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Fine-Grained Image Search

Lingxi Xie, Jingdong Wang, Bo Zhang, and Qi Tian, Senior Member, IEEE

Abstract—Large-scale image search has been attracting lots
of attention from both academic and commercial fields. The
conventional bag-of-visual-words (BoVW) model with inverted
index is verified efficient at retrieving near-duplicate images,
but it is less capable of discovering fine-grained concepts in
the query and returning semantically matched search results.
In this paper, we suggest that instance search should return
not only near-duplicate images, but also fine-grained results,
which is usually the actual intention of a user. We propose
a new and interesting problem named fine-grained image
search, which means that we prefer those images containing the
same fine-grained concept with the query. We formulate the
problem by constructing a hierarchical database and defining an
evaluation method. We thereafter introduce a baseline system
using fine-grained classification scores to represent and co-index
images so that the semantic attributes are better incorporated in
the online querying stage. Large-scale experiments reveal that
promising search results are achieved with reasonable time and
memory consumption. We hope this paper will be the foundation
for future work on image search. We also expect more follow-up
efforts along this research topic and look forward to commercial
fine-grained image search engines.

Index Terms—Applications, evaluation, fine-grained image
search, problem formulation, semantic indexing.

I. INTRODUCTION

ECENT years have witnessed the development of Web-

scale content based image retrieval (CBIR). Based on the
Bag-of-Visual-Words (BoVW) model and the inverted index
structure, the state-of-the-art image search engines are capable
of indexing billions of images and returning results in millisec-
onds. Although different approaches have been proposed to im-
prove near-duplicate search performance, we still see few search
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Fig. 1. (above) Typical fine-grained search query and three types of candidate
images (semantically matched, semantically similar, and irrelevant). (below)
The comparison between our results and those of Google/Baidu reveals that
our approach might deal with fine-grained concepts in the query which is not
captured by conventional search engines.

engines which retrieve images based on the analysis of fine-
grained concepts in the query.

In fact, it is a common requirement that an image search
engine should return fine-grained results, i.e., those candidates
containing exactly the same semantic concept as the query
image. For example, when a user uploads a bird or flower
photo he/she just took, retrieving those images containing
exactly matched bird or flower species helps a lot to his/her
understanding; a user could also benefit from the search result
of a car if it contains cars of the same brand/prototype with the
query image.

Based on the observations above, we propose a new re-
search topic, fine-grained image search, which differs from
conventional cases in that candidate images might have mul-
tiple levels of relevance to the query. We take the query shown
in Fig. 1 (groove billed ani, a bird species) as an example.
We desire to retrieve other images also containing the same
species, i.e., the groove billed ani. If we fail to find the exactly
matched images, we still prefer those candidates with sim-
ilar semantics, i.e., containing another bird species such as a
Brewer blackbird, to the irrelevant ones containing, say, dogs,
flowers or clutters.

1520-9210 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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It is worth noting that fine-grained image search is very chal-
lenging especially in a large database. As shown in Fig. 1, com-
mercial search engines such as Google and Baidu often fail
in such cases, due to the lack of semantic analysis but simply
parsing an image as a set of local or global features. Here, we
are not claiming that our algorithm works better than Google or
Baidu. Actually, the comparison is not fair since we only focus
on a handful of basic-level categories, but real-world commer-
cial search engines must deal with many other concepts in all
the Web images. We are just demonstrating the difference be-
tween fine-grained and conventional image search tasks, which
distinguishes this work from the previous ones not considering
fine-grained concepts in the search process.

In this paper, we formulate the fine-grained image search
problem by constructing a hierarchical database, and defining
an evaluation method to judge the search quality. We propose a
baseline algorithm which uses fine-grained classification scores
to represent images’ semantic attributes, and co-indexes im-
ages into an inverted file according to their distance in the at-
tribute space. An efficient online querying stage is also designed
to lookup the indexed structure in real-time. Experimental re-
sults reveal the promising performance of our approach. We will
also release our benchmark database and expect more research
efforts to be triggered in the future.

The main contribution of this paper could be summarized in
three aspects.

* New problem. We formulate fine-grained image search,
which is a new problem in the research field of multimedia
information retrieval. To the best of our knowledge, this
problem has not been well studied in the previous litera-
tures. We expect it could become a new research direction
which brings new insights and novel applications.

* New dataset. We construct a new database based on
several basic image classification and object retrieval
datasets. Both fine-grained and near-duplicate concepts
are contained, making it difficult for conventional algo-
rithms to return satisfying search results. We will make
the database publicly available, and gradually add new
images to enlarge the database.

* New framework. Based on state-of-the-art image classifi-
cation and object retrieval techniques, we design a new
framework for fine-grained image search. The flowcharts
of both offline indexing and online querying are signifi-
cantly different with conventional algorithms. Our frame-
work serves as a very first trial towards this challenging
problem, and also provides a baseline performance which
is convenient to be compared with future works.

The remainder of this paper is organized as follows. The re-
lated works are briefly reviewed in Section II. We then formulate
the fine-grained image search problem in Section III, and pro-
pose the search framework in Section IV. After experimental
results and search examples are provided in Section V, we draw
the conclusions in Section VI.

II. RELATED WORKS

Our work is closely related to several popular research topics,
including, large-scale image search, fine-grained object recog-
nition, semantic co-indexing and semantic ontology.
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A. Large-Scale Image Search

Large-scale image search is aimed at retrieving query-rele-
vant candidates from a large image corpus. One of the most
popular and efficient approaches is based on the Bag-of-Vi-
sual-Words (BoVW) model and the inverted index structure
[1]. Local descriptors such as SIFT [2], [3] and SURF [4] are
extracted on the detected interest points [2]-[6]. A large vi-
sual vocabulary (codebook) is trained using the hierarchical [7]
or approximate [8] versions of K -Means, and the descriptors
are quantized onto the codebook as visual words. Codebook
training-free approaches [9], [10] have also been proposed for
quantization. The inverted index [1], [83] is then built as an ef-
ficient data structure representing the relationship between im-
ages and visual words.

Naive online querying stage ranks the candidates according
to their number of feature matches to the query image. Due
to the fact that the quantization loss greatly reduces the dis-
criminative power of local features, the initial image search
results usually suffer from low precision and/or recall. Various
post-processing techniques are therefore designed to improve
the initial search quality, including false match filtering [8],
[11], Hamming embedding [12], soft assignment on visual
words [13], query expansion [14], [15], query adaptation [16],
prototype extraction [17], selecting high-quality features [18],
[19], contextual weighting [20]-[22], sparsity-constrained mea-
surement [23], distance learning [24], visual phrases [25], [26],
feature similarity adaption [27], and diffusion-based methods
[28]-[30]. It is also suggested to improve image retrieval with
unlabeled training data [31].

B. Fine-Grained Object Recognition

Object recognition tasks often require capturing global prop-
erty of images, therefore the Bag-of-Visual-Words (BoVW)
model with feature pooling strategy [32] is often adopted. Local
descriptors such as SIFT [2], [33] and HOG [34] are extracted
on small patches, and a codebook is trained using K-Means
[35] or GMM clustering [36]. Sparse coding [37], [35] or
Fisher vector encoding [36] algorithms are used to quantize the
descriptors onto the feature space, and spatial pooling strategies
[38]-[40] are adopted to summarize local features into long
vectors [41]. Generalized machine learning algorithms such as
SVM are used for training and testing.

In the fine-grained classification tasks [42], [43], the main dif-
ficulty arises from the surprising inter-class similarity, therefore
it becomes more important to uncover really useful patches on
the objects [44]. One can see many state-of-the-art algorithms
targeting at using visual attributes [45], pose estimation [46],
template matching [47], pair-wise [48] and/or part-based [49],
[50] pooling models, and geometric information [51], [52] for
part segmentation.

C. Semantic Co-Indexing

In the fine-grained search tasks, it is not always true that
the candidate images share a number of common visual words
with the query. In this case, conventional BoVW model with
inverted index might fail to retrieve really relevant candidates.
Consequently, it requires other higher-level clues to help de-
scribing the visual properties of images. Intuitive solutions
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come from summarizing local features into global representa-
tions [53], leveraging recognition scores [54] or referring to
privileged information [55].

Semantic co-indexing is aimed at integrating other types of
clues [56] into the inverted index structure, so that the online
querying stage could benefit from these additional information
to improve the search accuracy. It is suggested in [54] to use
Hashing strategy for retrieving the approximate nearest neigh-
bors in the attribute space efficiently, and [57] proposes to store
the semantically similar pairs in the inverted index beforehand.
Some authors also suggest to use feature fusion methods [58],
[59] for integrating multiple types of information together.

D. Semantic Ontology

In computer science and information science, an ontology is
a formal naming and definition of the types, properties, and in-
terrelationships of the entities that really or fundamentally exist
for a particular domain of discourse. An ontology compartmen-
talizes the variables needed for some set of computations and
establishes the relationships between them.

The field of computer vision creates ontologies to limit com-
plexity and organize information. Especially, ontology is widely
adopted to describe the category of a namable object. For ex-
ample, the ImageNet [60] database is constructed based on the
WordNet project [61] and its related works [62], [63]. Each leaf
node of the WordNet concept tree correspond to a fine-grained
object category, such as groove-billed ani (a bird species) or
golden retriever (a dog breed), and basic-level concepts corre-
spond to the nodes with higher levels.

Ontology can also apply to problem solving [64]. Semantic
ontology could be used for bridging the semantic or intent gap
between query and candidates, and many researchers have been
adopting this idea to define and/or improve the performance of
visual information retrieval [65]-[67]. A survey on this topic
could be found in [68].

III. PROBLEM FORMULATION

This section formulates fine-grained image search. Since this
is a new problem which is less studied before, we first dis-
cuss the goal of the problem, and then construct a new database
and suggest a hierarchical scoring function to evaluate different
search engines.

A. Fine-Grained Image Search

Conventional image search problems usually require re-
trieving near-duplicate or partial-duplicate candidates, such
as a landmark building (Oxford [8]), a logo (FlickrLogo-32
[69]) or a reoccurring object (UKBench [7]). In those cases,
a candidate image is either relevant or irrelevant to the query.
Fine-grained image search, however, queries the database with
an image containing a fine-grained concept, such as a groove
billed ani (a bird species) or a golden retriever (a dog breed). In
this case, there might exist multiple levels of relevance between
query and candidate images.

Throughout this paper, we use three levels to model the rel-
evance between query and candidates. Two images are named
semantically matched, if they contain exactly the same semantic
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Fig. 2. Three-level hierarchical database for fine-grained image search.

concept, e.g., the same species of birds, the same instance of
buildings, or logos of the same brand. Image are considered se-
mantically similar if the concepts are the same only at the basic
level, e.g., a groove billed ani vs. a Brewer blackbird (both are
birds), or a Mona Lisa vs. a potato eater (both are paintings).
Image are defined irrelevant if the concepts are not the same
even at the basic level, e.g., a bird, a dog, a building and a
painting are irrelevant to each other.

B. Database

The database for fine-grained image search contains three
levels, as illustrated in Fig. 2. In the first level, the database is
partitioned into three subsets, i.e., fine-grained, near-duplicate,
and distractor image sets. The composition of three subsets are
summarized as follows.

1) Three fine-grained concept groups: birds (the Cal-
tech-UCSD  Bird-200-2011 dataset [42]), dogs (the
Stanford Dog-120 dataset [43]), and flowers (the Oxford
Flower-102 dataset [70]).

2) Three near-duplicate instance groups: buildings (the Ox-
ford and Paris Buildings datasets with 22 named buildings
[8]), logos (the CarLogo-51 dataset [30]), and paintings
(the FamousPaint-26 dataset!).

3) Distractors. We crawl one million irrelevant images from
the Web to test the scalability of the algorithm.

The basic-level visual concepts, e.g., birds, dogs, buildings,
have the level index 2, and the fine-grained concepts, e.g.,
groove billed ani (a bird), golden retriever (a dog), Oxford all
souls (a building), have the level index 3.

In all the fine-grained datasets, objects (birds, dogs and
flowers) are labeled with their biology species. For example,
the Bird-200 dataset contains 200 bird species and each species
contains up to 60 images. All these labels, such as groove
billed ani (a bird species) or golden retriever (a dog breed),
could be found in the WordNet [61], a large dictionary of se-
mantic ontologies. In all the near-duplicate datasets, however,
a category is defined as a repeatable object instance, such as a
building picture taken in different conditions, a registered car
brand /ogo, or a famous paint and its copies. The name of each
instance (e.g., Eiffel Tower, BMW logo or Mona Lisa paint) is
not ambiguous.

IThis dataset is publicly available online. Type “FamousPaint-26 dataset” for
searching.
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TABLE I
COMPOSITION OF THE FINE-GRAINED IMAGE SEARCH DATABASE

Dataset Dataset Concept | Training | Searching
Type Name Groups Images Images
Bird 200 5994 5794
Fine-Grained | Dog 120 12000 8580
Flower 102 2040 6149
Subtotal 422 20034 20523
Building 22 2200 11455
Near-Dup. Logo 52 5200 11903
Paint 26 2600 3148
Subtotal 100 10000 26506
[ Distractors [ Web i — [ 3000 [ 1000000 |
\ | Total i — [ 33034 | 1047029 |

We take a small portion of the database as training images.
For the fine-grained sets, we use the fixed training/testing splits
provided by the authors, and each training image is labeled with
its fine-grained category name, such as groove billed ani, a bird
species. We also randomly select some non-query images (100
per instance) from the near-duplicate subsets, and 3000 images
from the distractor set for training. These images are simply
labeled as not containing a fine-grained concept. All the images,
except for the fine-grained training cases, compose the search
database. The query set consists of all the fine-grained testing
images and author-specified near-duplicate querying cases. The
detailed statistics of the database is summarized in Table I.

There also exist some fine-grained datasets which are not
included in the composed database, such as the Oxford Pet-37
dataset [71] (37 pet breeds, 7390 images), the Aircrafi-100
dataset [72] (100 aircraft models, 10000 images), and the
recently published Food-101 dataset [73] (101 food categories,
101000 images). The number of images in these unused datasets
is comparable with the used datasets and less than the distractor
set. As illustrated in Section IV-E, the scalability of our model
makes it easy to deal with a larger number of fine-grained
concepts.

C. Evaluation

We start with defining the relevance between two images,
say, A and B, which is natural in the hierarchical database:
rel(A,B) = max{LCA(A,B) — 1,0}, where LCA(, -} is the
level index of the least common ancestor of two images. Obvi-
ously, two images are semantically matched if their relevance
value is 2, semantically similar if the value is 1, and irrelevant
if the value is 0.

Given a query image q, we can obtain a set of P re-
trieved images: Rq = {Iq1,1q2,...,Iq,p}. Denote
relg, = rel(q,Iy ) forp = 1,2,..., P, we can calculate the
Discounted Cumulative Gain (DCG) [74] of R4 as

rEIq P _

P
DCG (R ; gy (0 1 1) (1)

DCG is then normalized into nDCG by dividing it by the ideal
DCG value at this query. The calculation process is illustrated
in Fig. 3. The nDCG values of all query images are averaged as
the final score. It is proved that nDCG scores serve as a good
measure for evaluating different ranking results [75].
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IV. OUR APPROACH

This section presents our approach for fine-grained image
search. The overall framework is illustrated in Fig. 4.

A. Fine-Grained Recognition

This module is aimed at training several classifiers for fine-
grained concept discovery and recognition. We use the Bag-of-
Visual-Words (BoVW) model with the SVM classifier.

The BoVW model consists of three stages, i.e., descriptor
extraction, feature encoding and spatial pooling. We start
from a raw image I = (a;;)w z, which is resized with the
aspect ratio preserved so that the larger axis is 600 pixels.
On a densely sampled set of patches, we use VLFeat [76] to
extract 128-dimensional greyscale SIFT descriptors [2]. The
spatial stride and window size are 8 and 16 for all images,
respectively. The descriptors are reduced to 64 dimensions
using PCA. Denote the set of reduced local descriptors with

o = {du1,da2,--.,dg s, b, Where dg ,, denotes the de-
scription vector of the m-th descriptor, and A, is the total
number of descriptors. To quantize the descriptors onto the
feature space, we train a Gaussian Mixture Model (GMM)
with 256 components. The numbers of descriptors collected
for PCA and GMM training are around 2 million. The Im-
proved Fisher Vectors (IFV) [36] are calculated for efficient
feature encoding. Given a GMM with 256 components, each
patch descriptor d, ,, is assigned a 2 x 256 x 64-dimen-
sional feature vector f, ,,,. Denote F, as the set of encoded
features: F, = {f,1,f4.2,-..,F 01, }. We aggregate the vi-
sual phrases with sum-pooling for image-level representation:
X, = 2%11 £, m. A 2-layer Spatial Pyramid Matching (SPM)
[38] follows by dividing the image into 2 x 2 subregions, and
concatenating the individual pooled vectors as a long vector X,,.

In practice, we also extract a set of 96-dimensional LCS de-
scriptors [36] Dy on the densely sampled patches to capture
color information. We follow the same flowchart to encode the
descriptors into an image-level vector X, and concatenate X,
and X; as a single vector X.

There also exist many advanced algorithms [47]-[52] aimed
at detecting semantic object parts to capture more powerful fea-
tures for fine-grained recognition. Most of them are especially
designed for a small number of fine-grained concepts. We do
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not adopt them so that our framework is capable of dealing with
many other fine-grained datasets.

Based on the image-level vectors, we train two types of
classification models. The first type, the fine-grained judger,
is a 4-way classifier trained on 4 categories, i.e., birds, dogs,
Sflowers and others (not containing any fine-grained concepts).
We can use it to judge whether the query image contains a
fine-grained concept, and which one it is. The second type is
composed of three fine-grained classifiers, each trained on a
fine-grained dataset. We denote the judger as M (superscripts
J for judgement), and other three classifiers as Mg, MS and
ME (superscript C for classification, subscript B, D and F for
birds, dogs and flowers), respectively. We can train more clas-
sification models if more fine-grained concepts are introduced.
All the SVM classifiers are trained with LibLINEAR [77] using
the tradeoff parameter C' = 10.

B. Large-Scale Feature Indexing

Feature indexing is a basic technique for large-scale image
search, which is often conducted with the Bag-of-Visual-Words
(BoVW) model and the inverted index structure. The images
are also resized so that the larger axis size is 600 pixels.
We extract SIFT descriptors [2] from the detected Hes-
sian Affine regions [6]. The set of descriptors is denoted as
D, ={dc1,dc2,-..,dcn }- We train a large codebook con-
taining one million codewords with the Approximate K -Means
clustering [8]. Only descriptors on training images are col-
lected for clustering. The descriptors are then assigned onto the
nearest codeword, i.e., with hard quantization strategy. The set
of visual words are denoted as W, = {w.1,Wc2,...,Wea, }-
An inverted index [1] is constructed for efficient lookup. We
filter the stop-words in the inverted index, defined as those
occurring in more than 1% images. The visual words are then
weighted by the £,,-norm IDF [78].

The candidate images are first ranked by counting the
weighted feature occurrences. We then construct ImageWeb
[30], a graph-based structure to model the image-level relation-
ship between images, and refine the initial search results with
affinity propagation on the graph. There also exist many com-
plicated object retrieval systems producing very high accuracy

[11], [15]. However these methods could be time consuming at
the online querying stage, therefore are not adopted in practise.

C. Semantic-Aware Co-Indexing

Semantic-aware co-indexing is aimed at incorporating se-
mantic property of images into the inverted index, so that it is
possible to lookup high-level semantic attributes at the online
querying stage. We follow [57] to calculate semantic attributes
from fine-grained object recognition scores, and perform two
successive operations, i.e., semantic-isolated image deletion
and semantic-nearest image insertion, to modify and expand
the indexed image lists in the inverted file. The co-indexed
structure is illustrated in Fig. 5.

Semantic attributes are those properties that help to describe
semantic concepts of an image [79]. We use the fine-grained
classifiers M§, MS and M trained in Section IV-A to calculate
the classification scores for each image. The output of M§, for
example, is a 200-dimensional vector sg, in which the element
sp,) stands for the confident score of an image containing the
k-th bird species. We normalize the scores using the soft-max

function: 5g 1 = %, so that we have ), 5p 5 = L.
. :

The normalized vectors, Sg, Sp and Sg, are concatenated as the
semantic attribute vector 8 with 200 + 120 + 102 = 422 di-
mensions. The distance between two images I, and I, is then
measured by the Total Variance Distance (TVD) score [57] be-
tween their attribute vectors

TVD (I, 1) = TVD (0, %) = 3 _ [Fak — Sokl- ()
k

After the TVD value is calculated for each pair of images, we
modify the inverted index structure by adopting two steps suc-
cessively, i.e., semantic-isolated image deletion and semantic-
nearest image insertion [57]. The semantic-isolated image dele-
tion step traverses each entry in the inverted index and check
the followed images. For those entries with no less than 3 im-
ages, it removes those images which are isolated from others,
i.e., the minimum TVD from this image and others is larger than
a threshold p. This process can effectively reduce the index size
without impacting the retrieval precision in the search process.
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Fig. 5. Inverted file structure after semantic-aware co-indexing. For each image, we extract the visual words and calculate its semantic attributes. Visual words
are then stored in the inverted index for efficient lookup. Additional nearest neighbor images in the attribute space are inserted into the inverted index for capturing

the semantic similarity.

The semantic-nearest image insertion step, in opposite, adds im-
ages with large semantic similarity into the inverted index. It
works by searching for a fixed number of nearest neighbors of
each image according to the TVD scores, and add those nearest
neighbors into the image’s entry if they are not in the visual
word’s entry. In essential, this process could be considered as
a query expansion operation based on the reliable candidate
images.

It is obviously insufficient to represent an image’s se-
mantic attribute with only three fine-grained datasets (422
categories), but this serves as a baseline method to incorporate
fine-grained information into the inverted index structure.
As more fine-grained datasets, such as cats [71] or aircrafts
[72], are introduced into the search task, we can extract longer
attribute vectors to capture richer semantic properties.

D. Online Querying

When a query image comes, we first follow the previous sec-
tions to extract all the required features, i.e., an image-level rep-
resentation vector, a set of visual words, and a semantic attribute
vector. Then the flowchart of online querying is illustrated in the
lower part of Fig. 4. We use the 4-way classifier M” to judge if
a fine-grained concept, i.e., a bird, a dog, or a flower, is con-
tained in the query image, or if the query does not contain any
of these concepts. We then search the database according to the
judgement.

If the prediction says that the query image contains a
fine-grained concept, say, a bird, then we can calculate the
200-dimensional bird attribute vector with model M, compare
it to the images in the database, and sort them according to the
TVD value TVD(84 g, ). Since we can index as many as one
million images, calculating the TVD scores one-by-one can be
very computationally expensive. We adopt the Locality-Sensi-
tive Hashing (LSH) method [80] to index images into a small
number of hashing tables and search only for those images
sharing common bins with the query. In practise, LSH works
much faster than bruteforce search and produces satisfying
search results.

If the prediction suggests that the query image does not
contain a fine-grained concept, we can adopt the semantic-
aware online querying algorithm [57] to lookup the inverted
index. Here, the search process is very similar to the general
case of near-duplicate image search, but we make full use of
the co-indexed structure to improve the quality of retrieved
images. In a word, we use the samples found in the semantic-
nearest image insertion step to update the matching score of
each candidate. This process is equivalent to expanding the
query in the attribute space using the top-ranked candidates,
and will be surprisingly effective when the query image turns
out to contain a fine-grained concept (see the lower part of
Fig. 6).

It is worth noting that we have made an early decision at the
beginning of the querying stage. Although it limits the model
flexibility and makes the search result highly unstable when the
judgement is incorrect (see Fig. 6), the online querying time is
significantly reduced. We expect more advanced approaches to
refine this process in the future research.

E. Scalability Issues

Currently, our algorithm only considers a handful of basic-
level categories, i.e., birds, dogs and flowers. Here we discuss
the scalability issues when we a larger number of visual con-
cepts are introduced into the database.

When the number of basic-level categories increases, we
first need to calculate a larger number of semantic attributes
and store them in the inverted index. Let us assume that we
have 100 basic-level categories and each of them has 200
fine-grained classes, which leads to a total number of 20000
categories, comparable with the scale of ImageNet [60]. In such
cases, extracting all the 100 + 20000 attributes might be com-
putationally expensive. We can adopt an approximate strategy,
which first calculate 100 basic-level semantic attributes, then
pick up the top-5 categories with the largest attribute scores,
and calculate the fine-grained semantic attributes only for these
5 categories (5 x 200 fine-grained classes). For the remaining
basic-level categories, we can simply set the same score for all
the 200 fine-grained classes.
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The above method significantly reduces the time/memory
costs in the offline indexing process. The only information loss
happens when the actual basic-level category is not contained
in the top-5 recognition results. According to the performance
of our classification algorithm in the Caltech101 dataset [81],
which contains 101 basic-level classes (not including the back-
ground category) and the number of training images is much
smaller (30 per category), the top-5 classification accuracy over
101 basic-level categories is often higher than 90%. Therefore,
the time/memory costs could be reduced to around 5% with
less than 10% information loss.

At the online querying stage, the difference comes from
seeking the approximate nearest neighbor in the semantic
attribute space. Since the expanded space might have tens
of thousands of dimensions, even LSH requires heavy com-
putation. To cope with, we could adopt another approximate
strategy, which considers the semantic attribute space of
each basic-level category individually. When the basic-level
classification scores of the query image are calculated, we
find the top-5 categories and retrieve the top-1000 nearest
neighbors from each of these 5 fine-grained attribute spaces.
Finally, the retrieved images are combined into a single list
according to their total distance to query in these 5 spaces. In
this way we prevent our algorithm from calculating a large
number of fine-grained concepts and becoming computation-
ally expensive.

We will provide a more detailed scalability analysis in
Section V-D. Meanwhile, we admit that many other approaches
might be adopted to deal with this problem, such as adopting
a hierarchical structure and a top-down approach to categorize
an image from-coarse-to-fine. We aim at suggesting a possible
solution to this new and challenging problem, and inspiring
more research efforts in the future.

F. Generalization Issues

Of course, three levels of relevance are not enough for de-
scribing the similarity between two images. A more general-
ized approach is to use the natural structure of ontologies [61] to
calculate a multi-level similarity score. For example, [54] uses
hierarchical semantic indexing to improve the image retrieval
performance, and [82] learns a fine-grained similarity with deep
learning techniques. Both the above works inspire us to formu-
late fine-grained image search on a larger number of relevance
levels.

Our two-stage framework could be easily modified to fit the
new problem setting. We inherit the module of basic-level con-
cept discovery, but add the hierarchical loss function into fine-
grained image classification process. By hierarchical loss we
mean that the classification score of an image is no longer either
1 (correct) or 0 (incorrect), but could be a fractional value be-
tween 0 and 1 indicating the relevance of the predicted label and
the ground-truth label. Such technique, which is widely adopted
in large-scale image classification, penalizes heavier on those
basic-level errors (e.g., a bird is classified as a building) than
those fine-grained errors (e.g., a red-winged blackbird is classi-
fied as a brewer blackbird).

V. EXPERIMENTAL RESULTS

A. Recognition and Retrieval Accuracy

First, we report the accuracy on fine-grained concept
judgement and object recognition. The results are listed in
Table II and III, respectively. One can see the satisfied per-
formance when judging the fine-grained concept in an image:
96.20% birds, 97.98% dogs, 96.62% flowers and 98.59% others
(not containing a fine-grained concept) queries are correctly
classified. The fine-grained recognition accuracy is also nearly
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TABLE II
CONFUSION MATRIX OF FINE-GRAINED CONCEPT JUDGEMENT. TO BE CLEAR,
102 BIRD IMAGES ARE RECOGNIZED AS DOGS

Bird  Dog  Flower  Other | Accuracy

Bird 5574 102 12 106 96.20%

Dog 45 8407 12 116 97.98%

Flower 83 102 5941 23 96.62%

Other 1 0 5 416 98.59%
TABLE III

FINE-GRAINED RECOGNITION ACCURACY

Bird Dog Flower

Our accuracy 42.56% | 35.29% | 78.72%

Best known, w/o parts | ~44% | ~37% | ~80%

Best known, with parts | ~56% | ~48% | =~ 84%
TABLE IV

NEAR-DUPLICATE SEARCH ACCURACY (WITH ONE MILLION DISTRACTORS)
OF BUILDING, LOGO AND PAINTING QUERIES

Building Logo Painting
Our mAP score 0.7631 0.4842 0.5857
Best known, ¢ < 100ms ~ 0.78 ~0.49 | ~0.60
Best known ~0.87 | ~0.53 =~ 0.66

the state-of-the-art without using human annotation and com-
plicated part detection models [48]-[52]. It guarantees that in
most cases, the users’ intention could be correctly understood
by the search engine.

Next, we report the object retrieval accuracy on near-dupli-
cate datasets with one million distractors in Table IV. Once
again, our search accuracy is nearly the state-of-the-art, given
that we need to finish the search within 100 ms thus some com-
plicated post-processing approaches [11], [15] are not used.

The good performance of separate modules helps us produce
satisfying fine-grained search results. Please note that we are not
aimed at comparing our classification or retrieval modules with
the state-of-the-art algorithms. Most often, those complicated
methods use some specified clues or tricks to boost the accuracy
on one or two datasets. These algorithm are either too specific
thus not generalizable onto a wide range of visual concepts, or
very computationally expensive so that are not applicable onto
large-scale image search.

B. Search Results

We report the fine-grained search accuracy using the evalu-
ation method defined in Section III-C. For comparison, we test
the proposed model combining both semantic attributes and vi-
sual words (Model-COM) illustrated in Section IV-D, as well
as individual modules without performing fine-grained judge-
ment on query images. Model-SA uses only semantic attributes
from the 422 fine-grained categories 8, and rank the candidates
according to their Total Variance Distance (TVD) to the query.
Model-VW uses only the quantized visual word set W, to lookup
the inverted index, and rank the candidates according to the fea-
ture occurrence weighted by the £,-norm IDF [78]. They are
equivalent to regarding all query images as containing one of
the fine-grained concepts or not so.

The results are summarized in Table V. One can observe that
on each separate query set, either fine-grained or near-duplicate,
Model-COM does not produce the best performance among all
three models. Fig. 7 provides an intuitive comparison on both
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TABLE V
SEARCH PERFORMANCE OF THREE DIFFERENT MODELS

[ [ Model-SA | Model-VW | Model-COM |

Bird-200 0.6741 0.3215 0.6169
Dog-120 0.7102 0.3692 0.6727
Flower-102 0.7961 0.4250 0.7302
Building 0.5601 0.9205 0.8887
Logo 0.3406 0.5940 0.5432
Painting 0.4091 0.6703 0.6610
Fine-Grained 0.7268 0.3719 0.6733
Near-Duplicate 0.4366 0.7283 0.6976
[ Overall [ 05817 ] 0.5501 | 0.6855 |

types of queries. When the query image contains a fine-grained
concept, Model-SA better capture the image’s global property;
however when the query is a near-duplicate instance, Model-VW
produces higher accuracy. Model-COM becomes the best choice
only when the scores are averaged, i.e., there might be both
types of queries, as in the real-world applications. This suggests
that analysing the search intention is probably more important
than achieving higher accuracy in separate tasks.

Once again, we shall emphasize that this paper is aimed at
proposing a new problem and suggesting a new framework.
Although we do not use those complicated classification/re-
trieval algorithm in practise, one might notice that the proposed
framework is highly modular, implying that it is easy to replace
each module with a more efficient algorithm designed in the
future. We believe that baseline accuracy of Model-SA and
Model-VW would be thereafter improved. Since the combined
model (Model-COM) absorbs the advantages of both Model-SA
and Model-VW, we can forecast that better search performance
will also be produced by Model-COM in such cases.

C. Time and Memory Costs

We report the time and memory costs at the online querying
stage with about one million images.

We need to store two parts of information (see Fig. 5). The
first part, image ID for each occurrence of visual words, requires
4 bytes for each image-word pair. The average number of de-
scriptors on each image is about 1000, thus we need 4 Kilobytes
for a single image. According to [57], the memory consumption
increases by about one half after semantic-aware co-indexing.
The second part is the semantic attributes calculated from the
fine-grained classification scores. For each image, we have to
store 4 + 200 + 120 + 102 = 426 floating numbers in total,
requiring about 2 Kilobytes. Therefore, the total memory over-
head is less than 4 x 150% + 2 = 8 Kilobytes for one image,
and about 8 Gigabytes for the whole database with one million
images. ImageWeb [30] requires only about 160 Megabytes for
one million images.

At the online querying stage, the time cost consists of three
parts, i.e., descriptor extraction and quantization, concept
judgement, and image search, which follows either fine-grained
(using semantic attributes) or near-duplicate (using co-indexed
file) flowchart, depending on the concept judgement result. The
SIFT descriptor extraction takes 1000 ms (650 ms for dense
sampling, 350 ms for interest point detection and description),
quantization takes 400 ms (300 ms for Fisher vectors, and
100 ms for hard quantization). The concept judgement stage
takes about 50 ms. If the query is considered as containing a
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fine-grained concept, then the fine-grained recognition takes
about 100 ms, and LSH takes about 400 ms; otherwise the
near-duplicate searching in the semantically co-indexed file
takes about 550 ms. It takes less than 100 ms for ImageWeb to
post-process the search results. Overall, the total time required
for a single query would not exceed 2 seconds. All the time is
recorded on a single 3.0 GHz CPU.

D. Scalability Analysis

Let us still assume that there are 100 basic-level cate-
gories and each category has 200 fine-grained concepts.
For each image, we first need to store the IDs and scores
of the top-5 basic-level recognition results. Next, 5 x 200
fine-grained semantic attributes are calculated. In total, we

need 5 x 2 4 200 x 5 = 1010 floating numbers for each image,
requiring nearly 4 Kilobytes. Considering the same amount of
local descriptors, the memory overhead for one image is now
4 x 150% + 4 = 10 Kilobytes. Real-world search engines such
as Google and Baidu often deal with more than one billion
images, therefore the required storage for the whole database is
about 10 Terabytes.

The time cost of online querying goes up as the increasing
number of basic-level categories and indexed images. If the
query image is considered to have one of those fine-grained con-
cepts, the LSH process is performed in 5 individual attribute
spaces with 200 dimensions. It takes around 800 ms compared
to 400 ms which is the time for searching in a single 400-dimen-
sional space. The time used for combining the 5 retrieved lists
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into one is around 100 ms. If the query is judged as a near-du-
plicate case, the search time complexity will grow sublinearly,
as observed in ImageWeb [30] and semantic-aware co-indexing
[78]. In either case, the time used to process a single query
would be no more than 2.5 seconds.

To summarize, when the number of basic-level categories
increases from 3 to 100, fine-grained classes from around 400
to 20000, and indexed images from 1 million to 1 billion,
the estimated time and memory complexity (for storing and
querying one image) only grows by 25.0%. Therefore we could
expect that our algorithm scales up efficiently with reasonable
approximation.

E. Sample Cases

We present some representative queries and corresponding
search results in Fig. 6. One can see that, our approach works
well for those correctly judged queries, suggesting that under-
standing the users’ intention is crucial to improve the search
quality. Meanwhile, we also present four wrongly judged cases,
two fine-grained and two near-duplicate. For the first two cases,
we can still obtain pretty good search results thanks to the se-
mantic-aware co-indexing, however the latter cases show dra-
matically unstable results due to the ignorance of local features
which are key to near-duplicate retrieval. This once again sug-
gests to improve the concept judgement accuracy in the future
research.

VI. CONCLUSIONS

This paper proposes fine-grained image search, a challenging
topic which is less studied in the multimedia community. We
argue that it is a common requirement that instance search
returns not only near-duplicate but also fine-grained results.
We formulate the fine-grained image search problem by con-
structing a new database and defining an evaluation method. A
baseline framework is also proposed to incorporate semantic
attributes into the inverted index, leading to an efficient search
engine which produces promising search results in large-scale
experiments. Since our framework is highly modular, it might
cooperate well with many other classification/retrieval algo-
rithms. The scalability of our algorithm also makes it easy to
be transplanted onto commercial search engines.

In the future, we shall release the database used in the ex-
periments, and gradually add more images, such as those fine-
grained sets in /mageNet [60], into the database. The methods
discussed in Section IV-E and IV-F will be implemented for
scaling up and generalization. We hope this topic will reveal an
exciting research direction which brings new insights and novel
applications. We also expect more research efforts to be trig-
gered on this interesting yet less explored problem.
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