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APPENDIX

A.1 MMH: Max-margin Harmonium

For the special max-margin Harmonium (MMH), the
learning problem is the same as defined in Section 4.1.1,
and only several changes are needed to estimate param-
eters based on the general learning procedure. In this
section, we present the necessary changes for learning
MMH. For any other special cases of multi-view Markov
networks, the learning can be similarly done.

With the definitions of local conditionals in Section 3.1,
we can directly write the joint model distribution
p(x, z,h) based on the constructive definition and the
marginal data likelihood p(x, z)
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Then, we use the contrastive divergence method and
introduce two variational distribution q0 and q1. In this
case, we can make a superficially simpler mean field
assumption that q(x, z,h) =

∏
i q(xi)

∏
j q(zj)

∏
k q(hk).

Indeed, the general structured mean field assumption
as made in Section 4.1.2 will lead to the same results,
that is, a fully factorized form of q(x), q(z) and q(h).
Specifically, we have the following fully factorized
update rules for posterior inference of q
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p(xi|Eq(h)[h])
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p(zj |Eq(h)[h])
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q(hk) =
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p(hk|Eq(x)[x],Eq(z)[z]).

Similarly, (xi, zj) are clamped at their observed values
for q0, and only q(hk) is updated. The distribution q1
is achieved by performing the above updates starting
from q0. Several iterations can yield a good q1. After
we have inferred q0 and q1, parameter estimation can
be done by an alternating procedure as in Section 4.1.2,
where the step of estimating V with Θ fixed is to learn
a multi-class SVM

min
V

1

2
C1∥V∥2

2 +C2

∑

d

max
y

[∆ℓd(y) − V⊤Ep(h|xd,zd)[∆fd(y)]].

Note that in this case, the latent representation (i.e.,
expectation of H) is simply written as Ep(h|x,z)[h] = Υ,
where Υk = x⊤W·k + z⊤U·k, ∀1 ≤ k ≤ K, when input
data x and z are fully observed. If missing values exist in
x or z, the corresponding components are replaced with
their expected values. Therefore, the prediction tasks
(e.g., classification and retrieval) can be easily done in
testing, as detailed in Section 4.4.

For the step of estimating Θ, the sub-gradient is
computed as

∂αi = −Eq0 [xi] + Eq1 [xi],

∂βj = −Eq0 [zj ] + Eq1 [zj ],

∂(σ−1
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(Vydk − Vȳdk)Eq0 [xi]

∂Ujk = −Eq0 [zjh
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(Vydk − Vȳdk)Eq0 [zj ],

where h′
k = x⊤W·k +z⊤U·k and ȳd = arg maxy[∆ℓd(y)+

V⊤Eq0 [f(y,hd)] is the loss-augmented prediction. Based
on the definition of q0, the expectations Eq0 [xi] and
Eq0 [zj ] are actually the count frequency of xi and zj ,
respectively.

A.2 Multi-view Latent Subspace MN for Modeling
Paragraph Ordering Information

In this section, we formally define the structured multi-
view latent subspace Markov network used in Sec-
tion 5.4. Let x be an P × N observation matrix, where
P is the number of paragraphs in a document and N is
the vocabulary size. Each row xp is a vector, of which
the element xpi = 1 if word i appears in paragraph
p; otherwise xpi = 0. Each column x.i represents the
appearance pattern of word i in all paragraphs. To
consider the paragraph ordering information, we define
a first-order Markov chain on each x.i while assuming
that different x.i’s are conditional independent. More
formally, we define the factorial conditional distribution
p(x|h) =

∏N
i=1 p(x.i|h), where each p(x.i|h) is a linear

chain CRF [27]. This model is actually an N -view la-
tent subspace MN, where the ith view has P variables
{Xpi}P

p=1 that are connected via a linear chain.
By the constructive definition as discussed in Sec-

tion 3 (please see Eq. (1) and Eq. (2)), we need to
specify the edge set for each view and define the
feature functions. Specifically, let E denote the set of
generalized edges (including both singleton vertices and
pairwise edges) of a linear chain on each view13, then
E = {(1), · · · , (P ), (1, 2), · · · , (P − 1, P )}, where (p) is
a degenerate edge (i.e., the node p). Accordingly, the
feature functions ϕ consists of a singleton feature function
g that is defined on a single variable and 4 pairwise
feature functions ϕ0, ϕ1, ϕ2 and ϕ3 that defined on a
pair of variables. Mathematically, we define the singleton
feature function as

g(xpi) = xpi,

and we define the 4 pairwise feature functions as

∀j = 0, · · · , 3 : ϕj(xpi, xp+1,i) =

{
1, if 2xpi + xp+1,i = j
0, otherwise

We denote the corresponding weights by α and βj , j =
0, · · · 3. To make the model reasonably rich, we assume

13. By definition, all views have the same set of edges
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Fig. 11. Example topics discovered by the 60-topic MMH as in Fig. 3 on the Flickr animal dataset. For each topic, we show 5 bottom-ranked
images as well as the average probabilities of that topic on representing images from the 13 categories.
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Fig. 12. Average value and variance of E[H] discovered by a 60-topic MMH across 13class-animal Flickr images.

different views have different feature weights, while
within each view, the weights of these feature functions
are shared by all edges. For notation simplicity, we
define g(x.i) ,

∑P
p=1 g(xpi), which is the accumulat-

ed function value of g evaluated on the sequence x.i,
and ϕj(x.i) ,

∑P−1
p=1 ϕj(xpi, xp+1,i), which is again an

accumulated function value of ϕj . Now, we define the
interaction terms between X and latent variables H as

N∑

i=1

(g(x.i)U
ih +

∑

j

ϕj(x.i)W
i
jh),

where Wi
j and Ui are K-dimensional real vectors. Fi-

nally, we include a quadratic energy term of the real

variables H in the exponent of the joint distribution.
Putting the above definitions together, we define the

joint distribution

p(x,h) ∝ exp
{ ∑

i

g(x.i)(α
i+Uih)

+
∑

ij

ϕj(x.i)(β
i
j +Wi

jh)− 1

2
h⊤h

}
,

and we have the conditional distributions as

p(x.i|h) ∝ exp
{
g(x.i)(α

i + Uih) +
∑

j

ϕj(x.i)(β
i
j + Wi

jh)
}

p(hk|X) = N (hk|
N∑

i=1

(g(x.i)U
i
k +

∑

j

ϕj(x.i)W
i
jk), 1).
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TABLE 2
Average distributions over the topics for documents with different rating scores by a 5-topic MMH, 5-topic TWH and 5-topic DWH.

Max Margin Harmonium (Avg-KL: 3.568)
Average Ep(h|x,z)[h] in 5-level Rating Score examples T1 T2 T3 T4 T5
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stay fantastic broken broken broken
day bit smell smell smell

night wonderful paying paying paying
good lovely bathroom bathroom poor
staff pool poor poor toilet
pool trip toilet toilet refund
back beach staying refund manager

rooms fun refund staying bathroom
food happy breakfast walls walls
area pools hotel hotel carpet
nice perfect walls carpet paid

Tri-Wing Harmonium (Avg-KL: 0.045)
Average Ep(h|x,z)[h] in 5-level Rating Score examples T1 T2 T3 T4 T5
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Dual-Wing Harmonium (Avg-KL: 0.038)
Average Ep(h|x,z)[h] in 5-level Rating Score examples T1 T2 T3 T4 T5

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Topics

Av
g 

E[
H

]

R 1

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Topics

Av
g 

E[
H

]

R 2

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Topics

Av
g 

E[
H

]

R 3

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Topics

Av
g 

E[
H

]

R 4

1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Topics

Av
g 

E[
H

]

R 5 room beach food breakfast belize
hotel food told reception brett

n’t pool asked bathroom cam
time resort holiday bed canapes
stay great reception shower canoeing
day restaurants day holiday caracol

night bar bar coffee hosts
good drinks staff evening nadege
staff restaurant back small underway
pool lunch manager clean wineries
back sea people bar adopted

rooms beautiful evening hotel amanda
food entertainment entertainment good aurora
area pools arrived main begun
nice view hotel tea boasted

Now, we can follow the procedure in Section 4 to
perform parameter estimation and inference. Sine each
view is a linear-chain Markov network, we can perform
inference with a forward-backward message passing
scheme, which can be done in the same way as in [27].
We omit the details for brevity.

The message passing for each document is of a com-
plexity O(N×P×S2), where S is the number of possible
values for each variable Xpi. Since Xpi is binary, we have
S2 = 4 (a very small constant). Moreover, the number of
paragraphs P is on average very small, e.g., the average
P is 9 in the hotel review dataset. Therefore, the time
complexity is linear in terms of the feature dimension N
(i.e., the number of terms in the given vocabulary).

A.3 Additional Experimental Results
Fig. 11 shows the 5-bottom ranked (i.e., with small
expectation values of Hk) images for each of the 5 topics,
as presented in Fig. 3. For convenience, we also include
the average probability of each category distributed on
the particular topic, which is the same as that in Fig. 3.

Fig. 12 shows the average value of E[H] discovered by
a 60-topic MMH, together with the variance across the
images from the 13 classes of animals. The variance of
each E[Hk] indicates the discriminative power of topic k
over all the 13-class images.

Table 2 shows the complete table which contains the
average distributions over topics for all the three meth-
ods, i.e., MMH, TWH, and DWH.


