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Abstract

Exponential family Harmoniums (EFH) are
undirected topic models that enjoy nice prop-
erties such as fast inference compared to di-
rected topic models. Supervised EFHs can
utilize documents’ side information for dis-
covering predictive latent topic representa-
tions. However, existing likelihood based es-
timation does not yield conclusive results.
This paper presents a max-margin approach
to learning supervised EFHs for joint latent
topic discovery and classification. The learn-
ing problem is efficiently solved with coor-
dinate descent. We demonstrate the advan-
tages of the max-margin approach on video
data classification and retrieval.

1. Introduction

Probabilistic topic models have shown great success
in extracting latent semantic structures of large col-
lections of documents. Although directed topic mod-
els (e.g., latent Dirichlet allocation (LDA) (Blei et al.,
2003)) have gained much more attention than undi-
rected topic models (e.g., Harmoniums (Welling et al.,
2004)), the undirected topic models do enjoy some nice
and rather orthogonal properties (e.g., fast inference
due to the encoded conditional independence), which
make them more preferable in some applications,
such as information retrieval (Welling et al., 2004)
and multi-modal video data analysis (Xing et al.,
2005). Recent work (Salakhutdinov & Hinton, 2009)
also demonstrates that an undirected topic model can
yield better generalization ability than LDA.

Most existing undirected topic models are unsuper-
vised and they are incapable in utilizing the widely
available side information, such as categories as-
sociated with images and rating scores associated
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with movie reviews. Recent work (Blei & McAuliffe,
2007; Wang et al., 2009; Lacoste-Julien et al., 2008;
Zhu et al., 2009) has shown that by utilizing such
supervised side information a directed topic model
can discover informative latent topic representations,
which may be more relevant to our applications (e.g.,
prediction). For undirected topic models, however,
very few work has been done to explore such useful
supervised information. The only exception is the hi-
erarchical harmonium model or tri-wing Harmonium
(TWH) (Yang et al., 2007). However, the likelihood-
based learning method as used in (Yang et al., 2007)
does not yield conclusive results, e.g., TWH does not
show improvements in classification or retrieval.

In this paper, we explore the arguably more discrimi-
native max-margin principle to train undirected topic
models (e.g., Harmoniums) when supervised informa-
tion is available. Our results on video data analysis
show that by doing max-margin training, supervised
Harmoniums can achieve better performance in classi-
fication and retrieval tasks. This better performance is
due to the discovered more discriminative latent topic
representations. Our work is motivated by and can
be viewed as an undirected counterpart of the recently
proposed MedLDA model (Zhu et al., 2009). The re-
sultant optimization problem is efficiently solved by
iteratively learning a multi-class SVM.

2. Harmonium Models

We begin with a brief recap of existing harmonium
models and setting up the ground for our approach.

The dual-wing harmonium (DWH) (Xing et al., 2005)
is an extension of EFH (Welling et al., 2004) for
inferring latent topics from heterogenous input data,
such as word counts and color histogram for video
analysis. The model of DWH is shown in Fig. 1, where
H := {Hk} are hidden variables and the variables on
each plane (e.g., X := {Xn}) represent one type of in-
put data. DWH defines a joint distribution p(x, z,h),
which is fully determined by the three between-layer
conditionals p(x|h), p(z|h) and p(h|x, z), according to
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Figure 1. (L) dual-wing and (R) hierarchical Harmoniums.

the constructive definition (Xing et al., 2005). More-
over, due to the conditional independency encoded in
DWH, each conditional has a factorized form (e.g.,
p(h|x, z) =

∏
k p(hk|x, z)), which makes the inference

easier, compared to directed topic models. Formally,
the joint distribution of DWH has a log-linear form

p(x,z,h) ∝ exp
{

∑

i

θ>i φ(xi)+
∑

j

η>j ψ(zj)+
∑

k

λ>

k ϕ(hk)

+
∑

ik

φ(xi)
>
W

k
i ϕ(hk)+

∑

ik

ψ(zj)
>
U

k
jϕ(hk)

}

, (1)

where φ(xi), ψ(zj) and ϕ(hk) are the features of xi,
zj and hk, respectively; and Θ := {θi, ηj , λk,W

k
i ,U

k
j }

denotes the parameters. Then, the conditional distri-
butions can be easily derived with shifted parameters

p(xi|h) = exp{θ̂>i φ(xi)−Ai(θ̂i)}

p(zj|h) = exp{η̂>j ψ(zj)−Bj(η̂j)}

p(hk|x, z) = exp{λ̂>k ϕ(hk)− Ck(λ̂k)}, (2)

where θ̂i=θi+
∑

k W
k
i ϕ(hk), η̂j=ηj+

∑
k U

k
jϕ(hk) and

λ̂k =λk+
∑

i W
k
i φ(xi)+

∑
j U

k
jψ(zj); and Ai, Bj and

Ck are log-partition functions.

As we have stated, the unsupervised EFH and DWH
ignore the widely available supervised information.
To incorporate such supervised information for dis-
covering predictive latent topic representations, the
tri-wing harmonium (TWH) or hierarchical harmo-
nium (Yang et al., 2007) was proposed. The model of
TWH is shown in Fig. 1 (R). To define a classification
model, TWH uses the latent representation H as
input data and defines the probability distribution

p(y|h) =
exp{V>f(h, y)}

∑
y′ exp{V>f(h, y′)}

, (3)

where f(h, y) is the feature vector whose elements from
(y − 1)K + 1 to yK are those of h and all others are
0. Accordingly, V is a stacking parameter vector of
T sub-vectors Vy, of which each one corresponds to a
class label y. Then, the joint distribution p(x, z,h, y)
has the same form as in Eq. (1), but with an additional
term of V>f(h, y) = V>

y h in the exponential.

Note that for brevity, we have used one multi-valued
discrete variable Y (y ∈ {1, · · · , T }) with a softmax
transformation to replace the original representation
that uses T conditionally independent binary vari-
ables. The subtle difference is analogous to the differ-
ence between a multi-class SVM (Crammer & Singer,
2001) and the approach that builds multiple binary
SVMs for multi-class classification.

In (Yang et al., 2007), parameter estimation is done by
maximizing the joint data likelihood. However, as re-
ported in (Yang et al., 2007), TWH does not yield im-
proved performance as compared to the naive method
that combines an unsupervised DWH for discovering
latent representations and an SVM for classification.
One of our motivations to develop an integrated large-
margin approach is to investigate the reason why the
supervised TWH does not yield improvements com-
pared to the unsupervised DWH with a downstream
combination of large-margin classifiers. As we shall
see, integrating the large-margin principle into an ob-
jective function for joint latent representation discov-
ery and classification can yield much better results,
which demonstrate the usefulness of supervision.

3. MMH: Max-margin Harmoniums

Now, we present the max-margin approach for learn-
ing supervised undirected topic models for classifica-
tion. For brevity, we consider the general multi-class
classification, where y ∈ {1, · · · , T }, as defined above.

3.1. Problem Definition

Likelihood-based approaches pay additional efforts in
defining a normalized probabilistic model as in Eq.
(3). An arguably more discriminative way to define
a classification model is to directly estimate the de-
cision boundary, which is the essential idea underly-
ing the very successful large-margin classifiers (e.g.,
SVMs). Here, we integrate the large-margin idea into
the learning of supervised harmonium models, analo-
gous to the recent development of max-margin super-
vised LDA (MedLDA) (Zhu et al., 2009).

More specifically, as in the log-linear model in Eq. (3),
we assume that the discriminant function F (y,h;V)
is linear, that is, F (y,h;V) = V>f(h, y), where f and
V are defined the same as above. For prediction, we
take the expectation over the latent variable H and
define the prediction rule as

y∗ := argmax
y

EH[F (H, y;V)], (4)

where the expectation is taken over the posterior dis-
tribution p(H|x, z) or its variational approximation.

Now, learning is to find an optimal V∗ that minimizes
a loss function. Here, we minimize the hinge loss, as
used in SVMs. Given training data D = {(xd, yd)}

D
d=1

,
the hinge loss of the predictive rule (4) is

Rhinge(V) :=
1

D

∑

d

max
y

[∆`d(y)−V
>
EH[∆fd(y)]],

where ∆`d(y) is a loss function that measures how dif-
ferent the prediction y is compared to the true label
yd, and EH[∆fd(y)] = EH[f(Hd, yd)] − EH[f(Hd, y)].
It can be proved that the hinge loss is an upper bound
of the empirical loss Remp := 1

D

∑
d∆`(y

∗
d).
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Applying the principle of regularized risk minimiza-

tion, we define the learning problem of MMH as

MMH : min
Θ,V

L(Θ) +
1

2
C1‖V‖22 + C2Rhinge(V), (5)

where L(Θ) := −
∑

d log p(xd, zd) is the negative data
likelihood of DWH and C1 and C2 are non-negative
constants, which can be selected via cross-validation.

The rationale underlying MMH is that: we want to
find a latent topic representation p(h|x, z) and a pre-
diction model V which on one hand tend to predict
as accurate as possible on training data, while on the
other hand tend to explain the data well. The regu-
larizor can prevent over-fitting.

3.2. Optimization

To solve the problem (5), we first make concrete in-
stantiations of the model distributions. However, our
procedure is generic for any instantiations.

Specifically, we consider the video analysis problem
(Xing et al., 2005), where each shot is represented
as a vector of word features x and color features z.
Each dimension xi is a Bernoulli variable that denotes
whether the ith term of a dictionary appears or not
in the shot, and each dimension zj is a real number
that denotes the normalized color histogram of the
keyframe in the shot. We assume each real-valued Hk

follows a univariate Gaussian distribution. Therefore,
we define the conditional distributions as

p(xi = 1|h) = 1/(1 + exp(−αi −Wi·h))

p(zj |h) =N (zj |σ
2
j (βj +Uj·h), σ

2
j )

p(hk|x, z) =N (hk|x
>
W·k + z

>
U·k, 1),

where Wi· and W·k denote the ith row and kth col-
umn of W, respectively. Alike for other notations.

With the above definitions, we have EH[f(H, y)] =
f(v, y), where v is a K-dimensional vector and
vk = x>W·k + z>U·k. The data likelihood is

p(x,z)∝exp
{

α>
x+β>

z−
1

2

∑

j

z2j
σ2
j

+
1

2

∑

k

(x>
W·k+z

>
U·k)

2}.

Variational approximation: Since the normal-
ization factor of p(x, z) is generally intractable
to compute, we apply the contrastive divergence
method (Xing et al., 2005) to derive a variational ap-
proximation of the negative log-likelihood − log p(x, z)
Lv(q0, q1) :=R(q0(x, z,h), p(x, z,h))−R(q1(x,z,h), p(x,z,h)),

where R(q, p) is the relative entropy, and q0 is a vari-
ational distribution with x and z clamped to their ob-
served values while q1 is a distribution with all vari-
ables free. For q, we make the naive mean field as-
sumption that q is a product of singleton marginal over
the variables1 q(x, z,h) =

∏
i q(xi)

∏
j q(zj)

∏
k q(hk).

1Unlike previous work (Xing et al., 2005; Yang et al.,
2007), we don’t need to assume the parametric forms of q.

Solving the approximate problem: Substituting
the variational approximation Lv into problem (5), we
get an approximate objective function L(Θ,V, q0, q1).
Then, we can apply co-ordinate descent to minimize
L(Θ,V, q0, q1). Specifically, for q0 and q1, we keep
(Θ,V) fixed and update each marginal as

q(xi) = p(xi|Eq(H)[H]), q(zj) = p(zj |Eq(H)[H])
q(hk) = p(hk|Eq(X)[X],Eq(Z)[Z])

(6)

For q0, (xi, zj) are clamped at their observed val-
ues, and only q(hk) is updated. The distribution q1
is achieved by performing the above updates starting
from q0. Several iterations can yield a good q1.

After we have inferred q0 and q1, parameter estimation
can be done by alternating between (1) keep Θ fixed
and estimate V: this problem is learning a multi-class
SVM, which can be efficiently done with existing
solvers; and (2) keep V fixed and estimate Θ: this
can be solved with sub-gradient descent, where the
sub-gradient is computed as

δαi = Eq0 [xi]− Eq1 [xi], δβj = Eq0 [zj ]− Eq1 [zj ]

δWik = Eq0 [xih
′

k]−Eq1 [xih
′

k]−C2

∑

d

I(ȳd 6= yd)
∑

i

Eq1 [xi]

δUjk = Eq0 [zjh
′

k]−Eq1 [zjh
′

k]−C2

∑

d

I(ȳd 6= yd)
∑

j

Eq1 [zj ]

where h′k = x>W·k + z>U·k; I(·) is an indicator func-
tion; and ȳd = argmaxy[∆`d(y) +V>

Eq1 [f(Hd, y)] is
the loss-augmented prediction. Based on the definition
of q0, the expectations Eq0 [xi] and Eq0 [zj ] are actually
the count frequency of xi and zj , respectively.

Note that in our integrated max-margin formulation,
the sub-gradients of W and U contain an additional
term (i.e., the third term) compared to the stan-
dard DWH with contrastive divergence approxima-
tion. This additional term introduces a regularization
effect to the latent topic model. If the prediction ȳ

differs from the true label, this term will be non-zero
and it biases MMH towards discovering a better rep-
resentation for prediction.

4. Experiments

We report some empirical results of MMH on video
data analysis. Our goals are to illustrate the benefits
of max-margin learning in MMH for both latent topic
discovery and final classification and retrieval tasks.
Due to space limitation, we report a part of the exper-
iments. More results are deferred to a full extension.

We use the TRECVID 2003 video data set (Xing et al.,
2005), which contains 1078 manually annotated video
shots that belong to 5 categories. Each shot is rep-
resented as a 1894-dim vector of text features and a
165-dim vector of HSV color histogram, which is ex-
tracted from the associated keyframe. We evenly split
this data set into training and testing sets.
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Figure 2. (Left) classification accuracy; and (Right) the average precision curve and the two precision-recall curves.

4.1. Classification

We compare the classification accuracy of MMH with
DWH, TWH, Gaussian Mixture model (GM-Mix),
Gaussian Mixture LDA (GM-LDA), and Correspon-
dence LDA (CorrLDA). See (Blei & Jordan, 2003) for
the details of the last three models. We use the
SVM struct 2 to solve the sub-step of learning the pa-
rameter V in MMH and build the SVM classifier for
unsupervised models (i.e., DWH, GM-Mix, GM-LDA,
and CorrLDA). Fig. 2 (left) shows the prediction ac-
curacy of different models on testing data when topic
numbers are changed from 5 to 40. We can see that
the max-margin based supervised Harmonium (i.e.,
MMH) performs consistently better than any other
methods. In contrast, the likelihood-based supervised
Harmonium (i.e., TWH) does not show any improve-
ments compared to the two-stage approach of com-
bining the unsupervised DWH for topic discovery and
an SVM for classification. These results demonstrate
that supervised information can help in discovering in-
formative latent topic representations that are more
suitable for prediction if the model is appropriately
learned, e.g., by using the discriminative max-margin
method. The reasons for the inferior performance of
the other models (e.g., CorrLDA and GM-Mix) are
provided in (Xing et al., 2005; Yang et al., 2007).

4.2. Retrieval

In this task, each test sample is treated as a query and
training samples are ranked based on the cosine simi-
larity between a training sample and the given query.
The similarity is computed based on the discovered la-
tent topic representations. A sample is considered rel-
evant to the query if it belongs to the same category
as the query. We evaluate the retrieval results by com-
puting the average precision (AP) and precision-recall
curve. Fig. 2 (right) compares MMH with four other
models when the topic number changes. Here, we show
the precision-recall curves when the topic number is set
at 15 and 20. We can see that for the AP measure,
MMH outperforms all other methods in most cases,

2http://svmlight.joachims.org/svm multiclass.html

and MMH consistently outperforms all the other meth-
ods in the measure of precision-recall curve.

5. Conclusions and Discussions

We have presented the max-margin supervised Har-
moniums (MMH), with a co-ordinate descent method
provided for solving the learning problem. By optimiz-
ing one single objective function, MMH integrates the
max-margin principle into the latent topic discovery
process. Empirical results on video data demonstrate
the promise of MMH on classification and retrieval.

Currently, we only present the results on classification
and retrieval tasks, and MMH only uses the unsuper-
vised DWH as the underlying topic model. In the full
extension, more experimental results on latent topic
discovery and the extension to using supervised TWH
as the underlying topic model will be provided. It
turns out that the latter extension is much easier than
that in directed topic models (e.g., MedLDA).
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