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Abstract—Undirected latent variable models represent an im-
portant class of graphical models that have been successfully
developed to deal with various tasks. One common challenge in
learning such models is to determine the number of hidden units
which is unknown a priori. Although Bayesian nonparametrics
have provided promising results in bypassing the model selection
problem in learning directed Bayesian Networks, very few efforts
have been made towards applying Bayesian nonparametrics
to learn undirected latent variable models. In this paper, we
present the infinite exponential family Harmonium (iEFH), a
bipartite undirected latent variable model that automatically
determines the number of latent units from an unbounded
pool. We also present two important extensions of iEFH to: 1)
multi-view iEFH for dealing with heterogeneous data; and 2)
infinite maximum-margin Harmonium (iMMH) for incorporating
supervising side information to learn predictive latent features.
We develop variational inference algorithms to learn model
parameters. Our methods are computationally competitive due
to the avoidance of selecting the number of latent units. Our
extensive experiments on real image and text data sets appear
to demonstrate the benefits of iEFH and iMMH inherited from
Bayesian nonparametrics and max-margin learning. Such results
were not available until now, and contribute to expand the scope
of Bayesian nonparametrics to learn the structures of undirected
latent variable models.

Index Terms—Bayesian nonparametrics, exponential family
Harmoniums, max-margin learning.

I. INTRODUCTION

LEARNING probabilistic graphical models with latent
variables can be useful for discovering latent semantic

representations from large collections of data. Both directed
Bayesian networks (e.g., latent Dirichlet allocation and its ex-
tensions [7][5]) and undirected Markov networks (MNs) (e.g.,
exponential family Harmoniums and its extensions [40][41])
have been extensively studied for such a purpose to discover
latent representations based on the input features of unlabeled
data, which can be text documents, images or even network
entities. Besides the input contents, in many practical ap-
plications we can easily obtain useful side information. For
instance, when online users post their reviews for products
or restaurants, they usually associate each review with a
rating score or a thumb-up/thumb-down opinion. Also, there
is an increasing trend towards using online crowdsourcing
services (such as Amazon Mechanical Turk) to collect large
collections of labeled data with a reasonably low price. In
order to leverage such supervising side information for dis-
covering latent representations that could be more predictive
for tasks such as classification and regression, many research
efforts have been made to develop supervised latent variable
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models. Representative work under this trend includes both
supervised Bayesian networks (e.g., supervised latent Dirichlet
allocation (LDA) [6], maximum entropy discrimination L-
DA [43] and discriminative LDA [27]) and supervised Markov
networks (e.g., discriminative restricted Boltzmann machine
(RBM) [28], hierarchical Harmoniums [42] and max-margin
latent space Markov networks [10]).

However, one common challenge in learning latent variable
models (LVMs) is to determine the unknown number of latent
units. A typical model selection procedure like cross-validation
or likelihood ratio test [30] could be computationally expen-
sive by enumerating, learning and comparing many candidate
models. Alternatively, the recent fast-growing developments of
Bayesian nonparametrics have shown promise on bypassing
the model selection step. By imposing an appropriate stochas-
tic process prior on a space of flexible models, such as models
possessing an infinite number of components [2] or models
having an infinite number of latent features [22], Bayesian
nonparametric methods could automatically resolve the model
complexity from empirical data and could further adapt the
model complexity when the observed data changes, e.g., using
more components or features to fit a larger data set.

Although much success on developing nonparametric latent
variable models has been demonstrated in the context of direct-
ed Bayesian networks for both exploratory (e.g., discovering
latent semantic representations) [3][1] and predictive (e.g.,
classification) [35][45][44] tasks, very few successful exam-
ples have been reported on utilizing Bayesian nonparametrics
to solve the model selection problem in undirected Markov
networks in the presence of latent variables, which represent an
important class of LVMs and have complementary advantages
(e.g., fast inference) compared to directed Bayesian networks.
Various latent Markov networks, such as restricted Boltzmann
machines (RBMs) [24] and exponential family Harmoniums
(EFH) [40], have been successfully developed for image
classification, retrieval and annotation tasks [41][10][42].

One challenge that has potentially lead to such slow
progress on learning nonparametric undirected latent variable
models is on dealing with a usually intractable partition
function. Although exact algorithms do not exist, recent devel-
opments on approximate learning algorithms [39][24][31] have
encouraged a systematical investigation of learning flexible
undirected latent variable models, especially considering their
broad practical applications.

This paper presents infinite exponential family Harmoniums
(iEFH), a Bayesian EFH model having an unbounded number
of latent units or latent features. To select a finite subset of
features, we associate each latent feature with a data-specific
binary variable and impose the sparsity-inducing Indian buffet
process (IBP) [22] prior on the entire collection of binary vari-
ables (represented as a binary matrix). The resulting model is a
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chain graph model, which has different Markov properties [21]
from directed Bayesian networks. Moreover, we generalize
iEFH to the multi-view iEFH model to deal with data from
multiple sources or domains, and to the supervised infinite
max-margin Harmoniums (iMMH), which directly regularizes
the latent representations by imposing max-margin constraints
with a linear expectation operator for discovering latent rep-
resentations that are specialized for predictive tasks. The
key insights to develop iMMH, which integrates max-margin
learning and Bayesian nonparametric techniques, come from
the recently developed regularized Bayesian inference [44], a
Bayesian computational framework to consider regularization
on the post-data posterior distribution. To learn the model
parameters, we resort to approximate gradient methods by
using the successful contrastive divergence [39][24] tech-
niques. Finally, our experiments on a variety of real data sets
demonstrate competitive results compared with a number of
baseline methods.

The rest paper is structured as follows. Section II presents
the related work. Section III introduces the infinite EFH
model, together with approximate learning methods. Section
IV and Section V present two extensions of iEFH to deal with
multi-view data and learning predictive latent representations,
respectively. Section VI presents empirical studies on image
and document classification. Finally, Section VII concludes
and discusses future research directions.

II. RELATED WORK

Latent variable models (LVMs) can be divided into two
categories — directed Bayesian network LVMs and undirected
Markov network LVMs. Bayesian networks with one layer
of observed variables and one/multiple layers of latent vari-
ables have been the dominating formalisms in many research
fields. Most latent variable models fall into this category,
including the mixture of Gaussian [4], probabilistic latent
semantic indexing (pLSI) [25], probabilistic PCA [38], latent
Dirichlet allocation (LDA) [7], etc. All these models are
finite latent variable models and usually the number of latent
classes/features needs to be artificially pre-specified. Recently,
Bayesian nonparametric methods have shown great promise in
learning flexible directed LVMs. For example, in latent class
models, Dirichlet process (DP) [2] is often used as a prior to
deal with the model selection problem (i.e., resolving the num-
ber of mixture components) for clustering, density estimation
and supervised tasks [35]. In latent feature models, the Indian
buffet process (IBP) [22] prior is often used to automatically
resolve the number of latent features from an infinite pool
of candidates for factor analysis or feature learning in support
vector machines [44]. [1] uses the cascading IBP prior to learn
the structure of layered deep belief network with an unbounded
number of layers and an unbounded number of units at each
layer.

The undirected analogue of the above directed families
that enjoys nice properties (e.g., fast inference and easy
interpretability) has been developed, including the exponen-
tial family of Harmoniums [40][39] and its special cases
of restricted Boltzmann machine (RBM) [23] and influence

combination model [20] that have discrete latent units. They
are usually more efficient in posterior inference due to the
weak independent assumption that observation variables are
conditionally independent given a set of latent variables. Al-
though Harmoniums have been successfully turned into practi-
cal methods for information retrieval [40], image classification,
retrieval and annotation [41], to the best of our knowledge,
very few attempts have been made towards using Bayesian
nonparametric methods to bypass the model selection problem.
To address this problem, in this paper, we first apply an
IBP prior on the latent variables and develop an effective
contrastive divergence approximation method to avoid the
intractable normalization factor, which can bypass the model
selection problem, as will be stated in Section III.

So far, most of the aforementioned latent variable mod-
els are unsupervised and unable to perform prediction tasks
without using an additional classifier. Many supervised di-
rected and undirected LVMs have been developed. In the
directed supervising Bayesian LVMs, the supervised laten-
t Dirichlet allocation (sLDA) [6] and discriminative latent
Dirichlet allocation (discLDA) [27] are defined based on the
joint/conditional distribution. The models are learned with
maximum likelihood estimation (MLE). In order to learn
more predictive supervised topic model, maximum entropy
discrimination LDA (MedLDA) [43] is proposed by using
max-margin learning but restricted to finite models. There are
also several infinite Bayesian LVMs that have been developed
for prediction tasks, including the DP mixture of generalized
linear models [35] where a likelihood model is defined on the
response variables that contains a normalization factor, and
the recent work [45] that integrates Bayesian nonparametric
methods with max-margin machines to obtain an infinite
mixture of nonlinear large-margin kernel classifiers. And [44]
uses the IBP prior to automatically determine the dimension-
ality of latent features for learning SVM classifiers and the
latent projection matrix for multi-task learning. However, the
undirected supervised latent variable models (e.g., supervised
hierarchical Harmonium [42] and discriminative Restricted
Boltzmann machines [28]) are all learned based on maximum
likelihood estimation, which may not yield good prediction
performance [42]. [10] proposes a max-margin Harmonium
model that has shown superior performance in prediction but is
also restricted to finite latent variable models; furthermore, its
dimensionality is pre-specified and fixed. This has motivated
us to develop the infinite max-margin Harmonium (iMMH)
that can use Bayesian nonparametric techniques to automati-
cally resolve the dimension of latent units.

III. INFINITE EXPONENTIAL FAMILY HARMONIUMS

Now, we formally present the infinite exponential family
Harmonium (iEFH) model, starting with a brief recapitulation
of the basic Harmonium models.

A. Exponential Family Harmoniums

An exponential family Harmonium (EFH) model is a bipar-
tite Markov network with two layers of variables, i.e., the input
variables X and the latent variables H = {H1, · · · ,HK},
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Fig. 1. Graphical illustration of (a) Finite Bayesian spike & slab EFH model; and (b) Infinite EFH, using the IBP prior. The lower part in the blue dashed
box is the basic Harmonium model, the upper part in the red dashed box is the Indian buffet process prior. Best viewed in color.

as shown in the lower part of Fig. 1(a). For each data d ∈
{1, · · · , D}, xd = {xd1, · · · , xdN} denotes the set of observed
input features. By using exponential family distributions, EFH
allows both X and H to take discrete or continuous values.
When X and H are continuous, the joint distribution can be
defined as

p(xd,hd|Θ) ∝ exp

 η⊤xd − x⊤
d xd

2σ2
d1

+ x⊤
d Whd

+β⊤hd − h⊤
d hd

2σ2
d2

 , (1)

where Θ = {η,β,W, σ2
d1, σ

2
d2} are model parameters. We

can derive that the conditional distributions p(xd|hd,Θ) and
p(hd|xd,Θ) are both well-defined isotropic Gaussian dis-
tributions with covariance matrices being σ2

d1I and σ2
d2I ,

respectively. Thus, we can easily draw samples from such
distributions or perform variational inference, a substep in a
contrastive divergence learning method. Note that to make the
normalization constant in Eq. (1) be finite, some constraints are
needed, such as the upper bound constraint on the inputs [13]
or the more sophisticated solutions in [14]. We adopted the
former one for its simplicity. For discrete inputs, we set σ2

d1

equal to ∞ and the quadratic term x⊤
d xd

2σ2
d1

vanishes.
Although EFH can be efficient in inference because of its

conditional independence structure (i.e., H are conditionally
independent given the observations) and has been applied to
various applications [41][10], the number of latent units K is
usually difficult to determine1. A general selection procedure
that enumerates, learns and compares many different candidate
models with various K values could be expensive. Below,
we present iEFH as a nonparametric Bayesian technique to
automatically resolve the unknown number K from empirical
data. It is worth noting that our methods are applicable to
restricted Boltzmann machines (RBM) [24], which are Harmo-
nium models but typically with binary X and H variables 2.

1The paper [12] presented a case where increasing the number of latent
features (within a particular range) boosts the performance. But we still need
some mechanism to automatically determine an appropriate K.

2See [24] for a discussion of the RBM with non-binary units.

B. A Finite Beta-Bernoulli Bayesian Spike and Slab EFH
We first present a finite Bayesian EFH using binary variables

to select subset from a potentially large but finite set of latent
features. Fig. 1(a) illustrates the graphical structure of Beta-
Bernoulli EFH, where the lower part in the blue dashed box is
the basic Harmoniums, the upper part in the red dashed box
shows the two layer Beta-Bernoulli prior. As we shall see,
this finite model naturally generalizes to an infinite model.
Formally, we introduce a set of binary variables Zd for each
data d, with Zdk associated with the latent feature Hdk. Then,
the effective latent feature for data d is

h̃d = zd ◦ hd,

where ◦ is the element-wise multiplication of two vectors. The
binary element zdk = 1 indicates that data d possesses feature
k; otherwise, data d does not possess feature k. These binary
variables Zd are known as spike variables and the real-valued
Hd are known as slab variables [13].

We assume that Zdk follows a Beta-Bernoulli distribution

zdk|πk ∼ Bernoulli(πk), πk ∼ Beta(
α

K
, 1), (2)

where α is a hyper-parameter. The Beta-Bernoulli prior has
a nice property that the expected number of non-zero entries
in the matrix Z is Nα [22]. The finite Bayesian EFH has the
joint distribution

p(π, {xd,hd, zd}|Θ) = p(π)
∏
d

p(zd|π)p(xd,hd|zd,Θ), (3)

where p(xd,hd|zd,Θ) is an EFH model that uses binary
variables zd to select hidden features

p(xd,hd|zd,Θ) ∝ exp

 η⊤xd − x⊤
d xd

2σ2
d1

+ x⊤
d Wh̃d

+β⊤h̃d − h⊤
d hd

2σ2
d2

 . (4)

The above formulation leads to a hierarchical Bayesian
spike and slab exponential family Harmoniums. It is worth
noting that both the Beta-Bernoulli model and the iEFH to
be presented can be reduced to use binary latent features by
constraining that H are deterministic, i.e., taking a constant
value such as 1.
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C. An Infinite EFH

Now, we extend the above Bayesian spike and slab EFH
to the infinite iEFH by letting K → ∞. The insights are
as follows. First, as shown in [22], the finite Beta-Bernoulli
prior can be extended to the infinite case using the lof -
equivalent classes of matrices and the resulting marginal
distribution of Z is the well-defined IBP. Second, given the
binary variables zd, which are sparse and have finite non-
zeros in expectation under the IBP prior, we can define the
EFH model p(xd,hd|zd,Θ) as in Eq. (4). Fig. 1(b) shows the
graphical structure of iEFH, where we have used the stick-
breaking representation of IBP [36] with intermediate variables
V = {V1, V2, · · · }. Specifically, the IBP prior on Z can be
described as a generative model

∀d, zdk|πk ∼ Bernoulli(πk)

π1 = v1, πk = vkπk−1 =
k∏

i=1

vi, vi ∼ Beta(α, 1).

By the Markov property of a chain graph [21], the joint
distribution of iEFH is

p(v, {xd,hd, zd}|Θ)=p(v)
∏
d

(
p(zd|v)p(xd,hd|zd,Θ)

)
(5)

where p(xd,hd|zd,Θ) is the same as in Eq. (4). Note that
we have ignored the variables π in Eq. (5) because they are
deterministic functions of v.

1) Parameter learning by approximate gradient descent:
We use the maximum likelihood estimation to learn the
parameters Θ. Let L(Θ) denote the negative log-likelihood,
and let

∆E
[
·
]
, −Ep(v,{hd,zd}|{xd})

[
·
]
+ Ep(v,{hd,zd,xd})

[
·
]
,

where the distribution p(v, {hd, zd}|{xd}) has xd “clamped”
to their input values, while the distribution p(v, {hd, zd,xd})
has all variables free. Then, the likelihood gradients are
∇ηnL =

∑
d ∆E

[
xdn

]
, ∇βk

L =
∑

d ∆E
[
h̃dk

]
and

∇Wnk
L =

∑
d ∆E

[
xdnh̃dk

]
. For the variance parameters,

we can fix them a priori or learn them using gradient descent
in the log-space to avoid handling positive constraints. Let
td1 = log σ2

d1 and td2 = log σ2
d2. Then we have

∇td1L =
1

2σ2
d1

∆E
[
x⊤
d xd

]
, ∇td2L =

1

2σ2
d2

∆E
[
h⊤
d hd

]
.

Contrastive divergence gradient approximation: With the
above gradients, we can perform gradient descent to update the
model parameters, e.g., using the very effective quasi-Newton
method [29]. Now, the question is how to infer the distributions
p(v, {hd, zd}|{xd}) and p(v, {xd,hd, zd}). Since exact infer-
ence is intractable, we must resort to approximate methods.
One successful scheme to approximate the likelihood gradients
is contrastive divergence [24]. Although MCMC sampling
methods are widely used, we adopt the mean-field contrastive
divergence [39], which derives a deterministic optimization
problem that can be naturally extended for supervised learning
as shown later. Specifically, let q0 be a variational distri-
bution to approximate p(v, {hd, zd}|{xd}) via minimizing
the KL-divergence KL(q0(v, {hd, zd})∥p(v, {hd, zd}|{xd})).

We further constrain the feasible space of q0 by making the
truncated mean-field assumption

q0(v, {hd, zd}) =
( T∏

k=1

q0(vk)
) D∏

d=1

(
q0(hd)

T∏
k=1

q0(zdk)
)
,

where T is a sufficiently large truncation level, q0(vk) =
Beta(γk1, γk2), and q0(zdk) = Bernoulli(νdk). As shown
in [18], the ℓ1-distance truncation error of marginal distribu-
tions decreases exponentially as K increases. With this trun-
cation assumption, we can efficiently perform the inference
via an iterative procedure, as outlined below.

Inference: For H, we have the mean-field update equations

q0(hd) =
T∏

k=1

q0(hdk),

where q0(hdk) = N
(
σ2
d2(νdkβk+νdkEq0 [xd]

⊤W.k), σ
2
d2

)
and

Wn. (W.k) denotes the nth row (kth column) of W. For
variables Z, the mean-field update equation for ν is:

νdk = Sigmoid
(
− τk1 +τ

k
2 +Eq0 [hdk](βk+Eq0 [xd]

⊤W.k)
)

(6)

where τk1 = Eq0 [log(1−
∏k

j=1 vj)], τ
k
2 =

∑k
j=1 Eq0 [log vj ].

We can compute τk2 using the digamma function ψ as
Eq0 [log vk] = ψ(γk1) − ψ(γk1 + γk2). For τk1 , we use the
multinomial bound [18] when k > 1, which can be a good
approximation and evaluated efficiently. For k = 1, we have
Eq0 [log(1−

∏k
j=1 vj)] = ψ(γ12)− ψ(γ11 + γ12). The update

equation for γ is the same as in [18].
After we have inferred q0, one or several mean-field updates

(initialized with q0) are performed to reconstruct a distribution
q1(v, {xd,hd, zd}), which approximates the model distribu-
tion p(v, {xd,hd, zd}). We use one step of update in the
experiments. For variables X, we have the update equations

q1(xd) =
N∏

n=1

q1(xdn),

where q1(xdn) = N
(
σ2
d1(ηn +Wn.(νd ◦Eq1 [hd])), σ

2
d1

)
. For

the other variables, the mean-field update equations have the
same forms as above, with q0 replaced by q1.

The above mean-field contrastive divergence method is in
fact the gradient descent method to minimize the contrastive
free energy (CF1)3

CF1(Θ, q0, q1),KL(q0(v, {hd, zd})∥p(v, {xd,hd, zd}))
−KL(q1(v, {xd,hd, zd})∥p(v, {xd,hd, zd})),

which is an approximation of the negative log-likelihood
L(Θ). Note q1 is reconstructed from q0 as stated above.

IV. MULTI-VIEW IEFH
In this section and the next section, we present two im-

portant extensions of iEFH to deal with multi-view data
analysis and learning predictive latent features by considering
supervising side information.

3The free energy is finite because the IBP prior has exponentially decayed
prior parameter πk as k increases and the KL-divergence KL(q0∥p) is “zero
forcing” [4, Chapter 10], i.e., when the prior distribution on feature k is small,
the posterior distribution q0 on feature k would be small too. As shown in [22],
the expected number of active features is Nα for IBP.
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A. The Multi-view iEFH Model

Modern data analytic problems in social media, information
technology and sciences often involve rich data consisting
of multiple information modalities, which come from diverse
sources or are extracted from different domains. For instance,
web pages can be classified from their contents or link anchor
texts [8], a video shot can be categorized from either col-
or/shape of the keyframe or the corresponding closed captions
[41], and many others [19][11][37][16], to name a few. These
different modalities offer different angles to reveal the funda-
mental characteristics and properties of the study subjects, and
is often referred to as different views of the subjects. Proper
integration of multiple views presented in multimodal data is
of paramount importance for seeking accurate distillation of
salient semantic representations of the study objects, therefore
numerous efforts along this direction can be found in the
literature, such as [8][41], and this list continues to grow, under
various contexts and addressing diverse range of data forms
[19][11][37][16].

To illustrate the basic idea, we consider two views of input
features, denoted by X , {Xi}Ni=1 and G , {Gj}Mj=1,
respectively, both of which are connected to the latent vari-
ables H, which results in a similar chain graph model as in
Fig. 1(b), using the stick-breaking representation of IBP prior.
For simplicity, we consider a special case where xd and gd

represent real-valued features and binary features, respectively.
According to the Markov property of chain graphs, we have
the joint distribution

p(v, {xd,gd,hd, zd}) = p(v)
∏
d

p(zd|v)p(xd,gd,hd|zd), (7)

where

p(xd,gd,hd|zd) ∝ exp
{
E + λ⊤gd + g⊤

d Uh̃d

}
, (8)

where E = α⊤xd − x⊤
d xd

2σ2
d1

+ β⊤h̃d − h⊤
d hd

2σ2
d2

+ x⊤
d Wh̃d is the

potential function of the single-view iEFH and h̃d = zd ◦ hd,
as defined before.

B. Optimization for multi-view iEFH

In order to deal with the intractable likelihood func-
tion, we resort to the similar approximate contrastive di-
vergence method to obtain an approximation objective
L′(Θ, q0, q1) to the data likelihood, where q0 is the vari-
ational distribution with input variables x and g clamped
to the observations and q1 is defined with all the vari-
ables free. We employ the structured mean field assump-
tion on q (q0 or q1), that is, q(v, {xd,gd,hd, zd}) =∏

k q(vk)
∏

d q(xd)q(gd)q(hd)q(zd). Then we can compute
each of the factored distribution separately. Specifically, for
the variables x and v, we have the same mean-field equations
as in the single-view iEFH. For g, h and z, we can derive

q(gdm) = Bernoulli(gdm; ζdm)

q(hdk) =N (hdk;E[hdk], σ2
d2)

q(zdk) = Bernoulli(zdk; ν
′
dk)

where

Eq[hdk] = ν′dk
(
βk + Eq[xd]

⊤W.k + Eq[gd]
⊤U.k

)
ζdm =Sigmoid

(
λm +Um.Eq[hd] ◦ Eq[zd]

)
ν′dk =Sigmoid

(
E′

dk − Eq[hdk]Eq[gd]
⊤U.k

)
and E′

dk , τk2 −τk1 +Eq[hdk](βk+Eq[xd]
⊤W.k) = log νdk

1−νdk
,

where τ1, τ2, νdk are the same as in Eq. (6).
After we have computed the approximate objective function

L′(Θ, q0, q1) and inferred the variational distributions q0 and
q1, we can update the model parameters Θ by using approxi-
mate gradient descent, where the gradients for λ and U are

∇λmL′ =
∑
d

∆E[gdm], ∇Umk
L′ =

∑
d

∆E[gdmzdkhdk].

For other parameters (α,β,W, {σd1, σd2}), the gradients
have the same forms as single-view iEFH.

V. INFINITE MAXIMUM MARGIN HARMONIUMS

The single-view and multi-view iEFH are unsupervised
latent feature models. In some cases, we would like to infer
latent representations that are more specialized for a particular
task. For instance, if we use the latent representations for
text/image classification, we would like them to be as dis-
criminative among class categories as possible. One common
approach to implementing classification using iEFH is a two-
step procedure: 1) first learn a latent representation and 2)
then do classification using a classifier such as Support Vector
Machines (SVM) based on those latent representations [41].
However, the unsupervised iEFH does not distinguish various
categories in learning and thus its inferred latent feature
representations might not be optimal for classification. Various
approaches can be developed to considering supervising side
information. For example, a likelihood-based approach [42]
can be built by defining a joint distribution on input features
X and response variables Y . But, as shown in [10], such a
likelihood based method could lead to unsatisfying results in
terms of prediction performance and discovering semantically
meaningful latent feature representations.

Following the suggestions in [10], this section introduces
infinite max-margin Harmonium (iMMH), another extension
of iEFH that could consider the widely available supervising
information to discover predictive latent feature representa-
tions. In fact, the iMMH model to be presented is among
the recent attempts towards uniting Bayesian nonparametrics
and max-margin learning, which have been largely treated as
isolated subfields in machine learning. Our key insights to
develop iMMH come from the recent work of regularized
Bayesian inference (RegBayes) [44][45], which has shown that
Bayesian nonparametric methods and max-margin learning can
be naturally integrated into one framework. iMMH contributes
by expanding the scope of RegBayes to undirected latent
variable models.

A. Regularized Bayesian Inference for undirected Latent Vari-
able Models

1) Bayesian Inference as an Optimization Problem: We
base our work upon the interpretation of Bayesian inference as
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an optimization problem and its recent extension of regularized
Bayesian inference [44][46]. Specifically, let M be a model
space, containing any variables whose posterior distributions
we are trying to infer. Bayesian inference starts with a prior
distribution π(M) and a likelihood function p(x|M) indexed
by the model M ∈ M. We can show that the posterior
distribution due to the Bayes’ theorem is the solution of the
problem

min
p(M)

KL(p(M)∥π(M))− Ep(M)[log p(D|M)] (9)

s.t. : p(M) ∈ Pprob,

where KL(p(M)∥π(M)) is the Kullback-Leibler (KL) diver-
gence, and Pprob is the space of valid probability distributions
with an appropriate dimension. In order to apply this result
to the undirected latent variable models, such as Harmonium
models, we need two extensions.

The above formulation implicitly assumes that the model
can be graphically drawn as a Bayesian network as illustrated
in Fig. 2(a)4. Here, we extend the basic results to include
undirected LVMs (e.g., Harmoniums), as well as the case
where a model has unknown parameters Θ and needs an
estimation procedure (e.g., MLE), besides posterior inference.
The latter is also known as empirical Bayesian methods, which
are frequently employed by practitioners.

Extension 1: Chain Graph: Compared to the directed
latent variable models [44], special attention needs to be paid
to the hybrid chain graph models (e.g., iEFH) because of their
special Markov property. Fig. 2(b) illustrates the structure of
a chain graph, where binary latent variable Z is connected
to H and D via directed edges, H is connected to D via
undirected edges. iEFH is a special case of chain graphs. In
iEFH, since the hidden H and the observed X are forming
a Markov network, we cannot write it in a Bayesian style by
using priors and likelihood functions. The insights that we can
generalize RegBayes [44] to undirected latent variable models
come from the observation that the objective LB(Θ, p(M|Θ))
of problem (11) is in fact an KL-divergence, namely, we can
show that

LB(Θ, p(M|Θ)) = KL(p(M|Θ)∥p(M,D|Θ)), (10)

where p(M,D) is the joint distribution. Then, we will have
much freedom on defining p(M,D). For Bayesian network-
s [44], we naturally have p(M,D) = π(M)p(D|M). For the
undirected iEFH model, we have M = {v,Z,H} and again
we can define the joint distribution as in Eq. (5).

Extension 2: Unknown Parameters: The hybrid iEFH
model is not full Bayesian and we need some mechanisms to
estimate the unknown parameters Θ, as illustrated in Fig. 2(c).
We can perform the maximum likelihood estimation (MLE) as
well as posterior inference jointly by solving LB(Θ, p(M|Θ))

min
Θ,p(M|Θ)

KL(p(M|Θ)∥π(M))− Ep(M|Θ)[log p(D|M,Θ)]

s.t. : p(M|Θ) ∈ Pprob(Θ). (11)

4The structure within M can be arbitrary, either a directed, undirected or
hybrid chain graph.

M 

D 

(a)

D 

M 

Z H 

(b)

D 

M 

(c)

Fig. 2. (a) Bayesian generative models; (b) chain graph models; and (c)
empirical Bayesian models.

For problem (11), it is easy to show that the optimum solution
of p(M|Θ) is equivalent to the posterior distribution by Bayes’
theorem for any Θ; and the optimum solution Θ∗ is the MLE

Θ∗ = argmax
Θ

log p(D|Θ).

2) Regularized Bayesian Inference for undirected Latent
Variable Models: With the above discussions, the regularized
Bayesian inference with estimating unknown model parame-
ters can be generally formulated as

min
Θ,p(M|Θ),ξ

LB(Θ, p(M|Θ)) + U(ξ) (12)

s.t. : p(M|Θ) ∈ Ppost(Θ, ξ),

where Ppost(Θ, ξ) is a subspace of distributions that satisfy
a set of constraints, and LB(Θ, p(M|Θ)) is the objective
function of problem (11). The auxiliary parameters ξ are
usually nonnegative and interpreted as slack variables. U(ξ)
is a convex function, which usually corresponds to a surrogate
loss (e.g., hinge loss) of a prediction rule, as we shall see.

B. Infinite MMH for Classification

Now, we present the infinite MMH (iMMH) model for
multi-class classification, where the response variable Y takes
values from a finite set, e.g., Y = {1, 2, · · · , T} without loss
of generality. Binary classification and regression tasks could
be easily developed following similar principles.

Specifically, to build a classifier, we use the effective latent
features h̃d = zd ◦hd as the feature representation5 of data d,
for which we consider the case of having one type of features
xd. Multiple types of features can be easily considered as
in multi-view iEFH. When the latent variables H and Z are
given, we define the linear discriminant function

F (y,h, z;x,Φ) , Φ⊤
y h̃ = Φ⊤f(y, h̃), (13)

where f(y, h̃) is a vector stacking T subvectors, of which the
yth is h̃⊤ and all the others are 0; and Φ is the weight parame-
ter that stacks T subvectors of Φy , each Φy corresponding to a
class label y. Since both h and z are hidden random variables,
we need to get rid of their uncertainty when performing
prediction on input data, which are observed. We also treat Φ
as random variables. Here, we follow the suggestions in [44]
and define the effective discriminant function as an expectation

F (y;x),Ep(H,Z,Φ)[F (y,h, z;x,Φ)] (14)

=Ep(H,Z,Φ)[Φ
⊤f(y, h̃)].

5We can consider observed features by concatenating them to h̃d.
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Then, the prediction rule for classification is naturally

y∗ , argmax
y∈Y

F (y;x). (15)

Let D = {(xd, yd)}Dd=1 be a set of labeled training data.
With the above definitions, we can concertize the RegBayes
framework and define iMMH as solving problem (12) with
U(ξ) = C

∑
d ξd and

Ppost(Θ, ξ)

=
{
p({hd, zd},Φ|Θ)|∆F (y;xd)≥ℓ∆d (y)−ξd, ∀d, y

}
,

where ∆F (y;xd) = F (yd;xd)−F (y;xd) is the expected
margin favored by the true label yd over an arbitrary label y,
and ℓ∆d (y) is the nonnegative cost6 of predicting the label to be
y when the true label is yd. It can be shown that minimizing
U(ξ) with the constrained subspace Ppost is equivalent to
minimizing the hinge loss

Rh(p({hd, zd},Φ|Θ),Θ) = C
∑
d

max
y

{ℓ∆d (y)−∆F (y;xd)}

of the expected prediction rule (15).
To complete the model, we define the joint distri-

bution p(Φ,v, {xd,hd, zd}). For simplicity, we assume
that Φ is independent from the other variables, that
is p(Φ,v, {xd,hd, zd}) = p0(Φ)p(v, {xd,hd, zd}), where
p(v, {xd,hd, zd}) is the same as in Eq. (5). One most common
choice of p0(Φ) is the zero-mean spherical normal distribution
N (0, σ2

0I), although other choices [47] can be used.

C. Optimization with Contrastive Divergence

Again, due to the intractable normalization constant of
the chain model, we cannot perform the inference exact-
ly. Here, we present an approximation method, which can
be effective in practice, as we shall see. Specifically, we
first impose a mildly more strict assumption on the feasi-
ble distribution p(v, {hd, zd},Φ|Θ), namely, we assume that
p(v, {hd, zd},Φ|Θ) = p(Φ)p(v)

∏
d p(hd)p(zd). Then, the

objective reduces to

LB(Θ, p(M|Θ))

= KL(p(Φ)∥p0(Φ)) + KL(p(v, {hd, zd})∥p(v, {xd,hd, zd})),

where minimizing the second term can be shown to be the
wake-phase inference of iEFH. But it is still intractable to
perform parameter estimation. Therefore, we need a second
step to derive the approximation method. As in iEFH, we use
contrastive divergence and approximate LB as

LB(Θ, q(M|Θ)) ≈ KL(p(Φ)∥p0(Φ)) + L(Θ, q0, q1), (16)

where L(Θ, q0, q1) is the contrastive divergence objective of
iEFH, as defined before.

Then we develop an alternating procedure that iteratively
infers (q0, q1) and estimates (Θ, p(Φ)) with an appropriate
initialization. We omit the inference step, which is the same
as in iEFH. The parameter estimation step involves minimizing

6It is normally assumed that ℓ∆d (yd) = 0, i.e., no cost for a correct
prediction. Moreover, the constraint that ξd ≥ 0 is not necessary for
nonnegative cost, since ξd ≥ ℓ∆d (yd) = 0.

the approximate objective subject to the posterior constraints.
We perform this step with blockwise coordinate descent. For
p(Φ), we solve the sub-problem

min
p(Φ),ξ

KL(p(Φ)∥p0(Φ)) + C
∑
d

ξd

s.t. : Ep(Φ)[Φ]
⊤∆fd(y,E[h̃d]) ≥ ℓ∆d (y)− ξd, ∀d, y

where ∆fd(y,E[h̃d]) = f(yd,E[h̃d]) − f(y,E[h̃d]). With a
spherical Gaussian prior, the optimum solution is p(Φ) =
N (µ, σ2

0I), and we can solve for µ using Lagrangian methods
or solving a multi-class SVM primal problem [15]

min
µ,ξ

1

2σ2
0

∥µ∥22 + C
∑
d

ξd

s.t. : µ⊤∆fd(y,E[h̃d]) ≥ ℓ∆d (y)− ξd, ∀d, y.

For Θ, using the equivalent unconstrained formulation with
Rh, we can do sub-gradient descent, where due to the prop-
erties of pointwise maximum function the sub-gradients are

∂βk
f =∇βk

L − C
∑
d

(µyd
− µȳd

)κdk

∂Wnk
f =∇Wnk

L − C
∑
d

(µyd
− µȳd

)κdkxdn

where ȳd = argmaxy(ℓ
∆
d (y) + µ⊤f(y,E[h̃d])) is the loss-

augmented prediction; and κdk = νdk(1− νdk) if H are held
as constant, i.e., in binary iMMH; otherwise, κdk = νdk(1 −
νdk)E[hdk] + ν2dk.

Note that there is an additional term (the second term)
in the sub-gradients corresponding to β and W, which will
bias the model towards exploring a more discriminative latent
representation when the estimated label ȳd is different from
the true label yd. As we shall see, iMMH tends to learn not
only sparse but also predictive latent representations from the
data, which is more suitable for prediction tasks. We have
adopted the effective method [15] to formulate our multi-
class classifier. Alternative formulations exist, e.g., one-versus-
one or one-versus-all with multiple binary classifiers. But an
exhaustive comparison is beyond the scope of this paper.

VI. EXPERIMENTS

We present qualitative and quantitative results on several
text and image data sets for discovering semantically meaning-
ful latent features and improving classification performance.

A. Results on image classification

1) Data Sets and Experiment Settings: The first set of
experiments are done on two real image data sets. One is the
TRECVID 2003 data set [42] containing 1078 video keyframes
that belong to 5 categories. The data has two types of features,
including 165-dim real-valued color histogram and 1894-dim
discrete text features. We evenly partition the data for training
and testing, following the same setting as [41] for result
comparison. The other one is the Flickr image data set [10]
containing 3411 images that belong to 13 classes of animals.
This data set also has two types of features, including 634-dim
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Fig. 3. Classification accuracy; and F1 score for different models on Trecvid 2003.
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Fig. 4. Classification accuracy; and F1 score for different models on Flickr data set.

real color features and 500-dim discrete SIFT features. We use
2054 for training and 1357 for testing.

In all the experiments, we use two different configurations
of iEFH and iMMH. The first one is the models that use binary
latent features (i.e., fixing the variables H at unit value 1),
denoted by iEFH and iMMH respectively. The second type
is the models that use real-valued features (i.e., automatically
inferring the values of H), denoted by iEFH-real and iMMH-
real, respectively. Furthermore, we report the results when
using a single view of features, as well as the results when
using two views of features on both data sets. As discussed
in Section IV, both iEFH and iMMH can be extended to
consider multi-view features, where multiple types (each type
corresponds to one view) of input features share the same
latent feature representations. For real-valued features, we
use Gaussian units; and for the discrete text/SIFT features,
we use binary units for simplicity. We compare with the
finite EFH and max-margin EFH (MMH) [10], which were
shown to outperform many other competitors7 by selecting
a good number of hidden units. We learn the multi-class
SVM classifier (i.e., Φ) using the package8 in the supervised
iMMH and MMH. For iEFH and EFH, a downstream multi-
class SVM classifier is trained based on the discovered latent
features. C is selected via cross-validation during training.
Both iEFH and iMMH are robust to α, as we shall see.

7The linear multi-class SVM [15] on the raw multiview input features
achieves about 0.5 in accuracy for Flickr and about 0.6 for TRECVID.

8http://svmlight.joachims.org/svm multiclass.html

2) Prediction performance: Fig. 3 and Fig. 4 show the
classification accuracy and F1 scores on the TRECVID and
Flickr data sets. We can observe that: 1) In both single-view
and multi-view settings, iEFH performs comparable with (or
even better than) the finite EFH, and the supervised iMMH
model performs comparable with (or even better than) the
finite MMH. The results demonstrate the effectiveness of
Bayesian nonparametrics to bypass model selection; 2) The
supervised iMMH and MMH generally give better prediction
results than the unsupervised models (i.e., iEFH and EFH),
especially when using multi-view features; 3) Using multi-
view features could generally improve the performance. For
example, on the TRECVID data set, the multi-view iMMH
based on both color and text features outperforms the single-
view iMMH using only text features. This is because the
visual features tend to offer complementary information to the
text features and provide incremental effect towards yielding
better prediction performance than using only the text features;
and 4) Comparing the prediction performance of using real-
valued hidden units (i.e., iMMH-real and iEFH-real) and
binary hidden units (i.e., iMMH and iEFH), we can see that no
one is dominating the other. On the TRECVID data, using real-
valued units tends to improve the performance, while on the
Flickr data, using binary latent units produces better results.
But from the computational point of view, using binary latent
units can save some machine time. Moreover, using binary
units results in non-negative latent features, while real units
can lead to positive or negative features.
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Fig. 5. Average posterior expectation of each latent feature by iMMH on the TRECVID data.
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Fig. 6. Average posterior expectation of each latent feature by iMMH on the Flickr data.

3) Discriminative Latent Features: To give a holistic view
of the discriminative power of latent features by iMMH, Fig. 5
and Fig. 6 show the average posterior expectations of latent
feature variables9 on TRECVID and Flickr data sets, where
we only show the first 65 features; all the other features have
almost zero probabilities to be active. We can see that the IBP
prior is very effective in inferring a sparse subset of features.
The standard deviation among the per-class average posterior
expectations generally represents the discriminative power of
that particular feature among all the images (i.e., features with
larger std values tend to be good at distinguishing images from
different classes).

To further carefully examine the discriminative power of
each latent features, Fig. 7 shows 5 example features dis-
covered by iMMH on the Flickr data set. For each feature,
we show the top-8 images which produce a high activation
value at that feature unit and also the average probabilities
that the feature represents each of the 13 categories. We can
see that the automatically learned features could have some
semantic meanings. For instance, feature F1 is about “whales”
and feature F3 is about “snake”. In general, the features have
good discriminative ability. For example, F1 is very good at
discriminating “whales” from the other animals, and F4 is
good at distinguishing “hawk” from “tiger”, “zebra”, “whales”,
and etc. However, we also have some features that do not
have a strong discriminative power. For example, even though
“lion” is ranked as the most likely animal that is described by
F5, the difference from other animals like “wolf”, “tiger” and
“zebra” is very small.

4) Time Efficiency: Fig. 8 shows the training time of MMH
and iMMH on TRECVID and Flickr data set. We can observe
that the total time of running a single iMMH (using one set
of α and C values) using both text and color features on the
TRECVID data set is about 1, 400 seconds. In comparison,
the single run of MMH (using one set K and C values)

9For feature k, the average is 1/D
∑D

d=1 E[zdkhdk].
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Fig. 8. Training time on (L) Trecvid 2003; and (R) Flickr data set.

needs less than 500 seconds when K < 60, about 1, 000
seconds when K = 70 and K = 80. Since iMMH is robust
with respect to α and does not need to select K, its total
running time is competitive. We have similar observations on
the Flickr data set. For testing, all these models are efficient
due to the conditional independence of the latent variables
given observations.

We also show the proportion of the training time spent on
solving the SVM subproblems for both iMMH and MMH in
Table I. We can see that in iMMH, solving SVM subproblems
are very efficient, which learning the other parameters (i.e., Θ)
is much more expensive because of the variational inference
algorithms. For MMH, solving SVM subproblems is also more
efficient than learning the other parameters. Therefore, the key
step to further improve the time efficiency is to improve the
posterior inference algorithms.

5) Sensitivity to Hyper-parameters: Fig. 9 and Fig. 10 show
the sensitivity of the infinite Harmonium models, including
iMMH and iEFH using different input features, with respect
to the hyper-parameters C, α and ℓ. Rather than analyzing the
huge product space of these three parameters, we restrict our-
selves to analyze each of them with all others approximately
optimized via a grid search. We can observe that the changes
of α and ℓ do not affect the prediction performance on both



JOURNAL OF LATEX CLASS FILES, VOL. 6, NO. 1, AUGUST 2012 10

F1

0

0.
02

0.
04

0.
06

probability

whales

elephant

hawk

cat

cow

zebra

rabbit

wolf

antlers

snake

tiger

squirrel

lion

F2

0

0.
01

0.
02

0.
03

0.
04

probability

zebra

tiger

snake

lion

elephant

cow

rabbit

wolf

antlers

cat

squirrel

hawk

whales

F3

0

0.
01

0.
02

0.
03

probability

snake

squirrel

whales

lion

rabbit

wolf

cow

cat

tiger

elephant

hawk

antlers

zebra

snake

F4

0

0.
00

5

0.
01

0.
01

5

0.
02

0.
02

5

0.
03

probability

hawk

cat

rabbit

cow

squirrel

lion

antlers

elephant

snake

wolf

whales

zebra

tiger

F5

0

0.
01

0.
02

0.
03

0.
04

probability

lion

wolf

rabbit

squirrel

antlers

cat

tiger

cow

elephant

hawk

whales

snake

zebra
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Fig. 9. Sensitivity analysis to C and α on the TRECVID and Flickr data sets.

TABLE I
SPLIT OF TRAINING TIME FOR IMMH AND MMH.

TRECVID

iMMH MMH
1386.63 (seconds) 1099.52 (seconds)

SVM Others SVM Others
5.86 (0.4%) 1380.26 (99.6%) 18.54 (1.8%) 1079.29 (98.2%)

Flickr

iMMH MMH
3745.23 (seconds) 2516.09 (seconds)
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Fig. 10. Sensitivity to ℓ on (L) TRECVID 2003; and (R) Flickr data sets.

data sets, especially when using multi-view input features. The
performance oscillates when C is less than 20 but turns smooth
afterwards. Generally, the highest performance with respect to
each setting (e.g, iEFH-fusion that uses both color and text
features) are comparable with the results in Fig. 3 and Fig. 4,
which are achieved via cross-validation. Finally, note that for
the finite models EFH and MMH, the sensitivity to K has been
extensively demonstrated in [10]; and for the regularization
parameter C, its sensitivity is similar to that of iEFH and
iMMH. We provide further results of MMH in Appendix.

B. Results on document classification

Now we further examine the model performance on docu-
ment classification problems.

1) Data Sets and Experiment Settings: The document clas-
sification experiments are done on the standard 20 Newsgroups
data set, which consists of about 20K documents in 20 cate-
gories. To compare with discriminative RBM (DRBM) [28],
we use the same vocabulary with 5000 most frequent words
and the same train/test split. For all models in this task, we
treat X as binary and infer binary latent features. We set the
truncation level T = 200 and compare with SVM, NNet
(neural networks), RBM, RBM+NNet, and DRBM, whose
results were reported in [28].

TABLE II
CLASSIFICATION ERRORS ON THE 20 NEWSGROUPS DATA SET.

Model Classification Error Train Time (seconds)
SVM [28] 0.328 ± 0.0000 -
NNet [28] 0.282 ± 0.0000 -

RBM (K=1000) [28] 0.249 ± 0.0000 -
DRBM (K=50) [28] 0.276 ± 0.0000 -

RBM+NNet [28] 0.268 ± 0.0000 -
EFH+SVM (K=50) 0.375 ± 0.0000 3875.6
EFH+SVM (K=200) 0.305 ± 0.0000 20406.0
EFH+SVM (K=700) 0.273 ± 0.0000 42066.4

MMH (K=50) 0.264 ± 0.0000 8560.4
MMH (K=200) 0.250 ± 0.0000 34523.6
MMH (K=700) 0.255 ± 0.0000 68305.6

iEFH+SVM 0.283 ± 0.0022 19825.4
iMMH 0.252 ± 0.0029 86511.5

2) Prediction performance: Table II shows the document
classification errors and training time of different models. We
can observe that: 1) Using the same number of hidden units,
the max-margin MMH outperforms the maximum likelihood
estimation based DRBM; 2) Even with only a few (e.g., 200)
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hidden units, the discriminatively trained MMH can perform
very competitively, in fact comparable to the generatively
trained RBM which uses much more (e.g., 1000) units; 3)
Using Bayesian nonparametric techniques, iEFH and iMMH
can avoid the model selection problem without sacrificing
classification performance. For iEFH, it even outperforms
the finite EFH if the number of hidden units in EFH is
not set appropriately; and 4) Using supervising information,
the discovered latent representations by MMH or iMMH are
generally more discriminative than those discovered by an
unsupervised method (e.g., EFH or iEFH). Finally, the time
efficiency of iMMH and iEFH is still competitive since they
don’t need to choose K.

3) Example features: To illustrate the semantics of the
learned latent features, Table III shows some examples dis-
covered by iMMH. For each feature, we present the most
frequent words appearing in the top-15 documents that have
high activation values at that particular feature dimension.
We can see that in general the learned features could have
some semantic meanings. For instance, features F3 and F37
(with the words “god”, “jesus”, “christian”, etc) are strongly
associated with the category “religion.christian”, features F40
and F51 (with words “orbit”, “moon”, “space”) are very likely
to represent the category “sci.space”, and features F7, F11 and
F21 (with the words “bus”, “controller”, “drive”, “windows”)
tend to represent the category “os. ms-windows. misc”. For all
other features, we have associated them with the closest class
categories according to their semantics.

TABLE III
EXAMPLE FEATURES AND THEIR ASSOCIATED NEWSGROUPS BY IMMH

ON THE 20 NEWSGROUPS DATA SET.

Categories Latent features by iMMH
religion. F3: god, people, jesus, life, christian, christ, christians, hell
christian F73: sandvik, christians, god, people, law, christian

alt. F83: god, atheism, quadra, mac, problem, strong, belief, atheists
atheism F92: god, atheism, exist, belief, atheists, people, strong, islam
comp. F35: work, graphics, windows, information, cylinder

graphics F97: graphics, windows, linux, image, file, gif, find, program, ftp
os. F7: bus, controller, ide, drive, windows, card, mouse, driver

ms-windows. F11: key, keys, win, system, time, team, windows, files
misc F21: drive, hard, drives, disk, pc, cd, columbia, card
talk. F84: pitt, gordon, banks, geb, surrender, intellect, skepticism

politics. F86: people, control, firearms, law, gun, weapons, public, guns
guns F94: people, militia, arms, amendment, state, government, gun

sports. F79: ca, team, hockey, game, play, year, montreal, cup, playoffs
hockey F85: team, gm, murray, win, good, hockey
sports. F55: year, runs, team, pitching, games, game, baseball, season

baseball F81: team, apr, game, games, baseball, series, people, win
misc. F53: sale, computer, price, drive, things, forsale, pc, misc

forsale F71: mark, sale, optilink, file, case, email, price, shipping
sci. F40: orbit, moon, sun, lunar, thing, years, made, space, earth

space F51: nasa, henry, orbit, comet, baalke, moon, kelvin, space, earth
sci. F11: key, keys, win, system, time, team, windows, files

crypt F24: key, encryption, chip, make, don, public, keys, clipper, secure
rec. F34: car, cars, bike, apr, make, back, ve, speed, cso, ride, cso

autos F47: car, email, find, windows, craig, graphics, great, problem, dealer
rec. F89: bike, dod, dog, ride, turn, bikes, riders, left

motorcycles F90: bike, dog, dod, apr, riders, riding, ride, bmw, mot, rider

VII. CONCLUSIONS AND DISCUSSIONS

This paper presents an infinite exponential family Harmo-
nium model (iEFH) that has an infinite number of latent units
a priori and automatically infers an appropriate subset from
empirical data by leveraging the recent advances in Bayesian
nonparametric techniques. We further extend iEFH to multi-
view iEFH for dealing with data from multiple sources or

domains, and to the supervised infinite max-margin Harmoni-
um (iMMH) which directly regularizes the properties of latent
features for improving their discriminative abilities by utiliz-
ing the max-margin principle. Experiments show compelling
results compared with extensive state-of-the-art models, which
verify the effectiveness of the proposed methods.

We present a preliminary attempt towards expanding the
scope of Bayesian nonparametrics to solve the challenging
problem of learning nonparametric undirected latent variable
models, and a lot of room still remains to further improve.
For future work, we are interested in developing more accu-
rate and efficient inference algorithms, such as using multi-
core or multi-machine architectures to do parallel inference.
Furthermore, we are also interested in further broadening the
use of Bayesian nonparametrics to infer the structures of
more sophisticated undirected models, such as deep Boltzmann
machines [34] and conditional random fields (CRFs) [9].
Also, using EFH or RBM in particular to deal with relational
network data [32] or text documents introduces additional
challenges, such as high dimensional inputs. Sophisticated
representation and inference methods [17][33] are needed to
make the model scalable to large scale data sets. We plan
to systematically investigate such methods. Finally, extreme
learning machines (ELM) [26] provide alternative solutions
of building max-margin classifiers, and it is interesting to
investigate how Bayesian nonparametrics can help them.
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