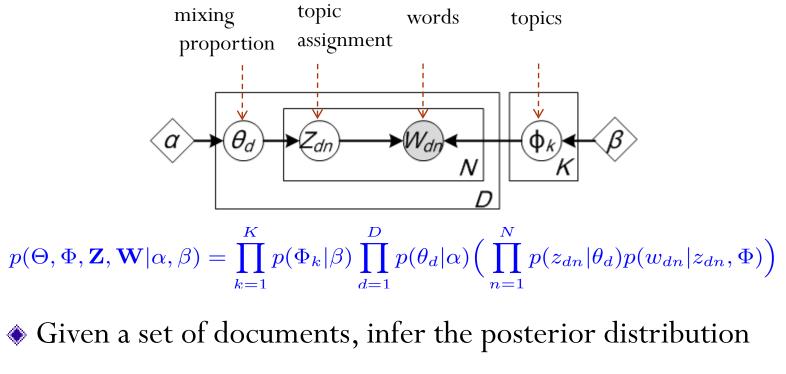
[70240413 Statistical Machine Learning, Spring, 2015]

Nonparametric Bayesian Methods (Dirichlet Process Mixtures)

Jun Zhu

dcszj@mail.tsinghua.edu.cn http://bigml.cs.tsinghua.edu.cn/~jun State Key Lab of Intelligent Technology & Systems Tsinghua University

May 12, 2015



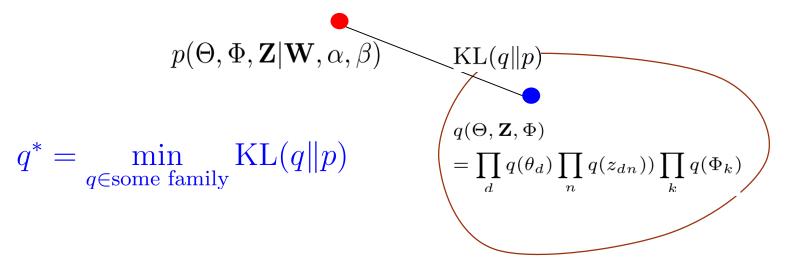
$$p(\Theta, \Phi, \mathbf{Z} | \mathbf{W}, \alpha, \beta) = \frac{p(\Theta, \Phi, \mathbf{Z}, \mathbf{W} | \alpha, \beta)}{p(\mathbf{W} | \alpha, \beta)}$$

OR

$$p(\mathbf{Z}|\mathbf{W}, \alpha, \beta) = \frac{\int_{\Theta, \Phi} p(\Theta, \Phi, \mathbf{Z}, \mathbf{W}|\alpha, \beta)}{p(\mathbf{W}|\alpha, \beta)}$$

Dealing with the Intractability of Inference

Variational Inference (Blei et al., 2003; Teh et al., 2006)

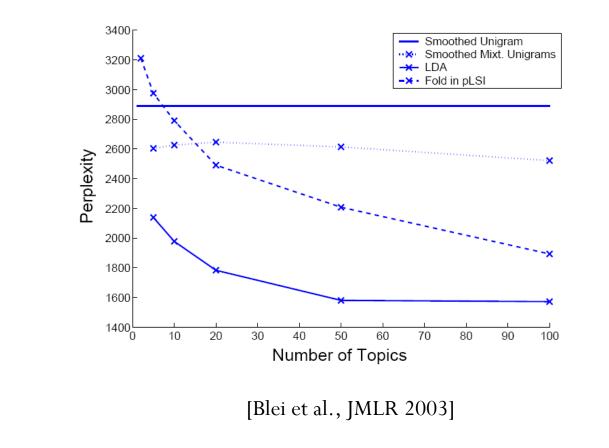


Monte Carlo Markov Chains (Griffiths & Steyvers, 2004)
 Collapsed Gibbs samplers iteratively draw samples from the local conditionals

$$p(z_{dn}^k = 1 | Z_{\neg})$$

Problem with K

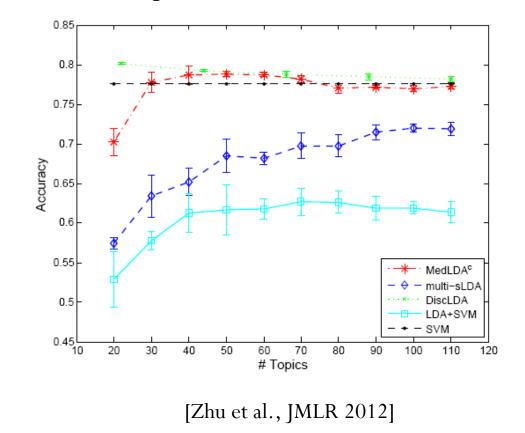
K represents the model complexityIt matters a lot in practice



Problem with K

 \blacklozenge K represents the model complexity

It matters a lot in practice



Today, we will discuss nonparametric Bayesian methods

"Nonparametric Bayesian methods"?
What does that mean?

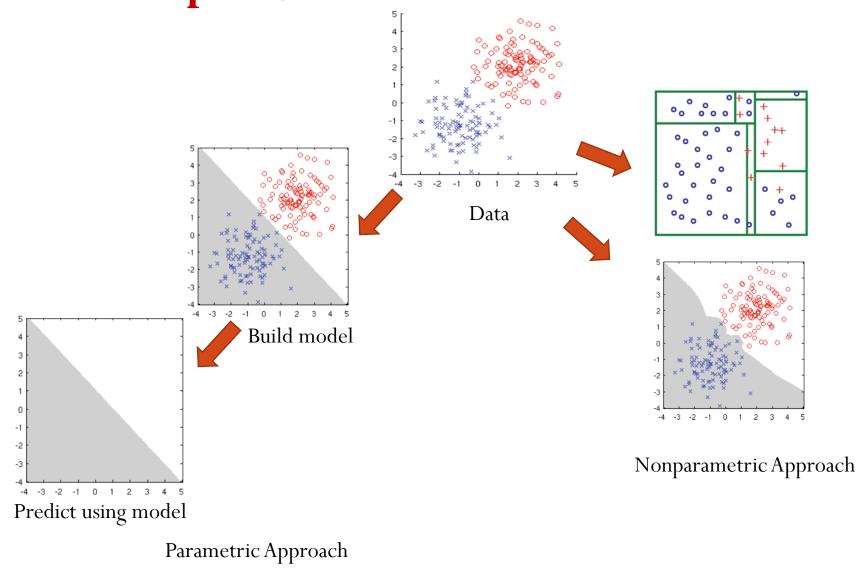
So now we know what Bayesian means, but what does nonparametric mean?

Nonparametric

Nonparametric:

Does NOT mean there are no parameters

Example: Classification



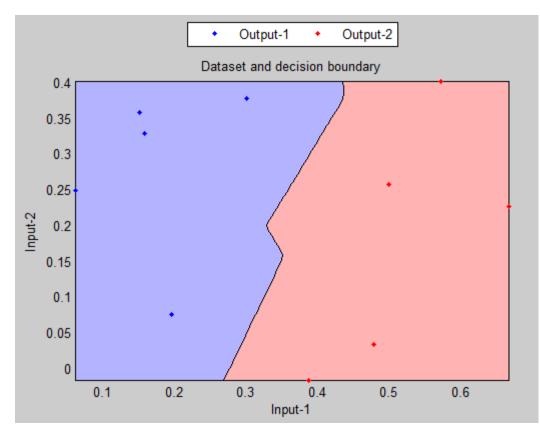
Complexity of 1-NN

\diamond 2 samples



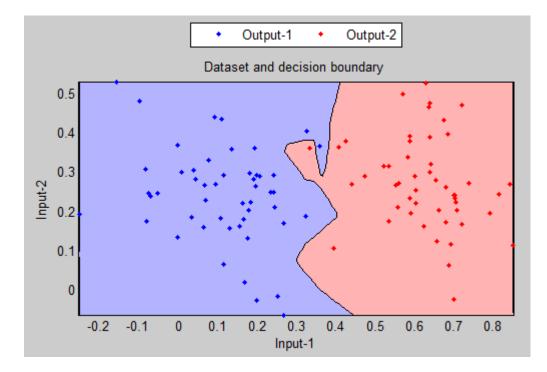
Complexity of 1-NN

♦ 10 samples



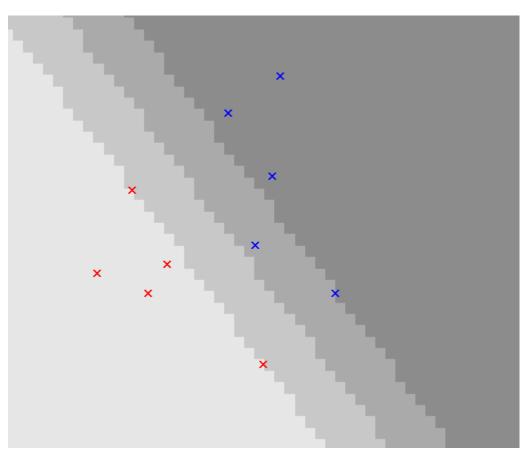
Complexity of 1-NN

100 samples



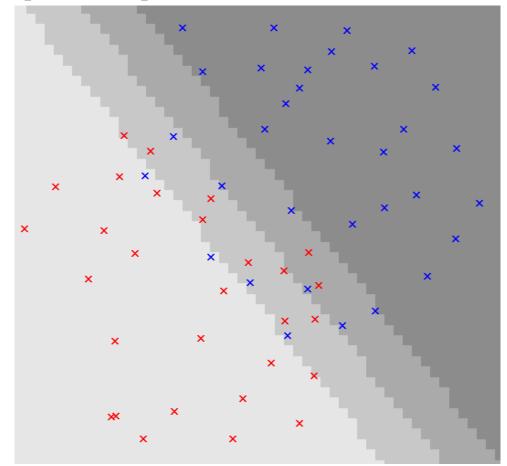
How about linear SVM?

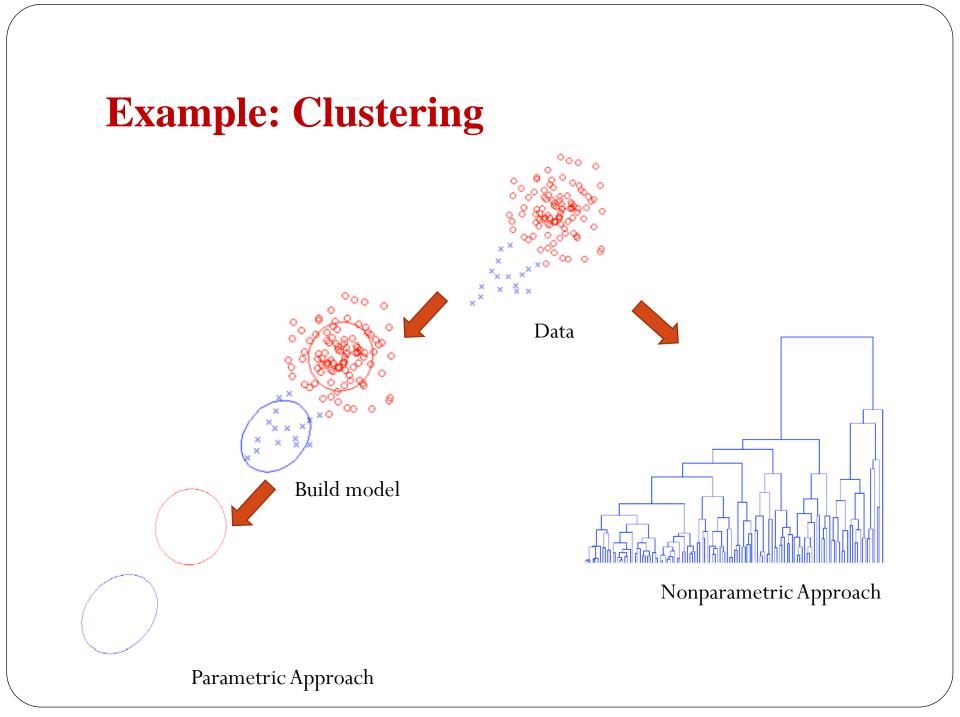
♦ 10 samples



How about linear SVM?

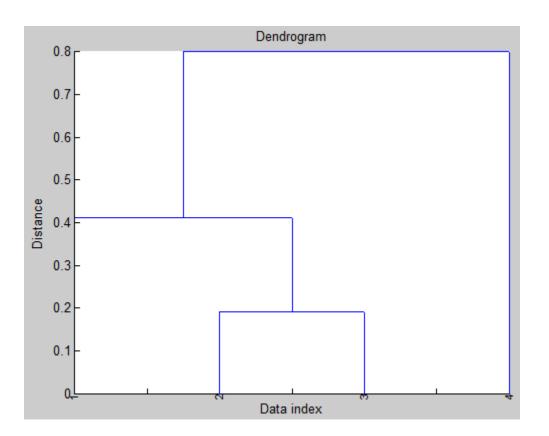
A lot of samples (inseparable)





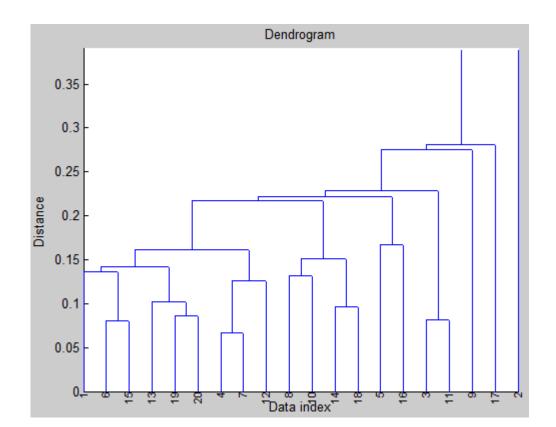
Complexity of Hierarchical Clustering

4 samples

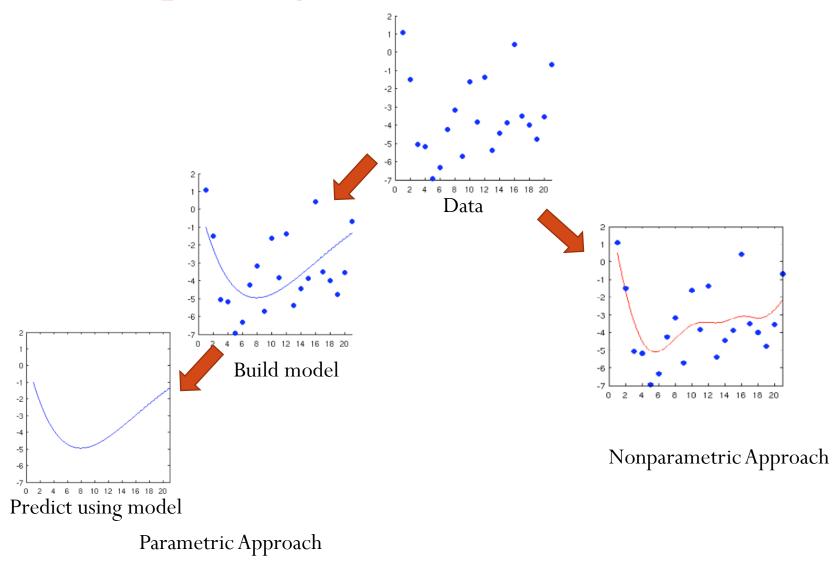


Complexity of Hierarchical Clustering

♦ 20 samples



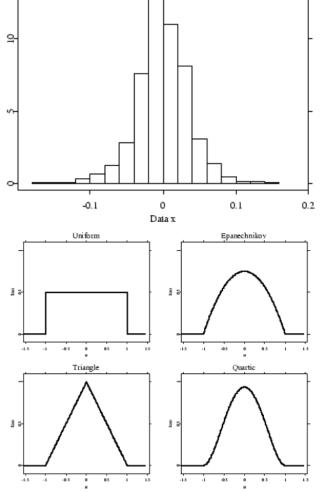
Example: Regression



Other Examples: Density Estimation

Histogram 9 □ Issue with binwidth Histogram • Issue with origins of bins □ Issue with discreteness -0.1 0 Data x Smoothing techniques to improve Uniform Averaged shifted histogram <u>8</u> 8-100 • Kernel density estimation -1.5 -i -0.5 ٥ 0.5 15 Triangle ΛT

$$\hat{f}(x) = \sum_{i=1}^{N} K_h(x - x_i)$$



[Chap 3. Nonparametric and Semi-parametric Models, W. Hardel et al., 2004]

Various Paradigms

Parametric Models

- \square the parameters are belonging to a fixed finite dimensional space, e.g., a subset of \mathbb{R}^d
- Nonparametric Models
 - the parameters belong to some space, not necessarily finite dimensional
 - Principe of "let the data speak for themselves"
- Semi-parametric Models
 - the parameters have both finite dimensional component and infinite dimensional component
 - E.g., (sparse) additive models for regression

Various Paradigms

Parametric Methods

 $\boldsymbol{\theta} \in \mathbb{R}^d$

Nonparametric Methods

 $\theta \in \mathbb{R}^\infty$

Semi-parametric Methods

 $\theta \in \mathbb{R}^d \times \mathbb{R}^\infty$

Pros & Cons

- Parametric Models
 - If underlying assumptions are correct, the models are simple and easy to interpret
 - If not, estimates may be inconsistent and give misleading results
- Nonparametric Models:
 - Avoid restrictive assumptions
 - Usually hard to interpret and yield inaccurate estimates
- Semi-parametric Models:
 - Keep the easy interpretability the former and retain some of the flexibility of the latter.

Nonparametric Bayesian Methods

- Now we know what nonparametric and Bayesian mean. What should we expect from nonparametric Bayesian methods?
 - Complexity of our model should be allowed to grow as we get more data
 - Place a prior on an unbounded number of parameters

Nonparametric Bayesian Methods overview

Dirichlet Process/Chinese Restaurant Process
 Latent class models – often used in the clustering context
 Beta Process/Indian Buffet Process
 Latent feature models
 Gaussian Process (optional)
 Regression and Classification

Dirichlet Process

A nonparametric approach to clustering.
It can be used in any probabilistic model for clustering.

Outline

A parametric Bayesian approach to clustering
Defining the model
Markov Chain Monte Carlo (MCMC) inference

- A nonparametric approach to clustering
 - Defining the model The Dirichlet Process!MCMC inference

Extensions

A Bayesian Approach to Clustering

We must specify two things:

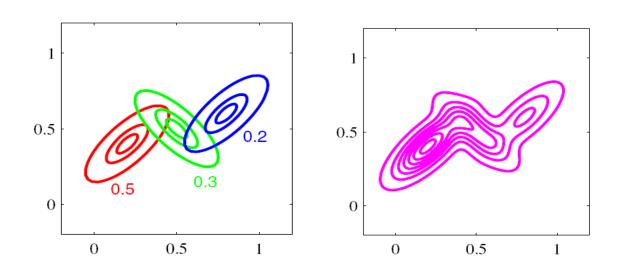
• the likelihood model (how data is affected by the parameters)

 $p(\mathcal{D}|\theta)$

• The prior distribution (the prior belief on the parameters)

 $p(\theta)$

♦ Guassian Mixture Models with *K* components
a distribution over classes/clusters: π = (π₁,...,π_K)
each cluster has a mean and covariance φ_k = (μ_k, Σ_k)
p(x) = ∑^K π_k N(x|μ_k, Σ_k)



• Using EM to maximize the likelihood of the data to estimate (π, ϕ) [Figure credit: Bishop, 2006]

Guassian Mixture Models with K components

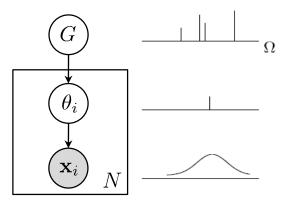
An alternative definition

$$G = \sum_{k=1}^{K} \pi_k \delta_{\phi_k}$$

where is δ_{ϕ_k} an *atom* at ϕ_k

$$\theta_i \sim G$$

 $\mathbf{x}_i \sim p(\mathbf{x}|\theta_i)$



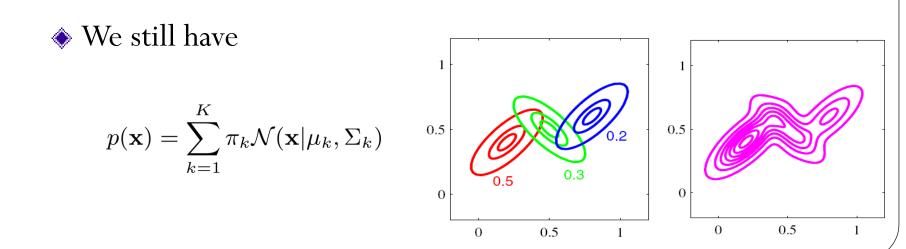
Sayesian Approach: Bayesian Gaussian Mixture Models with K mixtures

• a distribution over classes/clusters $\boldsymbol{\pi} = (\pi_1, \ldots, \pi_K)$

 $\boldsymbol{\pi} \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$

• each cluster has a mean and covariance $\phi_k = (\mu_k, \Sigma_k)$

 $(\mu_k, \Sigma_k) \sim \text{Normal-Inverse-Wishart}(\nu)$



- Sayesian Approach: Bayesian Gaussian Mixture Models with K mixtures
- The Alternative Definition
 - \square *G* is now a random measure

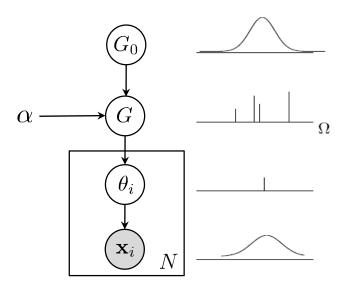
$$\phi_k \sim G_0$$

$$\boldsymbol{\pi} \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$$

$$G = \sum_{k=1}^K \pi_k \delta_{\phi_k}$$

$$\theta_i \sim G$$

$$\mathbf{x}_i \sim p(\mathbf{x}|\theta_i)$$



The Dirichlet Distribution

 \bullet We have $\pi \sim \text{Dirichlet}(\alpha/K, \ldots, \alpha/K)$

A Dirichlet distribution has the form

$$p(\pi|\alpha) = \frac{\Gamma\left(\sum_{k=1}^{K} \alpha_k\right)}{\prod_{k=1}^{K} \Gamma(\alpha_k)} \pi_1^{\alpha_1 - 1} \pi_2^{\alpha_2 - 1} \cdots \pi_K^{\alpha_K - 1}$$

where
$$\pi_{K} = 1 - \sum_{k=1}^{K-1} \pi_{k}$$

The expectation is

$$\mathbb{E}[\pi_i] = \frac{\alpha_i}{\sum_{k=1}^K \alpha_k}$$

 \clubsuit Beta distribution is a special case with K = 2.

Key Property of Dirichlet Distribution

Aggregation Property If

$$(\pi_1,\ldots,\pi_i,\pi_{i+1},\ldots,\pi_K) \sim \text{Dirichlet}(\alpha_1,\ldots,\alpha_i,\alpha_{i+1},\ldots,\alpha_K)$$

• Then

$$(\pi_1,\ldots,\pi_i+\pi_{i+1},\ldots,\pi_K) \sim \text{Dirichlet}(\alpha_1,\ldots,\alpha_i+\alpha_{i+1},\ldots,\alpha_K)$$

• This is valid for any aggregation

$$(\pi_1 + \pi_2, \sum_{i=3}^K \pi_i) \sim \text{Beta}(\alpha_1 + \alpha_2, \sum_{i=3}^K \alpha_i)$$

Multinomial-Dirichlet Conjugacy

♦ Let

 $X \sim \text{Multinomial}(\pi)$, and $\pi \sim \text{Dirichlet}(\alpha)$

The posterior

$$p(\pi|X) \propto p(X|\pi)p(\pi)$$
$$\propto (\pi_1^{x_1} \cdots \pi_K^{x_K})(\pi_1^{\alpha_1 - 1} \cdots \pi_K^{\alpha_K - 1})$$

which is $Dirichlet(\alpha + \mathbf{x})$

- Sayesian Approach: Bayesian Gaussian Mixture Models with K mixtures
- The Alternative Definition
 - \square *G* is now a random measure

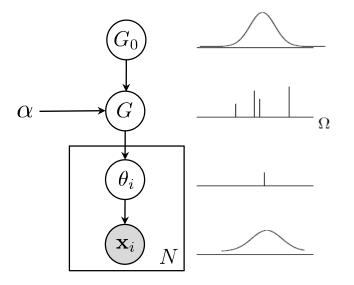
$$\phi_k \sim G_0$$

$$\pi \sim \text{Dirichlet}(\alpha/K, \dots, \alpha/K)$$

$$G = \sum_{k=1}^K \pi_k \delta_{\phi_k}$$

$$\theta_i \sim G$$

$$\mathbf{x}_i \sim n(\mathbf{x}|\theta_i)$$



Bayesian Mixture Models

We no longer want just the maximum likelihood parameters, we want the full posterior:

 $p(\pi, \phi | \mathcal{D}) \propto p(\mathcal{D} | \pi, \phi) p(\pi, \phi)$

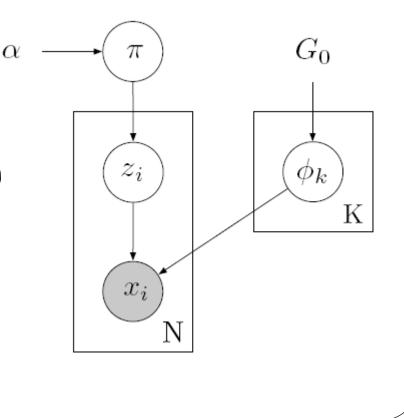
Unfortunately, this is not analytically tractable

Two main approaches to approximate inference
 Markov Chain Monte Carlo (MCMC) methods
 Variational approximations

Bayesian Mixture Models – MCMC inference

- ♦ Introduce "membership" indicators z_i , where $z_i \sim \text{Multinomial}(\pi)$ indicates which cluster data point *i* belongs to
- The model is equivalently represented as

 $p(\pi, Z, \phi | \mathcal{D}) \propto p(\mathcal{D} | Z, \phi) p(Z | \pi) p(\pi, \phi)$



Gibbs Sampling for the Bayesian Mixture Models

- \clubsuit Randomly initialize Z,π,ϕ . Repeat until we have enough samples
 - Sample z_i from

$$p(z_i|Z_{-i}, \pi, \phi, \mathcal{D}) \propto \sum_{k=1}^K \pi_k p(\mathbf{x}_i|\phi_k) \delta_{z_i,k}$$

• Sample π from

 $p(\pi|Z, \phi, \mathcal{D}) = \text{Dirichlet}(n_1 + \alpha/K, \dots, n_K + \alpha/K)$

where n_i is the number of points assigned to cluster *i*. • Sample each ϕ_k from the NIW posterior based on (Z, \mathcal{D})

Derivations

 \bullet For z_i , it's easy to derive K $p(z_i|Z_{-i}, \pi, \phi, \mathcal{D}) \propto \sum \pi_k p(\mathbf{x}_i|\phi_k) \delta_{z_i,k}$ k=1 \bullet For π , it's also easy due to conjugacy $p(\pi | Z, \phi, \mathcal{D}) = \text{Dirichlet}(n_1 + \alpha/K, \dots, n_K + \alpha/K)$ \bullet For ϕ , it's also easy due to conjugacy □ The Normal-Inverse-Wishart (NIW) distribution $\Sigma_k | \kappa, W \sim \mathcal{IW}(\Sigma; \kappa, W^{-1}),$ $\mu_k | \Sigma_k, \mu_0, \rho \sim \mathcal{N}(\mu; \mu_0, \Sigma_k / \rho)$

$$\mathcal{IW}(\Sigma;\kappa,W^{-1}) = \frac{|W|^{\kappa/2}}{2^{\frac{\kappa M}{2}}\Gamma_M(\frac{\kappa}{2})|\Sigma|^{\frac{\kappa+M+1}{2}}}\exp(-\frac{1}{2}\mathrm{Tr}(W\Sigma^{-1}))$$

Conjugacy of NIW and Gaussians

Details

$$p(\mu_k, \Sigma_k | \mathbf{Z}, \pi, \mathcal{D}) \propto p_0(\mu_k, \Sigma_k) \prod_i p(\mathbf{x}_i | z_i, \phi)^{\delta_{z_i, k}}$$
$$= \mathcal{N}\mathcal{T}\mathcal{W}(\mu_0, \rho, \kappa, W) \prod_i p(\mathbf{x}_i | z_i, \phi)^{\delta_{z_i, k}}$$
$$= \mathcal{N}\mathcal{T}\mathcal{W}(\mu_0^k, \rho_k, \kappa_k, W_k),$$

$$\mu_{0}^{k} = \frac{\rho}{\rho + n_{k}} \mu_{0} + \frac{n_{k}}{\rho + n_{k}} \bar{\mathbf{x}}_{k} \qquad n_{k} = \sum_{i} \delta_{z_{i},k}$$

$$\rho_{k} = \rho + n_{k} \qquad \bar{\mathbf{x}}_{k} = \frac{1}{n_{k}} \sum_{i} \delta_{z_{i},k} \mathbf{x}_{i}$$

$$W_{k} = W + Q_{k} + \frac{\rho n_{k}}{\rho + n_{k}} (\bar{\mathbf{x}}_{k} - \mu_{0}) (\bar{\mathbf{x}}_{k} - \mu_{0})^{\top}$$

$$Q_{k} = \sum_{i} \delta_{z_{i},k} (\mathbf{x}_{i} - \bar{\mathbf{x}}_{k}) (\mathbf{x}_{i} - \bar{\mathbf{x}}_{k})^{\top}$$

$$n_{k} = \sum_{i} \delta_{z_{i},k} \quad \bar{\mathbf{x}}_{k} = \frac{1}{n_{k}} \sum_{i} \delta_{z_{i},k} \mathbf{x}_{i}$$

$$More details \dots \qquad Q_{k} = \sum_{i} \delta_{z_{i},k} (\mathbf{x}_{i} - \bar{\mathbf{x}}_{k}) (\mathbf{x}_{i} - \bar{\mathbf{x}}_{k})^{\top}$$

$$p(\mu_{k}, \Sigma_{k} | \mathbf{Z}, \pi, \mathcal{D}) \propto |\Sigma_{k}|^{-\frac{1}{2}} \exp(-\frac{1}{2}\rho(\mu_{k} - \mu_{0})^{\top} \Sigma_{k}^{-1}(\mu_{k} - \mu_{0}))|\Sigma_{k}|^{-\frac{\kappa+M+1}{2}} \exp(-\frac{1}{2}\mathrm{Tr}(W\Sigma_{k}^{-1}))$$

$$|\Sigma_{k}|^{n_{k}} \exp(-\frac{1}{2}\sum_{i} \delta_{z_{i},k}(\mathbf{x}_{i} - \mu_{k})\Sigma_{k}^{-1}(\mathbf{x}_{i} - \mu_{k}))$$

$$-\frac{1}{2}\rho(\mu_{k} - \mu_{0})^{\top} \Sigma_{k}^{-1}(\mu_{k} - \mu_{0}) - \frac{1}{2}\sum_{i} \delta_{z_{i},k}(\mathbf{x}_{i} - \mu_{k})\Sigma_{k}^{-1}(\mathbf{x}_{i} - \mu_{k})$$

$$= -\frac{1}{2}\rho(\mu_{k} - \mu_{0})^{\top} \Sigma_{k}^{-1}(\mu_{k} - \mu_{0}) - \frac{1}{2}n_{k}(\mu_{k} - \bar{\mathbf{x}}_{k})^{\top} \Sigma_{k}^{-1}(\mu_{k} - \bar{\mathbf{x}}_{k}) - \frac{1}{2}\mathrm{Tr}(Q_{k}\Sigma_{k}^{-1})$$

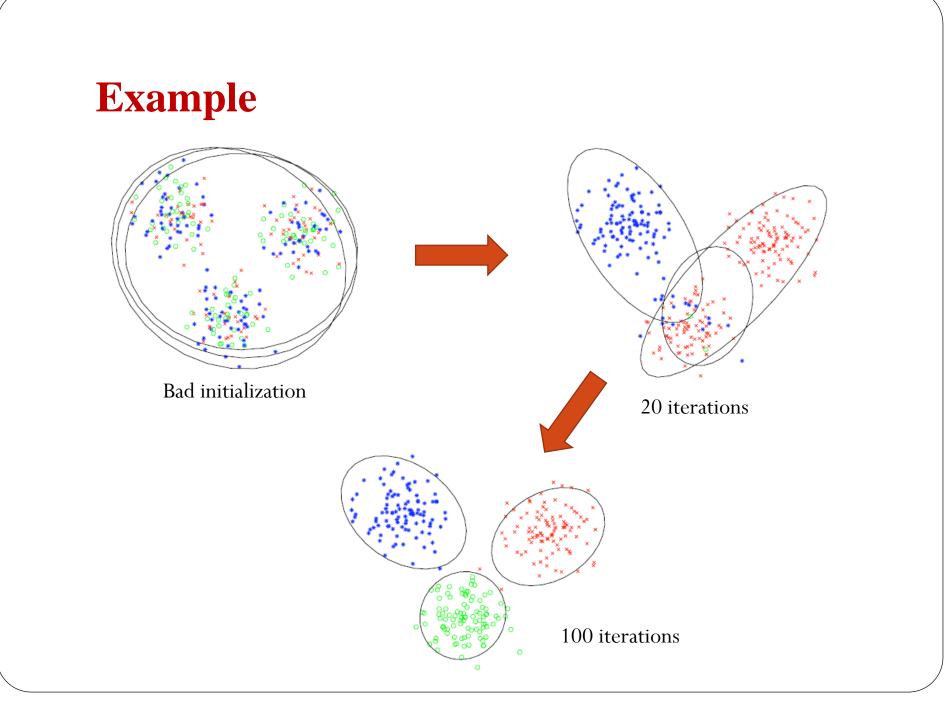
$$= -\frac{1}{2}(\rho + n_{k})(\mu_{k} - \mu_{0}^{k})^{\top} \Sigma_{k}^{-1}(\mu_{k} - \mu_{0}^{k}) - \frac{1}{2}\frac{\rho n_{k}}{\rho + n_{k}}(\bar{\mathbf{x}}_{k} - \mu_{0})^{\top} \Sigma_{k}^{-1}(\mu_{k} - \mu_{0}) - \frac{1}{2}\mathrm{Tr}(Q_{k}\Sigma_{k}^{-1})$$

$$p(\mu_{k}, \Sigma_{k} | \mathbf{Z}, \pi, \mathcal{D}) \propto |\Sigma_{k}|^{-\frac{1}{2}} \exp(-\frac{1}{2}(\rho + n_{k})(\mu_{k} - \mu_{0}^{k})^{\top} \Sigma_{k}^{-1}(\mu_{k} - \mu_{0}^{k}))$$

$$\times |\Sigma_{k}|^{-\frac{(\kappa+n_{k})+M+1}{2}} \exp(-\frac{1}{2}\mathrm{Tr}(W_{k}\Sigma_{k}^{-1}))$$

$$\mu_{0}^{k} = \frac{\rho}{\rho + n_{k}}, \quad \kappa_{k} = \kappa + n_{k}$$

$$\mu_{k} = W + Q_{k} + \frac{\rho n_{k}}{\rho + n_{k}}(\bar{\mathbf{x}}_{k} - \mu_{0})(\bar{\mathbf{x}}_{k} - \mu_{0})^{\top}$$



Collapsed Gibbs Sampler

- ♦ Idea for an improvement:
 - we can marginalize out some variables due to conjugacy, so do not need to sample it. This is called a collapsed sampler. Here marginalize out π
- ♦ Randomly initialize Z, \(\phi\). Repeat:

 Sample each z_i from
 p(z_i|Z_{-i}, \(\phi\), \(\mathcal{D}\)) \(\pi\) \sum_{k=1}^{K} (n_{-i}^{k} + \(\alpha\)/K) p(\(\mathbf{x}_{i} | \phi_{k}) \delta_{z_{i},k}\)

n^k_{-i} : # of data points assigned to component k, except i
Sample each φ_k from the NIW posterior based on (Z, D)

Details

 \blacklozenge For ϕ , the conditional doesn't change.

♦ For Z, we have
$$p(\phi, \mathbf{Z}, \mathcal{D}) = \int_{\pi} p(\pi, \phi, \mathbf{Z}, \mathcal{D}) = p(\phi) \prod_{i} p(\mathbf{x}_{i}|z_{i}, \phi) \int_{\pi} p(\pi) \prod_{i} p(z_{i}|\pi)$$

$$\int_{\pi} p(\pi) \prod_{i} p(z_{i}|\pi) \propto \int_{\pi} \prod_{k} \pi_{k}^{\alpha_{k}/K+n_{k}} = \frac{\prod_{k} \Gamma(\alpha_{k}/K+n_{k})}{\Gamma(\sum_{k} \alpha_{k}/K+N)}$$

$$\int_{\pi} p(\pi) \prod_{i} p(z_{i}|\pi) \propto \prod_{k} \Gamma(\frac{\alpha_{k}}{K}+n_{k})$$

$$p(\phi, z_{i} = k, \mathbf{Z}_{-i}, \mathcal{D}) = p(\phi) \prod_{i} p(\mathbf{x}_{i}|z_{i}, \phi) \Gamma(\frac{\alpha_{k}}{K}+n_{-i}^{k}+1) \prod_{j \neq k} \Gamma(\frac{\alpha_{j}}{K}+n_{-i}^{j})$$

$$= p(\phi)p(\mathbf{x}_{i}|z_{i}, \phi)(\frac{\alpha_{k}}{K}+n_{-i}^{k}) \prod_{j} \Gamma(\frac{\alpha_{j}}{K}+n_{-i}^{j}) \prod_{j \neq i} p(\mathbf{x}_{j}|z_{j}, \phi)$$

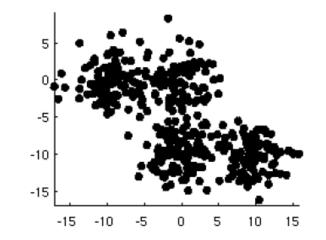
$$p(\phi, z_{i} = k, \mathbf{Z}_{-i}, \mathcal{D}) \propto p(\mathbf{x}_{i}|z_{i}, \phi)(\frac{\alpha_{k}}{K}+n_{-i}^{k})$$

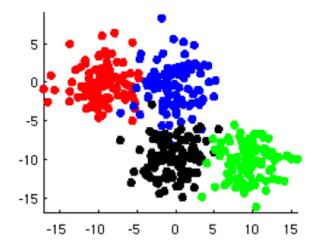
Summary: parametric Bayesian clustering

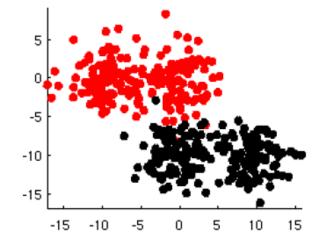
- First specify the likelihood application specific.
- Next specify a prior on all parameters.
- Exact posterior inference is intractable. Can use a Gibbs sampler for approximate inference.

How to choose K?

How many clusters?







How to choose *K*?

Generic model selection:

• cross-validation, AIC, BIC, MDL, etc.

♦ Can place of parametric prior on *K*.

 \clubsuit What if we just let $K \to \infty$ in our parametric model?

Outline

A parametric Bayesian approach to clustering
Defining the model

Markov Chain Monte Carlo (MCMC) inference

A nonparametric approach to clustering

Defining the model - The Dirichlet Process!MCMC inference

Extensions

A Nonparametric Bayesian Approach to Clustering

We must again specify two things:

• The likelihood function (how data is affected by the parameters):

 $p(\mathcal{D}| heta)$

Identical to the parametric case.

• The prior (the prior distribution on the parameters):

 $p(\theta)$

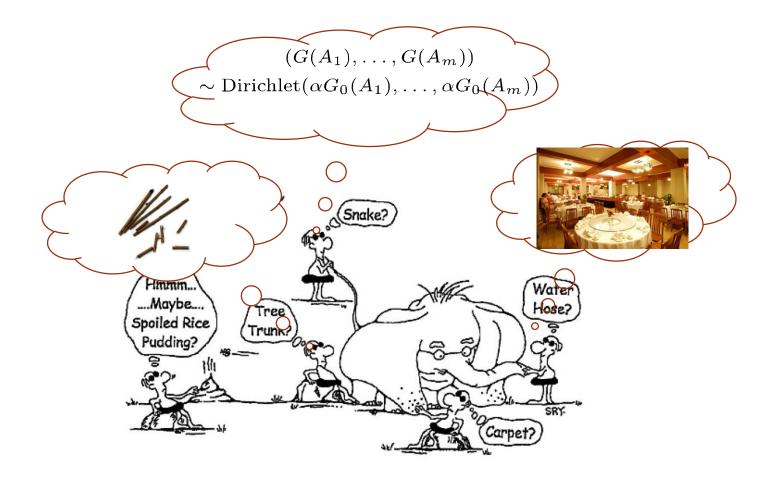
The Dirichlet Process!

 Exact posterior inference is still intractable. But we have can derive the Gibbs update equations!

What is Dirichlet Process?

[http://www.nature.com/nsmb/journal/v7/n6/fig_tab/nsb0600_443_F1.html]

What is Dirichlet Process?



[http://www.nature.com/nsmb/journal/v7/n6/fig_tab/nsb0600_443_F1.html]

Dirichlet Process

♦ A flexible, nonparametric prior over an infinite number of clusters/classes as well as the parameters for those classes.

The Dirichlet Process (DP) is a distribution over distributions. We write

 $G \sim DP(\alpha, G_0)$

to indicate *G* is a random distribution drawn from the DP

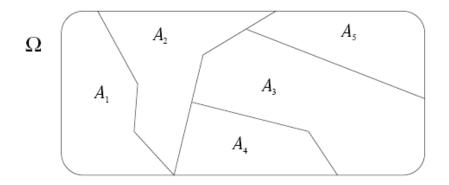
- Parameters:

 - \square G_0 the base distribution. A prior for the cluster-specific parameters

Dirichlet Process

- ♦ Definition: Let *G* be a probability measure on the measurable space (Ω, B) and $\alpha \in \mathbb{R}_+$.
- The Dirichlet Process $DP(\alpha, G_0)$ is the distribution on probability measure G such that for any finite partition (A_1, \ldots, A_m) of Ω

 $(G(A_1),\ldots,G(A_m)) \sim \text{Dirichlet}(\alpha G_0(A_1),\ldots,\alpha G(A_m))$



[Ferguson, Annals of Stats., 1973]

Mathematical Property of DP

Suppose we sample

 $G \sim DP(\alpha, G_0)$ $\theta_1 \sim G$

• What is the posterior distribution of *G* given θ_1 ?

$$G|\theta_1 \sim DP\left(\alpha+1, \frac{\alpha}{\alpha+1}G_0 + \frac{1}{\alpha+1}\delta_{\theta_1}\right)$$

• More generally $G|\theta_1, \dots, \theta_n \sim DP\left(\alpha + n, \frac{\alpha}{\alpha + n}G_0 + \frac{1}{\alpha + n}\sum_{i=1}^n \delta_{\theta_i}\right)$

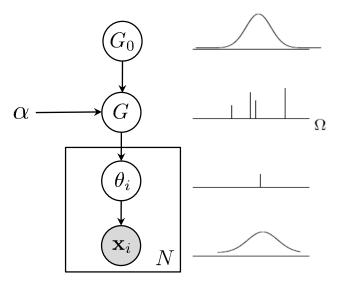
[Ferguson, Annals of Stats., 1973]

Mathematical Property of DP

• With probability 1, a sample $G \sim DP(\alpha, G_0)$ is of the form

$$G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$$

This is why DP can used for clustering!



[Sethuraman, Statistica Sinica, 1994]

The Stick-Breaking Process

Define an infinite sequence of Beta random variables:

 $\beta_k \sim \text{Beta}(1, \alpha), \ k = 1, 2, \dots$

And then define an infinite sequence of mixing proportions

as: $\pi_1 = \beta_1$ $\pi_k = \beta_k \prod_{i=1}^{k-1} (1 - \beta_i), \ k = 2, 3, \dots$

This can be viewed as breaking off portions of a stick:

$$\begin{array}{cccc} \beta_{1} & (1-\beta_{1}) \\ \pi_{1} & \beta_{2} & (1-\beta_{2}) \\ & \pi_{2} & \beta_{3} & (1-\beta_{3}) \\ & & \pi_{3} \\ & & \vdots \end{array}$$

The Stick-Breaking Process

 \blacklozenge We now have an explicit form of π

$$\pi_1 = \beta_1$$

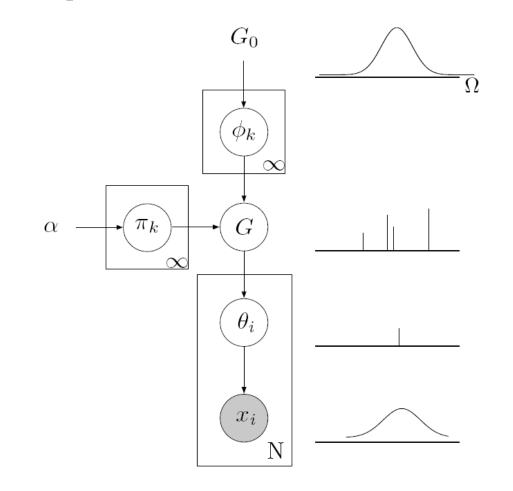
 $\pi_k = \beta_k \prod_{i=1}^{k-1} (1 - \beta_i), \ k = 2, 3, \dots$

♦ We can also easily see that $\sum_{k=1}^{\infty} \pi_k = 1$ with probability 1 ■ *How to prove?*

$$\odot$$
 So, $G = \sum_{k=1}^{\infty} \pi_k \delta_{\phi_k}$ is a random measure

The Stick-Breaking Process

Equivalent representation of DP mixtures

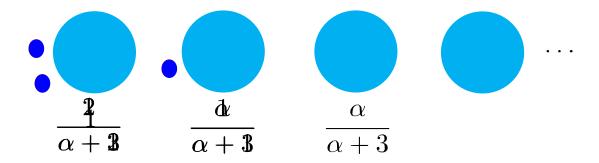


The Chinese Restaurant Process (CRP)

- A random process in which *n* customers sit down in a Chinese restaurant with an infinite number of tables
 a first customer sits at the first table
 - the *n*th customer chooses a table with probability

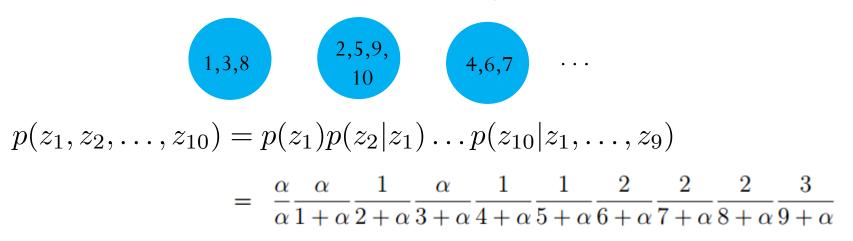
 $p(z_i = k) = \frac{n_k}{n - 1 + \alpha}, \text{ for a pre-occupied table } k$ $p(z_i = k) = \frac{\alpha}{n - 1 + \alpha}, \text{ for an empty table } k$

• where n_k is the number of people sitting at table k.



CRP defines a Partition

With 10 customers, after sampling, we have

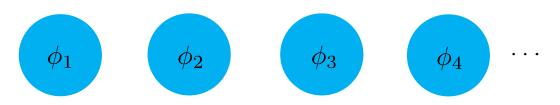


Properties:

- Any seating arrangement creates a partition
- Permutation invariant: relabeling the customers doesn't change the distribution
- Expected number of occupied tables: $O(\alpha \log n)$

The CRP and Clustering

- Data points are customers; tables are clusters
 - CRP defines a prior distribution on the partitioning of the data and on the number of tables
- This prior can be completed with:
 - a likelihood e.g., associate a parameterized probability distribution with each table
 - a prior for the parameters a customer to sit at table *k* chooses the parameter vector for that table from the prior



So we now have a distribution for any quantity that we might care about in the clustering setting

Relation between CRP and DP

Important fact:
The CRP is *exchangeable*.
Infinite Exchangeability:

$$\forall n, \forall \sigma, p(x_1, \ldots, x_n) = p(x_{\sigma(1)}, \ldots, x_{\sigma(n)})$$

♦ De Finetti's Theorem (1955): if $(x_1, x_2, ...)$ are infinitely exchangeable, then $\forall n$

$$p(x_1, \dots, x_n) = \int \Big(\prod_{i=1}^n p(x_i|\theta)\Big) dP(\theta)$$

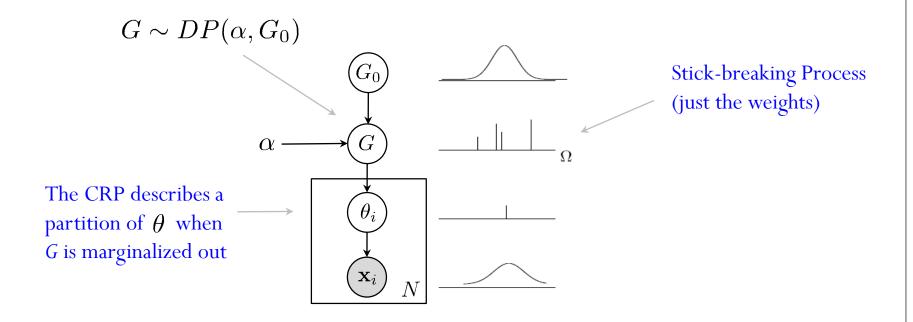
for some random variable θ

Relation between CRP and DP

- The Dirichlet Process is the *De Finetti mixing distribution* for the CRP.
- \clubsuit That means, when we integrate out *G*, we get the CRP

The DP, CRP and Stick-Breaking Process

Three birds on the same stone



Inference for DP Mixtures – Gibbs sampler

- We introduce the indicators z_i and use the CRP representation.
- \clubsuit Randomly initialize Z, θ . Repeat:
 - sample each z_i from

$$z_i | Z_{-i}, \theta, X \propto \sum_{k=1}^K n_{-i}^k p(\mathbf{x}_i | \theta_k) \delta_{z_i, k} + \alpha f(\mathbf{x}_i | G_0) \delta_{z_i, K+1}$$

• Sample each θ_k based on *Z* and *X* only for occupied clusters

This is the sampler we saw earlier, but now with some theoretical basis.

Inference for DP Mixtures – Gibbs sampler

More Details

• For the component *j* with $n_{-i,j} > 0$

$$p(z_i = j | \mathbf{Z}_{-i}, \theta, X) \propto p(z_i = j | \mathbf{Z}_{-i}, \alpha) p(\mathbf{x}_i | \theta_j)$$
$$= \frac{n_{-i}^j}{N - 1 + \alpha} p(\mathbf{x}_i | \theta_j)$$

• For a new component

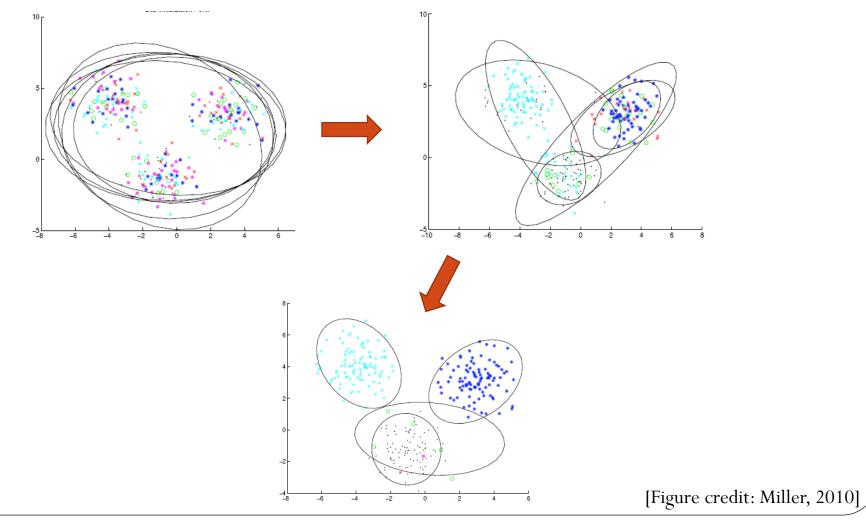
• Let $A = \{z_i \neq z_{i'} \text{ for all } i \neq i'\}$

$$p(A|\mathbf{Z}_{-i}, X) = \int p(A, \theta | \mathbf{Z}_{-i}, X) d\theta \propto p(A|\mathbf{Z}_{-i}) \int p_0(\theta) p(\mathbf{x}_i | \theta) d\theta$$
$$\propto \frac{\alpha}{N - 1 + \alpha} \int p(\mathbf{x}_i | \theta) p_0(\theta) d\theta$$

$$z_i | Z_{-i}, \theta, X \propto \sum_{k=1}^K n_{-i}^k p(\mathbf{x}_i | \theta_k) \delta_{z_i, k} + \alpha f(\mathbf{x}_i | G_0) \delta_{z_i, K+1}$$

MCMC in Action for DP

Matlab demo:



Improvements to the MCMC Algorithm

- \clubsuit Collapsed Gibbs sampler collapse out the θ_k if conjugate model
- Split-merge algorithms

Summary: Nonparametric Bayesian Clustering

- First specify the likelihood application specific.
- Next specify a prior on all parameters the Dirichlet Process!
- Exact posterior inference is intractable.
 - Can use a Gibbs sampler for approximate inference. This is based on the CRP representation.
 - Can use variational methods for approximate inference. This is based on the Stick-Breaking representation

Outline

A parametric Bayesian approach to clustering

- Defining the model
- Markov Chain Monte Carlo (MCMC) inference
- A nonparametric approach to clustering
 - Defining the model The Dirichlet Process!MCMC inference

Extensions

Hierarchical Bayesian Models

Original Bayesian idea

• View parameters as random variables - place a prior on them.

Problem?

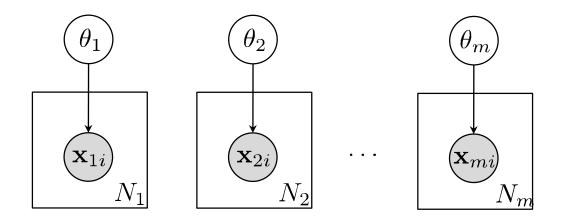
• Often the priors themselves need parameters.

 \diamond Solution

• Place a prior on these parameters!

Multiple Learning Problems

♦ Example: $\mathbf{x}_i \sim \mathcal{N}(\theta_i, \sigma^2)$ in *m* different groups



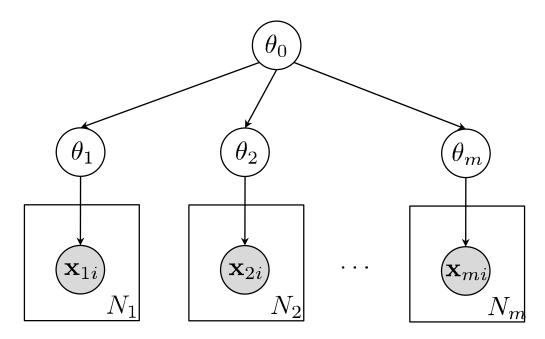
• How to estimate θ_i for each group?

Multiple Learning Problems

♦ Example: $\mathbf{x}_i \sim \mathcal{N}(\theta_i, \sigma^2)$ in m different groups

 \blacklozenge Treat θ_i as random variables sampled from a common prior

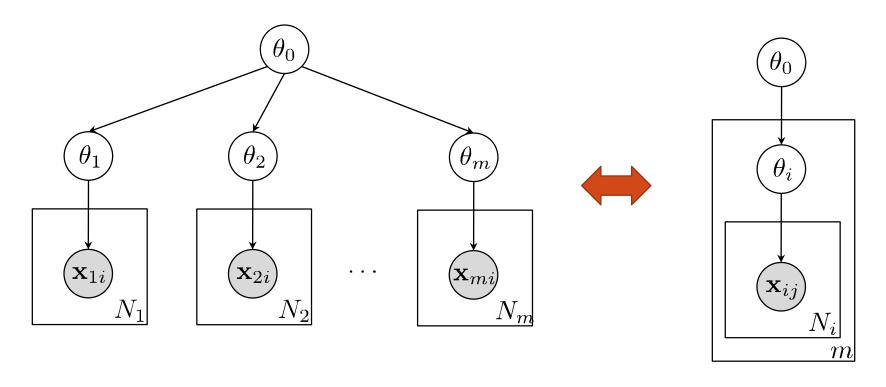
 $\theta_i \sim \mathcal{N}(\theta_0, \sigma_0^2)$



Multiple Learning Problems

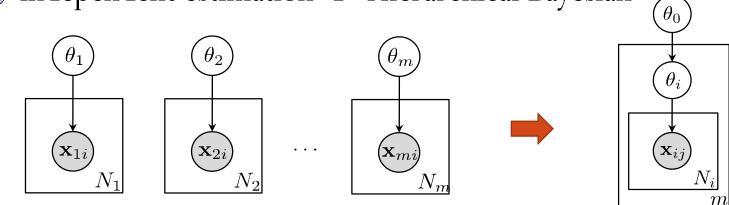
♦ Example: $\mathbf{x}_i \sim \mathcal{N}(\theta_i, \sigma^2)$ in m different groups

• Treat θ_i as random variables sampled from a common prior $\theta_i \sim \mathcal{N}(\theta_0, \sigma_0^2)$

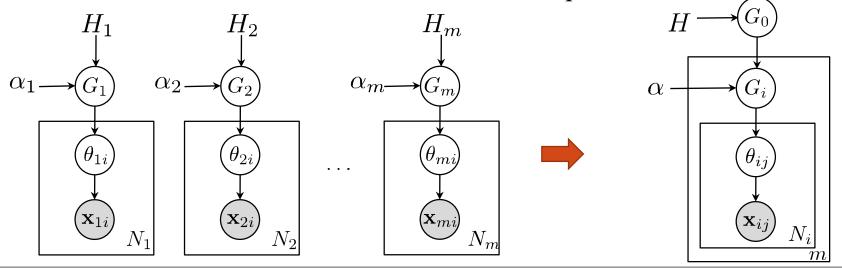


Multiple Learning Problems

 \bullet Independent estimation \rightarrow Hierarchical Bayesian



• What do we do if we have DPs for multiple related datasets?



Hierarchical Dirichlet Process

 \diamond What kind of distribution do we use for G_0 ?

Attempt 1:

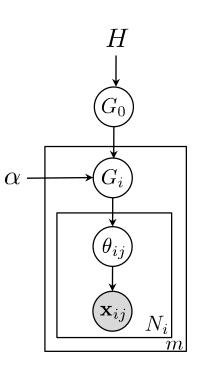
• Suppose θ_{ij} are mean parameters for a Gaussian where

 $G_i \sim DP(\alpha, G_0)$

and G_0 is a Gaussian with unknown mean?

$$G_0 = \mathcal{N}(\mu_0, \sigma_0^2)$$

How about this one?

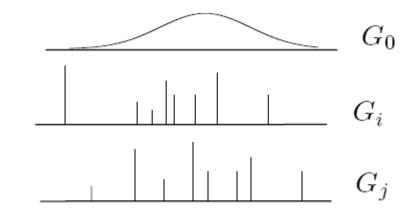


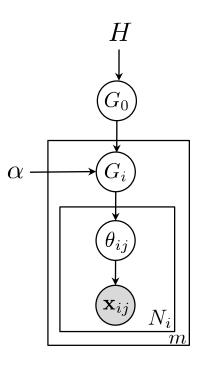
Hierarchical Dirichlet Process

 \clubsuit What kind of distribution do we use for G_0 ?

Attempt 1:

• Problem: if G_0 is continuous, then with probability ZERO, G_i and G_j share atoms

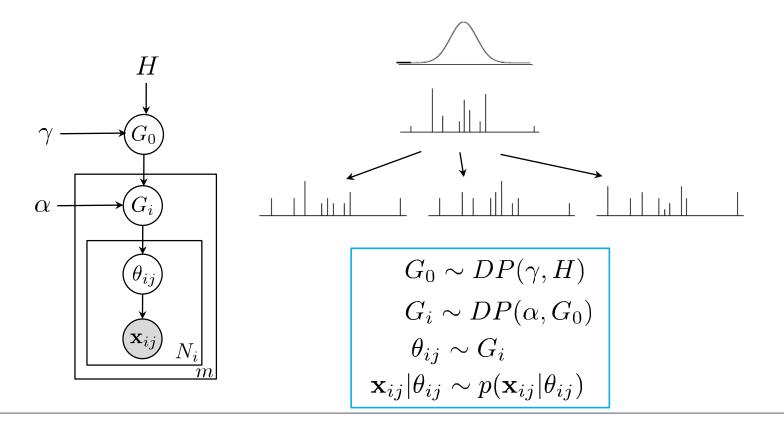




• There is NO clustering between groups!

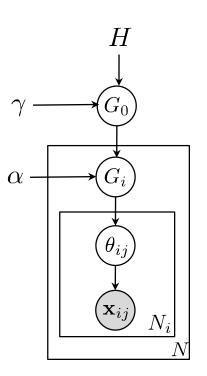
Hierarchical Dirichlet Process

- \clubsuit What kind of distribution do we use for G_0 ?
- \otimes So, G_0 must be discrete!
- Solution the *Hierarchical Dirichlet Process*:



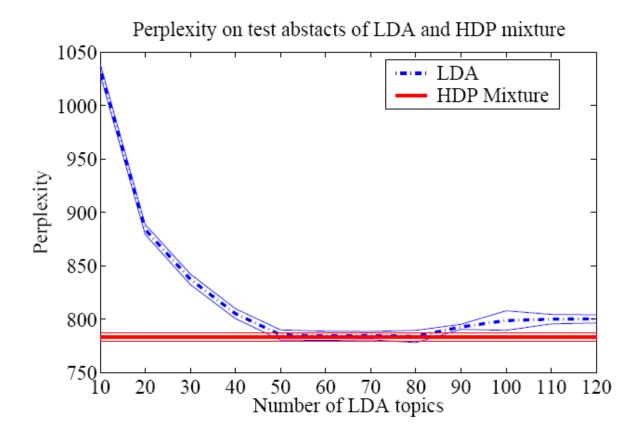
Example 1: HDP topic model

- H a measure on multinomial probability vectors, e.g., V-dimensional Dirichlet distribution
- G_0 provides a countably infinite collection of multinomial probability vectors (i.e., topics)
- G_i selects a document-specific subset of topics
- $\bullet \ \theta_{ij}$ is a particular topic



Example 1: HDP topic model

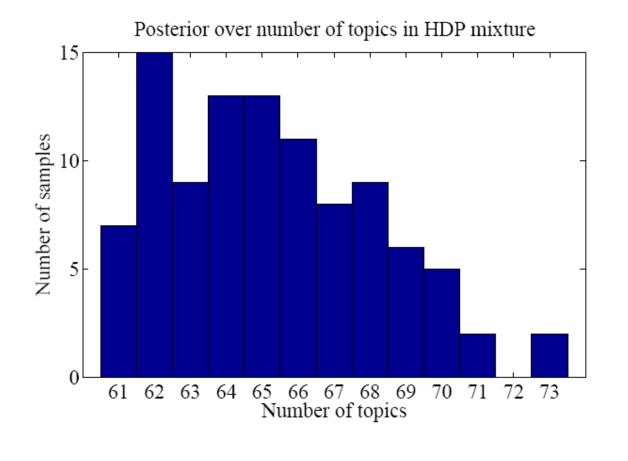
Results on 5838 biology abstracts



[Teh, Jordan, Beal, & Blei, JASA, 2006]

Example 1: HDP topic model

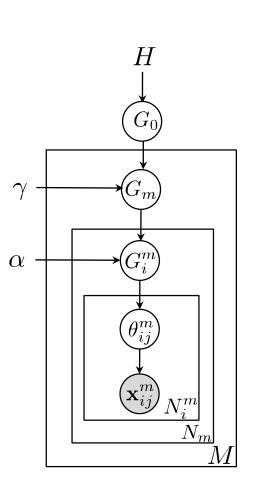
Results on 5838 biology abstracts



[Teh, Jordan, Beal, & Blei, JASA, 2006]

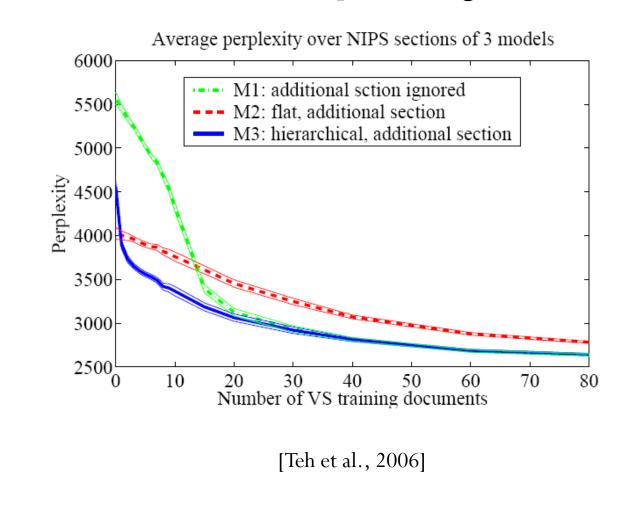
Example 2: HDP topic model for multicorpora

- ♦ *H* a measure on multinomial probability vectors, e.g., V-dimensional Dirichlet distribution
- G_0 provides a countably infinite collection of multinomial probability vectors (i.e., topics)
- G_m selects a corpus-specific subset of topics
- G_i^m selects a document-specific subset of topics
- $\bullet \ \theta_{ij}^m$ is a particular topic

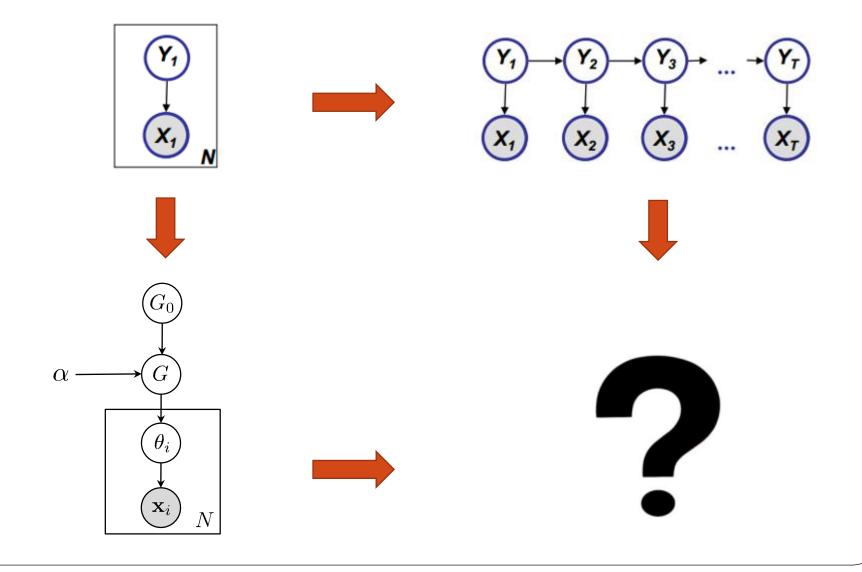


Example 2: HDP topic model for multicorpora

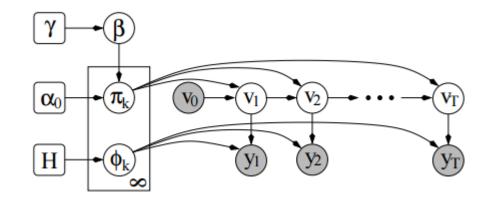
Results on NIPS conference proceedings (1988-1999)



Example 3: Infinite HMMs



Infinite HMMs



 $\beta \mid \gamma \sim \text{GEM}(\gamma)$ $\pi_k \mid \alpha_0, \beta \sim \text{DP}(\alpha_0, \beta)$ $v_t \mid v_{t-1}, (\pi_k)_{k=1}^{\infty} \sim \pi_{v_{t-1}}$ $y_t \mid v_t, (\phi_k)_{k=1}^{\infty} \sim F(\phi_{v_t})$

Questions about HDP?

- Sampling algorithms?
- Variational inference algorithms?
- Stick-breaking construction representation?

References

- Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. Annals of Statistics, 1(2):209–230.
- Antoniak, C. E. (1974). Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. Annals of Statistics, 2(6):1152–1174.
- Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–650.
- Rasmussen, C. E. (2000). The infinite Gaussian mixture model. In Advances in Neural Information Processing Systems, volume 12.
- Neal, R. M. (2000). Markov chain sampling methods for Dirichlet process mixture models. Journal of Computational and Graphical Statistics, 9:249–265.
- Blei, D. M. and Jordan, M. I. (2006). Variational inference for Dirichlet process mixtures. Bayesian Analysis, 1(1):121–144.
- Teh, Y. W., Jordan, M. I., Beal, M. J., and Blei, D. M. (2006). Hierarchical Dirichlet processes. Journal of the American Statistical Association, 101(476):1566–1581.
- http://npbayes.wikidot.com/references
- http://stat.columbia.edu/~porbanz/talks/npb-tutorial.html