linear separators in original space.

2

2

2
exp

ji xx

p

pd

Overfitting

Huge feature space with kernels, what about overfitting??

 Maximizing margin leads to a sparse set of support vectors

 Some interesting theory says that SVMs search for simply

hypothesis with a large margin

 Often robust to overfitting

SVM – demo

http://www.isis.ecs.soton.ac.uk/resources/svminfo/
Good ToolKits: [1] SVM-Light: http://svmlight.joachims.org/

[2] LibSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm/

http://www.isis.ecs.soton.ac.uk/resources/svminfo/
../AML-2013-2014/SVM-Demo/svm_gui.exe
http://svmlight.joachims.org/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Chessboard dataset, Polynomial kernel

Chessboard dataset, Polynomial kernel

Chessboard dataset, Polynomial kernel

Chessboard dataset, RBF kernel

Advanced topics

Scalable algorithms to learn SVMs

 Linear SVMs

 Linear algorithm, e.g., cutting-plane (2009)

 Stochastic optimization, e.g., Pegasos (2007)

 Distributed learning, e.g., divide-and-conquer (2013)

 Non-linear SVMs

 Kernel approximation, e.g., using low-rank or random features

Structured output learning with SVMs

 Will cover later

An incomplete list of SVM solvers [Menon, 2010]

Validation

Model selection:

 Almost invariably, all ML methods have some free parameters

 The number of neighbors in K-NN

 The kernel parameters in SVMs

Performance estimation:

 Once we have chosen a model, how to estimate its

performance?

Motivation

If we had access to an unlimited number of examples, there is

a straightforward answer

 Choose the model with the lowest error rate on the entire

population

 The error rate is the true error rate

In practice, we only access to a finite set of examples, usually

smaller than we wanted

 Use all training data to select model => too optimistic!

 A better approach is to split the training set into disjoint subsets

Holdout Method

Split dataset into two subsets

 Training set: used to learn the classifier

 Test set: used to estimate the error rate of the trained classifier

E.g.: used to determine a stopping point of an iterative alg.:

Holdout Method

Two basic drawbacks

 In problems with a sparse dataset, we may not be able to afford the
“luxury” of setting aside a portion of data for testing

 A single train-test split may lead to misleading results, e.g., if we
happened to get an “unfortunate” split

Resampling can overcome the limitations, but at the expense of
more computations

 Cross-validation
 Random subsampling

 K-fold cross-validation

 Leave-one-out cross-validation

 Bootstrap

Random Subsampling

Performs K data splits of the entire dataset
 Each split randomly selects a (fixed) no. examples
 For each split, retrain the classifier with training data, and evaluate on

test examples

The true error is estimated as the average

K-Fold Cross-validation
Create a K-fold partition of the dataset
 For each of K experiments, use K-1 folds for training and the remaining one for

testing

K-fold CV is similar to random subsampling
 The advantage of K-fold CV is that all examples are eventually used for both

training and testing

True error is estimated as the average

Leave-one-out Cross-Validation

Leave-one-out CV is the extreme case of K-fold CV, where K=N

How many folds are needed?

With a large number of folds
 (+)The bias of true error estimate is small (i.e., accurate estimate)
 (–)The variance of true error estimate is large – the K training sets

are too similar to one another
 (–)The computational time will be large (i.e., many experiments)

With a small number of folds
 (+)The computation time is reduced
 (+)The variance of true error estimate is small
 (–)The bias of the estimator is large, depending on the learning curve

of the classifier

In practice, a large dataset often needs a small K, while a very
sparse dataset often needs a large K

A common choice for K-fold CV is K=10

Three-way data splits
If model selection and true error estimates are to be computed simultaneously, the data
needs to be divided into 3 disjoint sets
 Training set: used for learning – to fit the parameters of the classifier

 Validation set: used to tune the parameters of a classifier

 Test set: used only to assess the performance of a fully trained classifier

