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Abstract
Relational topic models have shown promise on an-
alyzing document network structures and discover-
ing latent topic representations. This paper presents
three extensions: 1) unlike the common link like-
lihood with a diagonal weight matrix that allows
the-same-topic interactions only, we generalize it to
use a full weight matrix that captures all pairwise
topic interactions and is applicable to asymmetric
networks; 2) instead of doing standard Bayesian
inference, we perform regularized Bayesian infer-
ence with a regularization parameter to deal with
the imbalanced link structure issue in common re-
al networks; and 3) instead of doing variational
approximation with strict mean-field assumptions,
we present a collapsed Gibbs sampling algorithm
for the generalized relational topic models without
making restricting assumptions. Experimental re-
sults demonstrate the significance of these exten-
sions on improving the prediction performance, and
the time efficiency can be dramatically improved
with a simple fast approximation method.

1 Introduction
As the availability and scope of network data increase, s-
tatistical analysis of such data has attracted a considerable
amount of attention. Network data is typically represented
as a graph in which the vertices represent entities and edges
represent links between entities. Analyzing network data
(e.g., link prediction [Liben-Nowell and Kleinberg, 2003;
Backstrom and Leskovec, 2011]) could provide useful pre-
dictive models for suggesting friends to social network users
or citations to scientific articles.

Recent research has focused on latent variable models for
link structures, including both parametric [Hoff et al., 2002;
Hoff, 2007; Airoldi et al., 2008] and nonparametric Bayesian
methods [Miller et al., 2009; Zhu, 2012]. Though model-
ing network structures well, these models do not account for
observed attributes of the entities, such as the text contents
of papers in a citation network or the contents of web pages
in a hyperlinked network. One work that accounts for both
text contents and network structures is relational topic mod-
els (RTMs) [Chang and Blei, 2009], an extension of latent

Dirichlet allocation (LDA) [Blei et al., 2003] to predict link
structures among documents as well as discover their latent
topic representations.

Though powerful, existing RTMs have some assumptions
that could limit their applicability. First, RTMs define a sym-
metric link prediction model with a diagonal weight matrix
that allows the-same-topic interactions only, and the symmet-
ric nature could make RTMs unsuitable for asymmetric net-
works. Second, being standard Bayesian models, RTMs do
not explicitly deal with the common imbalance issue in re-
al networks which normally have only a few observed links
while most entity pairs do not have links. Finally, RTMs and
other variants [Liu et al., 2009] apply variational methods to
estimate model parameters with normally very strict mean-
field assumptions [Jordan et al., 1999].

This paper presents three extensions to improve relational
topic models: 1) we relax the symmetric assumption and de-
fine generalized relational topic models (gRTMs) with a full
weight matrix that allows all pairwise topic interactions and
is suitable for asymmetric networks; 2) we perform regular-
ized Bayesian inference [Zhu et al., 2011; 2013a] that intro-
duces a regularization parameter to deal with the imbalance
problem in common real networks; and 3) we present a col-
lapsed Gibbs sampling algorithm for gRTMs by exploring the
classical ideas of data augmentation [Dempster et al., 1977;
Tanner and Wong, 1987; Dyk and Meng, 2001]. Technically,
we introduce a set of Polya-Gamma random variables [Polson
et al., 2012], one per training link, to derive an exact mixture
representation of the logistic link likelihood. Then, we can
derive the local conditional distributions for collapsed Gibbs
sampling analytically. This “augment-and-collapse” algorith-
m is simple and efficient. More importantly, it does not make
restricting assumptions on the desired posterior distribution.
Experiments show that these extensions are important and can
significantly improve the performance.

The rest paper is structured as follows. Section 2 presents
the generalized RTMs. Section 3 presents the “augment-and-
collapse” Gibbs sampling algorithm. Section 4 presents ex-
perimental results and Section 5 concludes.

2 Generalized Relational Topic Models
We consider document networks with binary link structures.
Let D = {(wi,wj , yij)}(i,j)∈I be a labeled training set,
where the response variable Y takes values from the output



Table 1: Learned weight matrix of RTM and topics.
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space Y = {0, 1} and wi = {win}Ni
n=1 denote the words

within document i. A relational topic model (RTM) consists
of two parts — an LDA model [Blei et al., 2003] for describ-
ing the words W = {wi}Di=1 and a classifier for considering
link structures y = {yij}(i,j)∈I . Let K be the number of
topics and each topic Φk is a multinomial distribution over
a V -word vocabulary. For Bayesian RTMs, the topics are
samples drawn from a prior, e.g., Φk ∼ Dir(β), a Dirichlet
distribution. The generating process can be described as

1. For each document i
(a) draw a topic mixing proportion θi ∼ Dir(α)
(b) for each word n = 1, 2, . . . , Ni:

i. draw a topic assignment zin ∼ Mult(θi)
ii. draw the observed word win ∼ Mult(Φzin)

2. For each pair of documents i, j:
(a) draw a link indicator yij ∼ p(.|zi, zj ,η), where

zi = {zin}Ni
n=1.

Mult(·) denotes a multinomial distribution; and Φzin denotes
the topic selected by the non-zero entry of zin, a K-binary
vector with only one entry equaling to 1.

Previous work has defined the link likelihood as

p(yij = 1|zi, zj ,η) = σ(η⊤(z̄i ◦ z̄j)), (1)

where z̄i = 1
Ni

∑Ni

n=1 zin is the average topic assignments
of document i; σ is the sigmoid function; and ◦ denotes ele-
mentwise product. In [Chang and Blei, 2009], other choices
of σ such as the exponential function and the cumulative dis-
tribution function of the normal distribution were also used.
Here, we focus on the commonly used logistic likelihood
model [Miller et al., 2009; Liu et al., 2009].

2.1 The Full RTM Model
Since η⊤(z̄i ◦ z̄j) = z̄⊤i diag(η)z̄j , the standard RTM learns
a diagonal weight matrix which only captures the-same-topic
interactions (i.e., there is a non-zero contribution to the link
likelihood only when documents i and j have the same topic).
One example of the fitted diagonal matrix on the Cora citation
network [Chang and Blei, 2009] is shown in Table 1, where
each row corresponds to a topic and we show the represen-
tative words for the topic at the right hand side. Due to the
positiveness restriction of the latent features z̄i and the com-
petition between the diagonal entries, some of ηk will have
positive values while some are negative. The negative inter-
actions (corresponding to rare topics) may conflict our intu-
itions of understanding a citation network, where we would
expect that papers with the same topics tend to have citation
links. Furthermore, by using a diagonal weight matrix, the

Table 2: Learned weight matrix of gRTM and topics.
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model is symmetric, i.e., the probability of a link from docu-
ment i to j is the same as the probability of a link from j to
i. The symmetry property does not hold for many networks,
e.g., citation networks. To make RTMs more expressive and
applicable to asymmetric networks, the first simple extension
is to define the link likelihood as

p(yij = 1|zi, zj , U) = σ(z̄⊤i U z̄j), (2)

using a full K × K weight matrix U . Using the algorithm
to be presented, an example of the learned U matrix on the
Cora citation network is shown in Table 2. We can see that
by allowing all pairwise topic interactions, all the diagonal
entries are positive, while most off-diagonal entries are neg-
ative. This is consistent with our intuition that papers with
the same topics tend to have citation links, while papers with
different topics are less likely to have citation links; and there
are some papers with generic topics (e.g., topic 4) that have
positive link interactions with almost all others.

2.2 Regularized Bayesian Inference
Let Z = {zi}Di=1 and Θ = {θi}Di=1 denote all the top-
ic assignments and mixing proportions respectively. To fit
RTMs, maximum likelihood estimation (MLE) was used with
an EM algorithm [Chang and Blei, 2009]. We consider
Bayesian inference to get the posterior p(Θ,Z,Φ, U |D) ∝
p0(Θ,Z,Φ, U)p(D|Z,Φ, U), where p0(Θ,Z,Φ, U) =
p0(U)

(∏
i p(θi|α)

∏
n p(zin|θi)

)∏
k p(Φk|β) is the prior

distribution defined by the model and p(D|Z,Φ, U) =
p(W|Z,Φ)p(y|Z, U) is the likelihood. One common issue
is that real networks are highly imbalanced—the number of
positive links is much smaller than the number of negative
links. For example, less than 0.1% document pairs in the Co-
ra network have positive links.

To deal with this imbalance issue, we propose to do reg-
ularized Bayesian inference [Zhu et al., 2011; 2013a] which
offers an extra freedom to handle the imbalance issue in a
cost-sensitive manner. Specifically, we define a Gibbs clas-
sifier for binary links as follows. If the weight matrix U and
topic assignments Z are given, we build a classifier using the
likelihood (2) and the latent prediction rule is

ŷij |zi,zj ,U = I(σ(z̄⊤i U z̄j) > 0.5) = I(z̄⊤i U z̄j > 0), (3)

where I(·) is an indicator function that equals to 1 if predicate
holds otherwise 0. Since both U and Z are hidden variables,
we infer a posterior distribution q(U,Z) that has the minimal
expected log-logistic loss

R(q(U,Z)) = −
∑

(i,j)∈I

Eq[log p(yij |zi, zj , U)], (4)



which is a good surrogate loss for the expected link pre-
diction error,

∑
ij Eq[I(ŷij |U,zi,zj ̸= yij)], of a Gibbs clas-

sifier that randomly draws a model U from the posteri-
or distribution and makes predictions [McAllester, 2003;
Germain et al., 2009]. In fact, this choice is supported by
the observations that logistic loss has been widely used as a
convex surrogate loss for the misclassification error [Rosasco
et al., 2004] in the task of binary classification.

With the above Gibbs classifier, we define gRTM as solv-
ing the regularized Bayesian inference problem

min
q(U,Θ,Z,Φ)∈P

L(q(U,Θ,Z,Φ)) + cR(q(U,Z)) (5)

where L(q) = KL(q||p0(U,Θ,Z,Φ))−Eq[log p(W|Z,Φ)]
is an information theoretical objective; c is a positive regu-
larization parameter controlling the influence from link struc-
tures; and P is the space of normalized distributions. To bet-
ter understand the above formulation, we define the pseudo-
likelihood for links as

ψ(yij |zi, zj , U) = pc(yij |zi, zj , U) =
{eωij}cyij

(1 + eωij )c
, (6)

where ωij = z̄⊤i U z̄j is the discriminant function value. The
pseudo-likelihood is un-normalized if c ̸= 1. Then, prob-
lem (5) can be written as

min
q(U,Θ,Z,Φ)∈P

L(q(U,Θ,Z,Φ))− Eq[logψ(y|Z, U)] (7)

where ψ(y|Z, U) =
∏

ij ψ(yij |zi, zj , U). It can be shown
that the optimum solution of problem (5) or the equivalent
(7) is the posterior distribution with link information

q(U,Θ,Z,Φ) =
p0(U,Θ,Z,Φ)p(W|Z,Φ)ψ(y|Z, U)

ϕ(y,W)
.

where ϕ(y,W) is the normalization constant to make q as a
normalized distribution.

Therefore, by solving problem (5) or (7) we are in fact do-
ing Bayesian inference with a generalized pseudo-likelihood,
which is a powered version of the likelihood (2). The flex-
ibility of using regularization parameters can play a signifi-
cant role in dealing with imbalanced network data as we shall
see. For example, we can use a larger c value for the sparse
positive links, while using a smaller c for the dense nega-
tive links. This simple strategy has been shown effective in
learning classifiers [Akbani et al., 2004] and link prediction
models [Zhu, 2012] with highly imbalanced data. Finally, an
ad hoc generative story can be described as in RTMs, where
c can be understood as the pseudo-count of a link.

3 Augment and Collapse Sampling
For the generalized gRTMs or standard RTMs, posterior in-
ference is intractable. Previous solutions use variational tech-
niques with mean-field assumptions. For example, a vari-
ational EM algorithm was developed in [Chang and Blei,
2009] with the factorization assumption that q(U,Θ,Z,Φ) =
q(U)(

∏
i q(θi)

∏
n q(zin))

∏
k q(Φk) which can be too re-

stricted in practice. In this section, we present a simple
and efficient Gibbs sampling algorithm without making any
restricting assumptions on q. Our “augment-and-collapse”
sampling algorithm relies on a data augmentation reformu-
lation of the Bayesian inference problem (7).

3.1 Formulation with Data Augmentation
For the pseudo-likelihood ψ(y|Z,η), it is not easy to derive
a sampling algorithm directly. Instead, we develop our al-
gorithms by introducing auxiliary variables, which lead to a
scale mixture of Gaussian components and analytic condi-
tional distributions for Bayesian inference without an accep-
t/reject ratio. Our algorithm represents an extension of Pol-
son’s approach [Polson et al., 2012] to deal with non-trivial
Bayesian latent variable models for relational data analysis.
Let us first introduce the Polya-Gamma variables.

Definition 1 [Polson et al., 2012] A random variable X
has a Polya-Gamma distribution, denoted byX∼PG(a, b), if

X =
1

2π2

∞∑
i=1

gi
(i− 1/2)2 + b2/(4π2)

,

where (a, b) are positive parameters and each gi ∼ G(a, 1)
is an independent Gamma random variable.

Then, using the ideas of data augmentation [Polson et al.,
2012], we have the following results

Lemma 2 The pseudo-likelihood can be expressed as

ψ(yij |zi, zj , U) =
1

2c
e(κijωij)

∫ ∞

0

e(−
λijω

2
ij

2
)p(λij |c, 0)dλd,

where κij = c(yij−1/2) and λij is a Polya-Gamma variable
with parameters a = c and b = 0.

Lemma 2 indicates that the posterior distribution of gRTMs,
i.e., q(U,Θ,Z,Φ), can be expressed as the marginal of a
higher dimensional distribution that includes the augmented
variables λ. The complete posterior distribution is

q(U,λ,Θ,Z,Φ) =
p0(U,Θ,Z,Φ)p(W|Z,Φ)ψ(y,λ|Z, U)

ϕ(y,W)
,

where ψ(y,λ|Z, U) =
∏

ij exp
(
κijωij −

λijω
2
ij

2

)
p(λij |c, 0)

is the pseudo-joint distribution of y and λ.

3.2 Inference with Collapsed Gibbs Sampling
Although we can do Gibbs sampling to infer the complete
posterior q(U,λ,Θ,Z,Φ) and thus q(U,Θ,Z,Φ) by ig-
noring λ, the mixing rate would be slow due to the large
sample space. An effective way to reduce the sample space
and improve mixing rates is to integrate out the interme-
diate Dirichlet variables (Θ,Φ) and build a Markov chain
whose equilibrium distribution is the collapsed distribution
q(U,λ,Z). Such a collapsed Gibbs sampling procedure
has been successfully used in LDA [Griffiths and Steyvers,
2004]. For gRTMs, the collapsed posterior distribution is

q(U,λ,Z) ∝ p0(U)p(W,Z|α,β)ψ(y,λ|Z, U)

= p0(U)

K∏
k=1

δ(Ck + β)

δ(β)

D∏
i=1

δ(Ci +α)

δ(α)

×
∏
ij

exp
(
κijωij −

λijω
2
ij

2

)
p(λij |c, 0),

where δ(x) =
∏dim(x)

i=1 Γ(xi)

Γ(
∑dim(x)

i=1 xi)
, Ct

k is the number of times the

term t being assigned to topic k over the whole corpus and
Ck = {Ct

k}Vt=1; Ck
i is the number of times that terms be-

ing associated with topic k within the i-th document and



Ci = {Ck
i }Kk=1. Then, the conditional distributions used in

collapsed Gibbs sampling are as follows.
For U : Let z̄ij = vec(z̄iz̄⊤j ) and η = vec(U), where

vec(A) is a vector concatenating the row vectors of A. Then
we have ωij = η⊤z̄ij . For the common isotropic Gaussian
prior p0(U) =

∏
kk′ N (Ukk′ ; 0, ν2), we have

q(η|Z,λ) ∝ p0(η)
∏
ij

exp
(
κijη

⊤z̄ij −
λij(η

⊤z̄ij)
2

2

)
= N (η;µ,Σ), (8)

where the posterior mean is µ = Σ(
∑

ij κij z̄ij) and the co-
variance is Σ = ( 1

ν2 I +
∑

ij λij z̄ij z̄
⊤
ij)

−1. We can easily
draw a sample from this K2-dimensional Gaussian distribu-
tion. The inverse can be robustly done using Cholesky de-
composition. Since K is normally not large, the inversion is
relatively efficient, especially when the number of documents
is large.

For Z: The conditional distribution of Z is

q(Z|U,λ) ∝
K∏

k=1

δ(Ck + β)

δ(β)

D∏
i=1

δ(Ci +α)

δ(α)

∏
ij

ψ(yij |λ,Z)

where ψ(yij |λ,Z) = exp(κijωij − λijω
2
ij

2 ). By canceling
common factors, we can derive the local conditional of one
variable zin given others Z¬ as:

q(zkin = 1|Z¬, U,λ, win = t) ∝
(Ct

k,¬n + βt)(C
k
i,¬n + αk)∑

t C
t
k,¬n +

∑V
t=1 βt∏

j∈N+
i

ψ(yij |λ,Z¬, z
k
in = 1)

∏
j∈N−

i

ψ(yji|λ,Z¬, z
k
in = 1), (9)

where C ·
·,¬n indicates that term n is excluded from the corre-

sponding document or topic; and N+
i = {j : (i, j) ∈ I} and

N−
i = {j : (j, i) ∈ I} denote the neighbors of document i in

the training network. We can see that the first term is from the
LDA model for observed word counts and the second term is
from the link structures y.

For λ: Finally, the conditional distribution of the aug-
mented variables λ is a Polya-Gamma distribution

q(λij |Z, U) ∝ exp
(
−
λijω

2
ij

2

)
p(λij |c, 0) = PG

(
λij ; c, ωij

)
.(10)

The result is achieved by using the construction definition of
the general PG(a, b) class through an exponential tilting of
the PG(a, 0) density [Polson et al., 2012]. To draw samples
from the Polya-Gamma distribution, a naive implementation
of the sampling using the infinite sum-of-Gamma representa-
tion is not efficient and it also involves a potentially inaccu-
rate step of truncating the infinite sum. Here we adopt the ef-
ficient method proposed in [Polson et al., 2012], which draws
the samples through drawing samples from the closely related
exponentially tilted Jacobi distribution.

With the above conditional distributions, we can construct
a Markov chain which iteratively draws samples of η (i.e,
U ) using Eq. (8), Z using Eq. (9) and λ using Eq. (10),
with an initial condition. In our experiments, we initially set
λ = 1 and randomly draw Z from a uniform distribution.
In training, we run the Markov chain for M iterations (i.e.,
the so called burn-in stage). Then, we draw a sample Û as
the final classifier to make predictions on testing data. As we
shall see in practice, the Markov chain converges to stable
prediction performance with a few burn-in iterations.

3.3 Prediction
Since gRTMs account for both text contents and network
structures, we can make predictions for each of them condi-
tioned on the other [Chang and Blei, 2009]. For link predic-
tion, given a test document w, we infer its topic assignments
z in order to apply the classifier (3). This can be done with
a collapsed Gibbs sampler, where the conditional distribution
is p(zkn = 1|z¬n) ∝ ϕ̂kwn(C

k
¬n + αk); Ck

¬n is the times that
the terms in this document w assigned to topic k with the n-th
term excluded; and Φ̂ is a MAP estimate of the topics, with
ϕ̂kt ∝ Ct

k+βt. For word prediction, we infer the distribution
p(wn|y,D, Φ̂, Û) =

∑
k ϕ̂kwnp(z

k
n = 1|y,D, Û). This can

be done by drawing a few samples of zn.

4 Experiments
We present experiments on two public data sets of document
networks1. The Cora data [McCallum et al., 2000] consists
of abstracts of 2,708 computer science research papers, with
links between documents that cite each other. In total, the
Cora citation network has 5,429 positive links, and the dic-
tionary consists of 1,433 words. The WebKB data [Craven
et al., 1998] contains 877 webpages from the computer sci-
ence departments of different universities, with links between
webpages that are hyper-linked. In total, the WebKB network
has 1,608 positive links and the dictionary has 1,703 words.

Since many baseline methods have been outperformed by
the standard RTMs in [Chang and Blei, 2009] on the same
datasets, we focus on evaluating the effects of the various ex-
tensions in the generalized relational topic models (denoted
by Gibbs-gRTM) by comparing with its several special cases:

1. Var-RTM: the standard RTMs (i.e., c = 1) with a diag-
onal logistic likelihood and a variational EM algorithm
with mean-field assumptions [Chang and Blei, 2009];

2. Gibbs-RTM: the Gibbs-gRTM model with a diagonal
weight matrix for the logistic link likelihood;

3. Approx-gRTM: the Gibbs-gRTM model with fast ap-
proximation on sampling Z, by computing the link like-
lihood term in Eq. (8) for once and caching it for sam-
pling all the word topics in each document.

For Var-RTM, we follow the setup [Chang and Blei, 2009]
and use positive links only as training data; to deal with
the one-class problem, a regularization penalty was used,
which in effect injects some number of pseudo-observations
(each with a fixed uniform topic distribution). For Gibbs-
gRTM models, including Gibbs-RTM and Approx-gRTM, we
instead draw some unobserved links as negative examples.
Though subsamping normally results in imbalanced datasets,
the regularization parameter c in Gibbs-gRTM can effective-
ly address it, as we shall see. Here, we fix c at 1 for negative
examples, while we tune it for positive examples.

4.1 Quantitative Results
We first report the overall results using the measures of link
rank, word rank and AUC (area under ROC curve) of link

1http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html
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Figure 1: Results of various models with different numbers of topics on the Cora citation data set.
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Figure 2: Results of various models with different numbers of topics on the WebKB data set.

prediction, following the setups in [Chang and Blei, 2009].
Link rank is defined as the average rank of the observed links
from the held-out test documents to the training documents.
The word rank is defined as the average rank of the words in
testing documents given their links to the training documents.
The test documents are completely new that are not observed
during training. In the training phase all the words along with
their links of the test documents are removed.

Fig. 1 and Fig. 2 show the 5-fold average results and s-
tandard deviations of various models on both datasets with
respect to the variation of topic numbers. For the RTM mod-
els using collapsed Gibbs sampling, we randomly draw 1%
of the unobserved links as negative training examples, which
lead to imbalanced training sets. We can see that the general-
ized Gibbs-gRTM achieves significantly better results on link
rank and AUC scores than all other competitors. For word
rank, all the RTM models using Gibbs sampling perform bet-
ter than the RTMs using variational EM methods when the
number of topics is larger than 5. The outstanding perfor-
mance of Gibbs-gRTM is due to many factors. For example,
the superior performance of Gibbs-gRTM over the diagonal
Gibbs-RTM demonstrates that it is important to consider all
pairwise topic interactions to fit real network data; and the su-
perior performance of Gibbs-RTM over Var-RTM shows the
benefits of using the regularization parameter c in the regu-
larized Bayesian framework and a collapsed Gibbs sampling
algorithm without restricting mean-field assumptions. To sin-
gle out the influence of the proposed Gibbs sampling algorith-
m, we also present the results of Var-RTM and Gibbs-RTM
with c = 1, both of which randomly sample 0.2% unobserved
links as negative examples. We can see that by using Gibbs
sampling without restricting assumptions, Gibbs-RTM (neg
0.2%) outperforms Var-RTM (neg 0.2%) that makes mean-
field assumptions when the number of topics is larger than
10. We defer more careful analysis of other factors in the

Table 3: Split of training time over various steps.

Sample Z Sample λ Sample U
K=10 331.2 (73.55%) 55.3 (12.29%) 67.8 (14.16%)
K=15 746.8 (76.54%) 55.0 (5.64%) 173.9 (17.82%)
K=20 1300.3 (74.16%) 55.4 (3.16%) 397.7 (22.68%)

next section, including c and the subsampling ratio.
We also note that the cost we pay for the outstanding per-

formance of Gibbs-gRTM is on training time, which is much
longer than that of Var-RTM because Gibbs-gRTM hasK2 la-
tent features in the logistic likelihood and more training link
pairs, while Var-RTM has K latent features and only uses the
sparse positive links as training examples. Fortunately, we
can apply a simple approximate method in sampling Z as in
Approx-gRTM to significantly improve the training efficien-
cy, while the prediction performance is not sacrificed much.
In fact, Approx-gRTM is still significantly better than Var-
RTM in all cases, and it has comparable link prediction per-
formance with Gibbs-gRTM on the WebKB dataset, when K
is large. Table 3 further shows the training time spent on each
sub-step of the Gibbs sampling algorithm of Gibbs-gRTM.
We can see that the step of sampling Z takes most of the time
(> 70%); and the steps of sampling Z and η take more time
as K increases, while the step of sampling λ takes almost a
constant time when K changes.

4.2 Sensitivity Analysis
To get insights about the outstanding performance of Gibbs-
gRTM, we present a careful analysis of various factors.

Hyper-parameters c: Fig. 3 and Fig. 4 show the prediction
performance of the diagonal Gibbs-RTM and the generalized
Gibbs-gRTM on the Cora dataset with different c values. For
Gibbs-RTM, we can see that the link rank decreases and AUC
scores increase when c becomes larger and the prediction per-
formance is stable in a wide range (e.g., 2 ≤

√
c ≤ 6). But

the RTM model (i.e., c = 1) using Gibbs sampling doesn’t
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Figure 3: Performance of Gibbs-RTM with different c values
on the Cora dataset.
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Figure 4: Performance of Gibbs-gRTM with different c val-
ues on the Cora dataset.

perform well due to its ineffectiveness in dealing with high-
ly imbalanced network data. In Fig. 4, we can observe that
when 4 ≤ c ≤ 10, the link rank and AUC scores of Gibbs-
gRTM achieve the local optimum, which performs much bet-
ter than the performance of Gibbs-gRTM when c = 1. By
comparing Fig. 3 and Fig. 4, we can see that Gibbs-gRTM
generally needs a smaller c to get the best performance. This
is because by allowing all pairwise topic interactions, Gibbs-
gRTM is much more expressive than Gibbs-RTM; and thus
easier to over-fit when c gets large. For both Gibbs-RTM and
Gibbs-gRTM, the word rank increases slowly with the growth
of c. This is because a larger c value makes the model more
concentrated on fitting link structures and thus the fitness of
observed words sacrifices a bit. But if we compare with the
variational RTM (i.e., Var-RTM) as shown in Fig. 1, the word
ranks of both Gibbs-RTM and Gibbs-gRTM are much low-
er for all the c values we have tested. This suggests the ad-
vantages of the collapsed Gibbs sampling algorithm. In the
previous experiments, we has set c = 25 for Gibbs-RTM and
c = 4 for Gibbs-gRTM.

Subsample ratio: We analyze the influence of the sub-
sample ratio on the performance of Gibbs-gRTM on the Cora
data in Fig. 5. In total, less than 0.1% links are positive on the
Cora networks. We can see that by introducing the regular-
ization parameter c, Gibbs-gRTM can effectively fit various
imbalanced network data and the different subsample ratios
have a weak influence on the performance of Gibbs-gRTM.
Since a larger subsample ratio leads to a bigger training set,
the training time increases as expected.

Burn-In: We analyze the sensitivity of Gibbs-gRTM on
Cora dataset with respect to the number of burn-in iterations.
Fig. 6 show the performance of Gibbs-gRTM with different
numbers of burn-in iterations. We can see that the link rank
and AUC scores converge fast to stable optimum points with

5 10 15 20 25
300

350

400

450

500

550

600

Lin
k R

an
k

Topic Number

(a) link rank

5 10 15 20 25
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Topic Number

AU
C

 V
al

ue

SampleRatio=0.2%

SampleRatio=0.4%

SampleRatio=0.6%

SampleRatio=0.8%

SampleRatio=1%

(b) AUC score

5 10 15 20 25
0

500

1000

1500

2000

2500

3000

Tr
ai

n 
Ti

m
e 

(C
PU

 s
ec

on
ds

)

Topic Number

(c) train time

Figure 5: Performance of Gibbs-gRTM with different num-
bers of negative training links on the Cora dataset.
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Figure 6: Performance of Gibbs-gRTM with different burn-in
steps for Cora dataset.

about 300 iterations. The training time grows almost linearly
with respect to the number of burn-in iterations. We have
similar observations for the diagonal Gibbs-RTM model and
Approx-gRTM with fast approximation. In all the previous
experiments, we have set the burn-in steps at 400.

Finally, Gibbs-gRTM models are insensitive to the other
parameters (e.g., the Dirichlet prior α) and we omit the details
due to space limitation.

5 Conclusions and Discussions
We have presented a generalized relational topic model for
considering all pairwise topic interactions and dealing with
imbalanced network data by doing regularized Bayesian in-
ference. We also presented a simple “augment-and-collapse”
sampling algorithm without restricting assumptions on the
posterior distribution. Experiments on real network data
demonstrate significant improvements on prediction tasks.
The time efficiency can be significantly improved with a sim-
ple approximation method.

For future work, we are interested in making the sampling
algorithm scalable to large networks by using distributed ar-
chitectures [Smola and Narayanamurthy, 2010] or doing on-
line inference [Hoffman et al., 2010]. Moreover, the data
augmentation idea can be applied to solve the posterior infer-
ence problem of other Bayesian logistic latent variable mod-
els, such as supervised topic models [Zhu et al., 2013b].
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