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Abstract

Image classification algorithms based on local features,
e.g., the Bag-of-Features (BoF) framework, have been
proved powerful on various image collections. However,
due to the well-known semantic gap between low-level fea-
tures and high-level image concepts, it still remains a chal-
lenging problem to learn the real semantics of the object-
s. One of the major difficulties comes from the ‘learning
bias’ of traditional image datasets. Objects in such dataset-
s often differ from each other evidently, so that successful
classification algorithms often pay more attention on object
detection rather than description.

In this respect, we study a special topic of image classifi-
cation, i.e., Fine-Grained Visual Categorization (FGVC). It
provides us good opportunities for a deep learning of high-
level concepts. However, traditional BoF model gives poor
performances on FGVC tasks, due to the lack of using fine-
grained properties. In this paper, we propose a novel model
named Hierarchical Part Matching (HPM) by developing
three new modules: (1) foreground inference and segmenta-
tion; (2) Hierarchical Structure Learning; and (3) Geomet-
ric Phrase Pooling. Using ground truth annotations, our
approach achieves better image representation, and over-
whelmingly outperforms the state-of-the-art algorithms on
a challenging FGVC dataset.

1. Introduction

Classification of objects in large-scale image datasets has
been a hot topic for many years. It is a basic way towards
image understanding and implies a wide range of applica-
tions. Today, one of the most popular methods of image
classification is to represent images with long vectors, and
use a standard classifier for training and testing.

Traditional Bag-of-Features (BoF) framework [5] is
widely used for image representation. It is a statistics-
based model which summarizes local features in a sparse
vector. Despite the great success of the model, it stil-
l suffers from the well-known semantic gap between low-
level features and high-level concepts [14], as well as the
poor object alignment on the images. Recent years, re-
searchers proposed new approaches to deal with the above
problems. Successful examples include extracting differ-
ent kinds of descriptors [2], building mid-level representa-
tion [3], spatial weighting [10] and so on. Systems with
these new modules produce state-of-the-art classification
performances [21], but the connection between image rep-
resentation and image semantics is still weak.

Fortunately, as evidences accumulate in Neuroscience,
researchers realize that human beings recognize objects us-
ing a combinational representation of local features [16].
It suggests a structural model for learning high-level con-
cepts. However, traditional image collections usually con-
tain large number of highly irrelevant concepts, which lim-
it the Computer Vision algorithms from learning structural
models with few training examples. Therefore, a promis-
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Figure 1. Comparison of the proposed HPM model (b) and the
Bag-of-Features (BoF) framework (a) (best viewed in color PDF).
HSL (Hierarchical Structural Learning, Section 5) and UCM-SG
(UCM-based Segmentation, Section 4) are proposed modules.

ing direction is to consider Fine-Grained Visual Categoriza-
tion (FGVC), in which we classify image categories sharing
similar semantics. We could learn a better structural model
using common features in all the categories.

However, the BoF framework gives poor performances
on FGVC tasks. The main reason comes from the lack of
object alignment, for which we need more ground truth in-
formation to conduct an accurate segmentation algorithm.
Fortunately, FGVC datasets usually provide extra annota-
tions on the object locations. We could use them to build a
much more powerful classification framework.

In this paper, we follow the rationale above and propose
the Hierarchical Part Matching (HPM) model for FGVC.
Based on the ground truth annotations, we claim a three-
fold contribution. First, we infer foreground and segment
it into semantic regions. In this way we can depress nois-
es and provide better object alignment. Second, we propose
the Hierarchical Structure Learning (HSL) algorithm to find
high-level concepts for object recognition. Third, we use
the Geometric Phrase Pooling (GPP) algorithm to capture
geometric features and combine them with texture ones.
Integrating all the modules above gives a powerful mod-
el, which outperforms the state-of-the-art algorithms signif-

icantly. Figure 1 shows the comparison of our framework
(HPM) with the popular BoF model.

The rest of this paper is organized as follows. Section 2
gives a survey of related works. In Section 3, we implement
a baseline system for FGVC. We introduce the Hierarchical
Part Matching (HPM) model by proposing three modules:
foreground inference and segmentation in Section 4, Hierar-
chical Structure Learning (HSL) in Section 5, and Geomet-
ric Phrase Pooling (GPP) in Section 6. After experimental
results are shown in Section 7, we draw the conclusions and
summarize our future works in Section 8.

2. Related Works

2.1. The Bag-of-Features Framework

The Bag-of-Features (BoF) framework [5] is one of the
most widely used models for image representation. The
flowchart of this model is illustrated in Figure 1(a).

Starting from raw image data, we first extract SIFT [13]
descriptors as local features. After that, a visual vocab-
ulary, or codebook, is trained using K-Means clustering.
Locality-sensitive Linear Coding (LLC) [20] is then used
for a sparse representation of the descriptors. We use max-
pooling for a statistical summarization, and Spatial Pyramid
Matching (SPM) [12] for a naive spatial context modeling.
Finally, the representation vectors are fed into a linear SVM
for training and testing.

2.2. Fine-Grained Visual Categorization

Traditional image classification tasks are aimed at clas-
sifying objects with large inter-class differences in seman-
tics. As an example, the Caltech101 Dataset [8] contains
101 concepts including animals, plants and man-made tool-
s. To achieve a good performance on such a task, more
attentions are paid on object detection and alignment rather
than learning a high-level structural model, which tends to
discriminate different objects with some robust features.

Oppositely, Fine-Grained Visual Categorization (FGVC)
is an emerging topic in Computer Vision. A fine-grained
image collection typically contains hundreds of categories
sharing similar semantics. For example, the Caltech-UCSD
Birds-200-2011 Dataset [19] contains 200 bird species, and
there are 120 different kinds of dogs in the Stanford Dogs
Dataset [11]. It is even difficult for a well-trained human
to recognize all these categories. Also, FGVC datasets usu-
ally provide extra annotations for object alignment. It be-
comes more important to extract discriminative features and
learn descriptive structures, in order to find the small inter-
class variations. Researchers proposed to use Visual At-
tributes [6], random templates [22], or hierarchical match-
ing [4] for FGVC, but the reported performances are still
poor compared with traditional classification tasks.
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Figure 2. Samples from the Caltech-UCSD Birds-200-2011
Dataset [19]. Upper: images from the same category (001. Black-
footed Albatross) showing large intra-class variation. Lower: im-
ages of different species showing small inter-class variation.

2.3. Foreground Inference and Segmentation

It is important to separate objects from background clut-
ters, especially in FGVC, in which all the categories share
similar background features. Interactive foreground infer-
ence is a well-studied topic in Computer Vision. A widely
used tool is the Grab-Cut [15] algorithm, which iteratively
infers the region of interest from a supervised mask matrix.
A standard implementation of Grab-Cut is contained in the
newest release of the OpenCV Library.

After the object is located, we further segment it into
parts for fine-grained alignment. In this respect, we need to
detect the boundaries, which are defined as pixels dividing
regions with different semantics. The Ultrametric Contour
Map (UCM) [1] is an unsupervised segmentation algorith-
m, which hierarchically divides an image into smaller and
smaller regions.

2.4. The Geometric Phrase Pooling Algorithm

The basic units in the BoF framework are visual words,
which are lack of semantics and produce poor pooling re-
sults. Visual phrases, or groups of visual words, are proved
very useful for image classification [23] and retrieval [25].

In [21], Xie et al. proposed a novel algorithm named
Geometric Phrase Pooling (GPP). By defining neighboring
groups of visual words as Geometric Visual Phrases (GVP),
it is possible to perform an efficient pooling algorithm to
capture both geometric and feature similarities. Experimen-
tal results reveal that GPP is a supreme spatial context mod-
eling approach towards better image representation.

3. Dataset and Baseline System
3.1. The Dataset

In our experiments, we use the Caltech-UCSD Birds-
200-2011 (CUB-200-2011) Dataset [19], which contains
200 bird species and 11788 images in total. Also, a human-
labeled bounding box and at most 15 part locations are
provided for each image. It is a very challenging dataset.
For the birds shown in Figure 2, it is even difficult for hu-

man beings to recognize them accurately. The main reason
for choosing this dataset is the ground truth part locations,
which are very important to our approach as they provide
key information for object alignment.

People might argue that annotating all the part locations
could be manually expensive, and debate on inferring the
bounding boxes and part locations automatically. However,
due to the poor performances of state-of-the-art part-based
detectors [9], we simply use the ground truth annotations to
bypass the difficulties in detection and focus on learning the
fine-grained concepts.

3.2. The Baseline System

We use the Bag-of-Features (BoF) framework as our
baseline system. Here, we build a mathematical notation
system for this model.

In the Birds Dataset, a human-annotated bounding box
is provided for each image. We use images within bounding
boxes, and resize them into the same size, i.e., width and
height do not exceed 300. Denote a raw image as I:

I = (aij)W×H (1)

where aij is the pixel at position (i, j), and it is a 3-
dimensional vector for RGB-images. Also, for each im-
age, there are at most L part locations (L = 15 for the
Birds Dataset). Denote the part locations as {pl}, where
l = 1, 2, . . . , L.

We extract SIFT descriptors [13] on the image and obtain
a set of local descriptors D:

D = {(d1,R1) , (d2,R2) , . . . , (dM ,RM )} (2)

where dm and Rm denote the description vector and oc-
cupied region of the m-th descriptor, respectively. M is
the total number of descriptors, which could be hundreds or
even thousands under dense sampling. The description vec-
tor dm is a D-dimensional vector, where D = 3× 128 =
384 using OpponentSIFT (OppSIFT) [17] on RGB-images.

After descriptors have been extracted, they are quantized
to be compact. For this purpose, we train a codebook C
using descriptors from the whole dataset. C is a B × D
matrix consisting of B vectors with dimension D, each of
which is called a codeword. The number of codewords, or
the codebook size B, is 2048 in our experiments.

Next, descriptors are represented using the codebook.
This process is called coding, for we encode each descriptor
as a sparse vector. We use the Locality-constrained Linear
Coding (LLC) [20] algorithm. Given a codebook with B
codewords, the quantization vector or feature vector for a
descriptor dm would be aB-dimensional vector wm, which
is named the corresponding visual word of descriptor dm.
W is the set of visual words:

W = {(w1,R1) , (w2,R2) , . . . , (wM ,RM )} (3)
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(a) (b) 

(c) (d) 

Figure 3. Foreground inference (best viewed in color PDF). (a)
Original image. (b) Bounding box (red) and small areas around
part locations (green). (c) Initial mask required by Grab-Cut, in
which black, red and green regions are definite BG, possible FG
and definite FG, respectively. (d) Inferred foreground (white).

Now, we aggregate the visual words for image represen-
tation. The max-pooling strategy calculates the maximal
responses on each codeword:

f = max
16m6M

wm (4)

where the notation maxm denotes the element-wise maxi-
mization. A 3-layer Spatial Pyramid Matching (SPM) [12]
follows by dividing the image into hierarchical subregions
for individual max-pooling and concatenating pooled vec-
tors as a supervector. Finally, the supervectors are fed into
a linear SVM for classification.

4. Foreground Inference and Segmentation

4.1. Foreground Inference

A notable property of fine-grained datasets is the high
similarity in backgrounds. Take the Birds Dataset as an ex-
ample. Water surfaces, trees and grasses appear in almost
all the categories. They introduce noises into the classifica-
tion model. Therefore, it is reasonable to infer foreground
regions before extracting robust descriptors.

Figure 3 illustrates the inference process. After collect-
ing ground truth annotations, i.e., the bounding box and part
locations, we use them to construct the initial mask matrix
for the Grab-Cut algorithm [15]. Set the pixels outside the
bounding box as definite background, inside as possible
foreground and the pixels around part locations as definite
foreground. With no more than 10 iterations, the Grub-Cut
algorithm gives the inference result.
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Figure 4. Construction of graph G. Left: a small patch on UCM,
where each grid is a pixel. Numbers on the grids are boundary
intensities. Right: constructed subgraph with edge weights shown
on the arcs. Step penalty λ is 0.01.

4.2. UCM-Based Graph Construction

Since different birds vary a lot in their poses, naive
Spatial Pyramid produces poor matching accuracies. To
achieve better object segmentation, we need to define a dis-
tance metric for each pair of pixels. For this, we first calcu-
late the Ultrametric Contour Map (UCM) [1], which gener-
ates closed contours with hierarchically decreasing bound-
ary intensities, and cuts the image into smaller and smaller
regions. Denote the intensity map as U:

U = (uij)W×H (5)

where uij is the boundary intensity at position (i, j).
Based on UCM, we construct a directed graph G =

{V, E}, where V = {vij} consists of all the pixels, and
E is compromised of edges connecting adjacent pixels:

E = {(vij → vi′j′) | |i− i′|+ |j − j′| = 1} (6)

The weight of an edge is related to the boundary intensity
at the tail node (pixel):

w(vij → vi′j′) = ui′j′ + λ (7)

Here, λ is called the step penalty, which takes the geomet-
ric distance into consideration. Figure 4 shows a sample
graph G constructed on a small patch.

After the graph is complete, we take the part locations
as source nodes, and calculate their shortest paths to oth-
er nodes (pixels). The Dijkstra algorithm gives a solution
withinO(LN log(N)) time, where L is the number of part-
s and N = W ×H is the image size. Denote the distances
as {d(pl, vij)}, where pl is the l-th part location, and vij is
an arbitrary node in graph G. For later convenience, we de-
fine {d(0, vij)} as the background distances, which takes
0 for background nodes and +∞ for foreground ones.

4.3. Segmentation Strategies

The segmentation process is to assign each node (pixel)
to one of the part locations. Denote an assignment as S:

S = (sij)W×H (8)
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where sij is the index of assigned part location of node vij ,
0 6 sij 6 L, and sij = 0 implies a background node. We
minimize the cost function:

f(S) =
∑
i,j

d
(
psij , vij

)
(9)

with an independent minimization on each node (pixel):

s?ij = arg min
06l6L

d(pl, aij) (10)

This is called the Naive Segmentation (NS) strategy.
To achieve better segmentation results, we need to slight-

ly modify the cost function:

• The reject option assigns some foreground nodes to
background by setting d(0, vij) ≡ τ for foreground
nodes, where τ is a fixed background penalty.

• The discontinuous penalty penalizes the neighboring
nodes which are assigned to different parts. A fixed
value η is added for each pair of such nodes.

Taking both modifications gives the renewed cost function:

f(S) =
∑
i,j

d
(
psij , vij

)
+

∑
|i−i′|+|j−j′|=1

sij 6=si′j′

η (11)

Directly minimizing (11) is intractable. We exploit a
two-step algorithm for an approximate optimization.

1. Directly use (10) on the modified distances for an ini-
tial minimization.

2. Use an iterative algorithm to refine the segmentation
on its discontinuity. Search for each connective branch
on graph G, and try to assimilate it into one of its neigh-
boring regions. If the modification gives a smaller cost
function value, we keep it going on. The iteration stops
if no change is performed in a complete pass.

The improved algorithm is named the Refined Segmen-
tation (RS) strategy. Figure 5 illustrates the difference be-
tween the above two segmentation methods.

5. Hierarchical Structure Learning
Denote the set of all pixels as I. Segmentation algo-

rithm divides I into at most L foreground parts and one
background region:

I =

L⋃
l=0

Il (12)

where Il represents the l-th body part for l > 0, and I0 is
the background. All the segmented regions are exclusive,
i.e., Il1 ∩ Il2 = ∅ for l1 6= l2.

(a) (b) (c) 

Figure 5. Segmentation illustration. (a) inferred foreground and
UCM (darker pixel, larger intensity). (b) heatmap of distance from
‘beak’, ‘breast’, ‘back’ and ‘tail’, respectively. (c) Naive (above)
and Refined (below) Segmentation. Refined strategy produces
better classification results (see Table 2) by assigning ambiguous
boundary pixels to background and removing small noisy patches.

I1, I2, . . . , IL are low-level concepts for object under-
standing, i.e., ‘nape’, ‘left eye’, ‘right leg’, etc. Semanti-
cally, there exist high-level concepts. For example, the con-
cept ‘eyes’ consists of ‘left eye’ and ‘right eye’, and ‘head’
is compromised of ‘forehead’, ‘crown’, ‘beak’, and ‘eyes’.
Learning a hierarchy to organize low-level parts could be
useful for a better structural model.

Close geometric locations and similar appearance fea-
tures are necessary conditions for combining parts. There-
fore, we need to quantize the geometric and feature dis-
tances for pairwise parts. Recall that for each image,
we have a set of descriptors D as defined in (2), at
most L part locations p1, p2 . . . , pL and segmented regions
I1, I2 . . . , IL obtained from the previous section. For an
image in which Il1 and Il2 are both non-empty, the geo-
metric distance between them is formulated as:

distg(Il1 , Il2) =
[(
pXl1 − p

X
l2

)2
+
(
pYl1 − p

Y
l2

)2]1/2
(13)

and the feature distance is calculated as:

distf(Il1 , Il2) =

∥∥∥∥∥ avg
Rm∩Il1 6=∅

dm − avg
Rm∩Il2 6=∅

dm

∥∥∥∥∥
2
(14)

Integrating (13) and (14) yields the total distance:

dist(Il1 , Il2) =
distg(Il1 , Il2)
max distg(I)

+
distf(Il1 , Il2)
max distf(I)

(15)

where both distances are normalized. Finally, we average
the total distance over all the images and obtain the part
distance for l1 and l2.

dist(l1, l2) = avg
Il1∩Il2 6=∅

dist(Il1 , Il2) (16)
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Table 1. As the learning parameter µ increases, the learned struc-
tures are more and more complex. Bolded are the semantically
nameable parts learned by our algorithm.

No. µ Learned Hierarchical Structures
#0 0.0 No high-level parts are learned.
#1 0.1 eyes (left/right eye), legs (left/right leg),

wings (left/right wing).
#2 0.3 eyes, legs, wings, neck (nape/throat).
#3 0.5 eyes, legs, wings, neck,

head (beak/crown/forehead/eyes),
body (back/belly/breast/tail).

#4 1.0 eyes, legs, wings, neck, head, body,
(wings/legs), (body/wings/legs), ALL.

A combining operation C is a set of existed parts:

C = {c1, c2, . . . , cT } (17)

where 2 6 T 6 L. The cost for the operation is:

cost(C) =
∑

16i<j6Tdist(ci, cj)
1
2T (T − 1)

(18)

Now, the Hierarchical Structure Learning (HSL) al-
gorithm is very easy to implement.

1. Initialization. Start from the original part set P =
{1, 2, . . . , L} and a pre-defined learning parameter µ.

2. Learning. Enumerate all the subsets P ′ ⊆ P , and
calculate the cost function c = cost(P ′). If c 6 µ,
then take P ′ to generate a learned part.

3. Construction. Organize all the original and learned
parts as a hierarchical structure.

Denote {I1, I2, . . . , IL̃} as all the original and learned part-
s, where L̃ > L is the number of parts.

Obviously, the learning parameter µ controls the ac-
ceptance degree of our algorithm: the learned structure be-
comes more and more complex as µ increases. We list some
values of µ and the learned structures in Table 1. It is obvi-
ous that the learned parts are semantically nameable (bold-
ed in the table). Also, the learned structure is hierarchical
when µ = 0.5 and µ = 1.0. Both the above observations
reveal the effectiveness of our algorithm.

6. Geometric Pooling Strategy
We return to the original image I. After descriptor ex-

traction and feature coding, we obtain the set of descriptors
D defined in (2) and the corresponding set of visual word-
s W defined in (3), respectively. Also, we have at most L̃
regions {I1, I2, . . . , IL̃} for each image.

(a) (b) 

Figure 6. Examples illustrating Geometric Phrase Pooling (best
viewed in color PDF). Upper: images differing from each other
mainly in ‘crown’ shape (left pair) and ‘tail’ length (right pair).
Middle: examples of Geometric Visual Phrases (GVP), in which
red circles are central words and yellows are side ones. The GVP
in the last case is irregular, for the definition limits the side words
to the same region as the central word (the long ‘tail’ in this case).
Bottom: the regions (of same color) with largest discriminativity
increases. The differences in ‘crown’ and ‘tail’ are detected.

The Naive Pooling (NP) strategy summarizes each re-
gion by finding all the related features:

Wl = {(wm,Rm) | Rm ∩ Il 6= ∅} (19)

and performing max-pooling:

f
(W)
l = max

(wm,Rm)∈Wl

wm (20)

Despite its simplicity, the Naive Pooling strategy fails
to capture the geometric information, which could be very
useful for fine-grained recognition. Figure 6 shows such ex-
amples with dominant geometric features, such as ‘crown’
shape and ‘tail’ length.

The Geometric Phrase Pooling (GPP) algorithm [21] is
efficient at spatial context modeling. It defines Geometric
Visual Phrases (GVP) as neighboring word groups, and per-
forms an efficient pooling algorithm to enhance the correla-
tion between local word pairs. In FGVC, GPP is performed
within each segmented region Il and the corresponding set
Wl. For each visual word (wm,Rm) inWl, we search for
its K nearest neighbors inWl and form a word group:

Pl,m = {(wl,m,0, ll,m,0) , . . . , (wl,m,K , ll,m,K)} (21)

Pl,m is the m-th Geometric Visual Phrase (GVP) in Wl,
in which wl,m,0 = wm is the central word, and others are
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side words. K is the order of Pl,m, which is 20 as in [21].
Figure 6 illustrates some examples of visual phrases.

The Geometric Phrase Pooling (GPP) algorithm calcu-
lates the following representation vector on Pl,m:

pl,m = wl,m,0 + max
16k6K

wl,m,k (22)

and summarizes all the phrases using max-pooling:

f
(P)
l = max

(wm,Rm)∈Wl

pl,m (23)

In [21], Xie et al. claimed that GPP actually finds those
local features both similar and adjacent, and enhances the
responses in their common stimulated dimensions. Here,
we conduct an experiment to show the effectiveness of GP-
P. We perform GPP on the image pairs shown in Figure 6,
and calculate the distance φl between the corresponding re-
gions using visual words or phrases. φl is considered as the
model’s discriminativity metric:

φ
(W)
l =

∥∥∥f (W)
l (I1)− f

(W)
l (I2)

∥∥∥2
2

(24)

φ
(P)
l =

∥∥∥f (P)
l (I1)− f

(P)
l (I2)

∥∥∥2
2

(25)

We calculate the discriminativity increase φ(P)
l −φ

(W)
l , and

circle out regions with largest values in Figure 6. The results
reveal that GPP actually discovers useful geometric features
and combines them with the texture features.

7. Experiments
This section gives classification results on the Caltech-

UCSD Birds-200-2011 Dataset [19]. To make comparison,
we keep the same settings as the state-of-the-art algorithms:

• Local descriptors. We use the VLFeat [18] library to
extract OppSIFT descriptors [17]. Step size and scale
of the sliding window are 5 and 6, respectively.

• Codebook learning. We train a 2048-entry codebook
with K-Means clustering. The number of descriptors
collected for training is around 2 million.

• Coding and pooling. We use LLC [20] for coding,
and max-pooling for statistics.

• Classification. A linear SVM, LibLinear [7], is used
for training and testing. The penalty parameter C for
slack variables is 10.

• Accuracy evaluation. We use random data split to
test our algorithm. The random selection is repeated
10 times and we report the average accuracies.

Table 2. Classification accuracies (%) before and after fore-
ground inference and segmentation. FG Inference: a 3-layer SP-
M on the foreground. Naive and Refined Segmentation: using
naive or refined segmented regions as spatial bins for pooling.

# training 5 10 20 40

Baseline 13.64 20.25 28.36 37.77
FG Inference 19.25 27.66 37.08 46.59
Naive Seg. 27.01 38.71 50.90 60.92
Refined Seg. 28.55 40.46 52.52 62.16

Table 3. The HSL algorithm produces higher classification accu-
racies (%). See Table 1 for details of the structures. Structure #0,
i.e., No Structure, is just the Refined Segmentation in Table 2.

# training 5 10 20 40

Structure #0 28.55 40.46 52.52 62.16
Structure #1 29.29 41.62 53.36 62.74
Structure #2 29.75 42.03 53.55 62.59
Structure #3 30.33 42.66 53.94 63.21
Structure #4 27.38 38.64 50.22 59.71

Table 4. Classification accuracies (%) using Geometric Phrase
Pooling. No Phrase is the same as Structure #3 in Table 3. In
brackets are numbers of coding bases for central and side words.

# training 5 10 20 40

No Phrase 30.33 42.66 53.94 63.21
GPP(5,5) 31.69 43.80 55.26 64.65
GPP(5,10) 32.23 45.10 56.11 65.26
GPP(5,20) 34.13 47.29 58.60 67.14
GPP(5,40) 36.09 48.87 60.56 69.07

7.1. Model and Parameters

First, we test foreground inference and segmentation.
Results are listed in Table 2. After filtering noises and con-
ducting better spatial alignment, we obtain much better per-
formances beyond the baseline system. The Refined Seg-
mentation (RS) strategy gives the best performance, and is
preserved for the next step.

Second, we test the Hierarchical Structure Learning (H-
SL) algorithm. We use the learned structures in Table 1 and
list the corresponding results in Table 3. Using high-level
concepts as extra bins, we improve image representation
and achieve better accuracies. Exceptions come from the
last case (Structure #4) where the structure is too complex.
Therefore, we preserve Structure #3 for the next step.

Finally, we test the Geometric Phrase Pooling algorith-
m. Results are listed in Table 4. We see that GPP indeed
provides a better solution for spatial context modeling. We
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Table 5. Classification accuracies (%) on the Birds Dataset using
random data split. LLC [20] is the baseline system.

# training 5 10 20 40

Wah [19] 10.05 - - -
Wang [20] 13.64 20.25 28.36 37.77
Xie [21] 15.34 22.91 31.01 40.43
Ours (Mean) 36.09 48.87 60.56 69.07
Ours (StdDev) ±0.31 ±0.60 ±0.50 ±0.48

Table 6. Classification accuracies (%) on the Birds Dataset using
the fixed training/testing data split provided by [19].

Wah [19] Zhang [24] Wang [20] Xie [21] Ours
17.31 24.21 33.91 36.33 66.35

choose 5 and 40 as the numbers of coding bases for central
and side words, respectively.

It is reasonable to conduct a comparison between our
Hierarchical Part Matching (HPM) model and the Spatial
Pyramid Matching (SPM) [12]. SPM divides an image in-
to fixed patches and uses a fixed hierarchical structure to
organize them. However, given ground truth annotations,
it is possible to perform better object alignment, and learn
semantical hierarchical structures on the segmented region-
s. HPM is not only a supporter of SPM which proves that
well-aligned parts and well-organized structures are useful
for discrimination, but also a contradictor showing that us-
ing global features is not always better (See Structure #3 and
#4 in Table 1 and 3. #4 uses global features and produces
much lower accuracies than #3).

The length of image representation vectors in HPM is 21
(total number of parts in Structure #3) times the codebook
size, which is the same as a 3-layer SPM.

7.2. Comparison to Other Works

Finally, we compare our system (HPM) with existing
works using ground truth part annotations. We inher-
it the best parameters from the previous part, i.e., Refined
Segmentation, Structure #3 in Table 1, and numbers of cod-
ing bases (5,40) for GPP. Table 5 and 6 show the results on
random and fixed data split, respectively. HPM overwhelm-
ingly outperforms the existing algorithms.

8. Conclusions and Future Works
In this paper, we present a novel framework named Hier-

archical Part Matching (HPM) for Fine-Grained Visual Cat-
egorization (FGVC). HPM contains three novel modules to
enhance the BoF model. First, using the Grab-Cut algorith-
m and the Ultrametric Contour Map, we develop an effec-

tive algorithm for foreground inference and segmentation.
It generates more accurate object alignment, which lays the
foundation of FGVC. Second, we propose the Hierarchi-
cal Structure Learning (HSL) algorithm for finding high-
level concepts beyond basic parts. The learned parts are se-
mantically nameable. Third, we use the Geometric Phrase
Pooling (GPP) algorithm for spatial context modeling. In-
tegrating all the modules makes HPM a powerful model for
FGVC tasks, which shows notable improvements over the
existing works on the Birds Dataset.

Despite the leap in classification accuracies, our HPM
model is still imperfect. Foreground inference and segmen-
tation algorithms suffer from clutters as well as illuminance
changes, and produce poor results on about 20% images.
This introduces noises into our model. Also, biological tax-
onomy provides a scientific classification system for all the
bird species (available on Wikipedia). It implies a hierarchi-
cal classifier, on which we could apply various techniques
such as Transfer Learning for fine-grained understanding.
We will investigate these problems in our future works and
look forward to a better model for FGVC tasks.
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