
Appendix

Appendix A: Derivation of the Upper Bound

We provide details on deriving the variational bound of the
expected hinge loss in (4). To simplify notations, we derive
the bound for a single data point. For a data set withN exam-
ples, a simple summation will give the final bound. Define
g(θ;x) := Ep[log φ(y|x̃,θ)]. We have
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where λ is the augmented variable, and c′ is a constant. Note
that the data augmentation at the first two equalities are ex-
act and does not incur any approximation. The approxima-
tion is from the assumption that q(λ) is independent of the
“corrupted” observations x̃. If there is no uncertainty in the
feature corruption (e.g., the corruption level in the dropout
(or blankout) noise is 0), the bound is tight. That is, the op-
timal solution of q will give the original hinge loss.

Appendix B. Proof of Lemma 1

Proof. Ignore the `2-norm regularizer, we have the objective
of the M-step:
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where γn := Eq[λ−1n ]. Using the definition of ζn := ` −
ynw

>x̃n and ignoring the constants, we have the simplified
objective function (again without the `2-regularizer):
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where yhn := ( 1
cγn

+ `)yn is the re-weighted label.
We now derive the equations to compute γn. Let x be a

random variable and y = f(x) is a function of x. Then,
we have the transformation rule of probability distributions,
p(x) = p(f(x))|df(x)dx |. For our case, let x = λn, and
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Since q(λ−1n ) is an inverse Gaussian distribution as shown
in Eq. (11), it is easy to get
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Combining the above results finishes the proof of Lemma 1.




