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Simple Techniques Make Sense: Feature Pooling
and Normalization for Image Classification

Lingxi Xie, Qi Tian, Senior Member, IEEE, and Bo Zhang

Abstract— Image classification is a fundamental task in
computer vision, implying a wide range of challenging problems,
such as object recognition, scene understanding, and image
tagging. One of the most popular approaches to image classifica-
tion, the bag-of-features (BoF) model, represents an image with
a long feature vector and adopts machine learning algorithms
for training and testing. Owing to its simplicity and scalability,
the BoF model is widely used in both academic research studies
and industrial applications. This paper discusses the feature
summarization stage, including pooling and normalization, in the
BoF model. We show that these two modules, although devalued
sometimes, have important impacts on image classification
performance. We present two algorithms, i.e., generalized
regular spatial pooling for constructing a better group of spatial
bins and hierarchical feature normalization for assigning proper
weights for regional feature normalization. Both algorithms are
independent of the descriptor extraction and feature encoding
stages, and therefore, they could be freely transplanted onto
many other classification frameworks based on local feature
statistics. We further provide insightful discussions for the nature
of designing efficient image classification models. Experiments
verify that the proposed algorithm achieves state-of-the-art
results on a wide range of image classification data sets.

Index Terms— Bag-of-features (BoF) model, experiments,
feature normalization, feature pooling, image classification.

I. INTRODUCTION

IMAGE classification is a long-lasting battle in computer
vision. It is a basic task toward image understanding

and implies a wide range of applications, including object
recognition, scene understanding, image tagging and
recommendation, and so on. Recent years have also witnessed
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Fig. 1. Basic flowchart of the BoF model. The dashed rectangle indicates
the feature summarization stage which would be studied in this paper.

the emersion of fine-grained and/or large-scale image
classification data sets, introducing new challenges into this
traditional research field.

The bag-of-features (BoF) model [1] is one of the
most popular algorithms for image representation. It is a
statistics-based model aimed at providing a compact image
representation. The basic flowchart of the BoF model is
shown in Fig. 1. Due to the limited descriptive power of
raw pixels, local descriptors such as scale-invariant feature
transform (SIFT) [2] are extracted. A visual vocabulary or
codebook is then built to capture the data distribution in the
feature space. Descriptors are thereafter quantized onto the
codebook as compact feature vectors, and the local features
are summarized as an image-level feature vector, which is the
output of the BoF model. The high-dimensional vector could
be used for various purposes, such as image classification [1]
and image retrieval [3].

This paper focuses on the feature summarization stage
(marked with red arrow in Fig. 1). In essential, feature
summarization algorithms are aimed at capturing the
invariance of an image. For example, slight spatial translation
of objects could be formulated with regional feature pooling,
and feature normalization techniques cancel out the impact
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of different numeric ranges on different feature dimensions.
Feature summarization is crucial for improving image classi-
fication performance, but is often devalued as a less interesting
trick. We defend the importance of feature summarization
by proposing two novel algorithms, i.e., generalized regular
spatial pooling (GRSP) for spatial pooling and hierarchical
feature normalization (HFN) for feature vector normalization.
Both algorithms are easy to implement (with only few lines of
codes) yet efficient to carry out. Moreover, the algorithms are
designed independently of the previous feature encoding stage,
and therefore could be freely transplanted onto many classifi-
cation systems based on the BoF model. In experiments, we
observe consistent accuracy gain on every single classification
task with the combined (GRSP with HFN) algorithm.

It is highlighted here that we do not aim at designing
novel algorithms for feature pooling and normalization. Both
techniques (GRSP and HFN) discussed in this paper are
very simple, but they do reveal some important principles
of generating descriptive, discriminative, and robust image
representation. Our contribution mainly lies in that we defend
the importance of pooling and normalization, which are
indispensable modules but devalued for a long time.
We find that both well-designed pooling (GRSP) and
normalization (HFN) algorithms consistently boost
classification accuracy. Sometimes, the difference between
using proper and improper parameters is so significant
(e.g., on the Flower-102 dataset, as shown in Table IV,
as many as 5% gain is obtained when hierarchical
�2-normalization is applied) that the benefit is larger
than designing sophisticated algorithms such as feature
encoding. We feel it necessary to record these results and
present them in a formal paper.

Preliminary literatures of this paper appeared as [4] and [5].
In this paper, we not only combine the separate modules into
a generalized one, but also give insightful discussions on the
principles of improving image classification performance.

The remainder of this paper is organized as follows.
A detailed overview of the BoF model is outlined in Section II.
Then, Sections III and IV present the algorithms for local
feature summarization, i.e., GRSP and HFN, respectively.
After extensive experimental results are shown in Section V,
we draw the conclusion in Section VI.

II. BAG-OF-FEATURES MODEL

Image classification is a challenging task in computer
vision [6]–[9]. There are also related topics attracting lots of
attentions [10]–[12]. This section provides a detailed overview
of the BoF model, one of the most popular pipelines for image
classification.

A. Local Descriptor Extraction

The BoF model starts from an image, which is a W × H
matrix I = (ai j )W×H . Here, ai j is the intensity value for a
grayscale image, or a 3D vector for an RGB image.

Due to the limited representative power of raw pixels,
handcrafted descriptors are often extracted from small patches
named interest points on an image. For patch detection,
gradient-based operators try to find local maxima that may

correspond to well-defined interest points. Typical examples
include differential of Gaussian [2], Hessian/Harris
affine [13], maximally stable extremal region [14] operators,
and dense interest points [15]. In particular, in image
classification, it is also suggested to densely extract
descriptors from a regular grid on the image [16]. For
patch description, popular cases include scale-invariant
feature transform (SIFT) [2], and histogram of oriented
gradients (HOG) [17]. Other variants, such as gradient
location and orientation histogram (GLOH) [18], Speed Up
Robust Features (SURF) [19], binary robust independent
elementary features (BRIEF) [20], DAISY descriptor [21],
and oriented FAST and rotated BRIEF (ORB) [22],
are also verified to be efficient and robust in image
classification/retrieval tasks. Some minor modifications on
local descriptors are also useful [23], [24].

Gradient-based descriptors are sensitive to texture
information of an image [25], [26]. Besides texture,
additional features such as color and shape could also
be extracted for complementariness. A typical idea of
capturing color information is to compute texture descriptors
from individual color channels of the image. RGB-SIFT,
C-SIFT, and Opponent-SIFT are all such cases [27], which
differ from each other in the way of calculating color
channels. Other kinds of descriptors such as local color
statistics (LCS) [28] extract color statistics on local patches,
which are verified to well cooperate with grayscale texture
patch descriptors. There are also various kinds of shape
descriptors, such as Shape Context (SC) [29], Inner Distance
Shape Context (IDSC) [30], and Edge-SIFT [26] that extracts
SIFT features on the edge responses of original images.
Multiple sets of local descriptors could also be fused [25], [26]
for richer image description. Recent years, the fast
development of deep learning and convolutional neural
networks also inspires us to adopt deep conv-net features for
image classification [31], [32].

Either combination of patch detection and description
algorithms yields a set D of local descriptors

D = {(d1, l1), (d2, l2), . . . , (dM , lM )} (1)

where dM and lM denote the D-dimensional description vector
and the geometric location of the mth descriptor, respectively.
M is the total number of dense descriptors. There might be
more than one descriptor set for an image in the cases of using
multiple local descriptors.

B. Codebook Training

After descriptor extraction, a visual vocabulary, or
codebook, is often trained to capture the distribution of
the feature space. One of the most popular approaches to
data-dependent estimation is to use the kernel density model,
which constructs K vectors with D dimensions

B = {c1, c2, . . . , cK }. (2)

The element cK , k = 1, 2, . . . , K , is named a codeword, and
each descriptor is then related to its nearest codeword(s) by
the Euclidean distance in the feature space. The K -means clus-
tering algorithm is used to optimize the codebook iteratively.
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As accurate K -means is computationally expensive with large
codebooks, some accelerating solutions are also suggested,
such as hierarchical [3] or approximate [33] versions of
K -means. Small codebooks with additional embedded
information are also verified to be efficient [34] in real
applications.

Other probabilistic models, such as the Gaussian mixture
model (GMM), are trained to capture richer geometric contexts
in the feature space. It describes the feature space with a
mixture of K multivariant Gaussian distributions

M = {(π1,μ1,�1), . . . , (πK ,μK ,�K )}. (3)

Parameters πK , μK , and �K denote the prior, mean value,
and covariance of the kth Gaussian component, respectively,
for k = 1, 2, . . . , K . GMM could be solved with Expectation
Maximization (EM) iteration.

C. Feature Encoding

The feature encoding stage is aimed at quantizing each of
the descriptors into a compact representation.

If the codebook is trained with K -means clustering, i.e.,
composed of a set of codewords, then a descriptor could be
encoded according to its distances to the codewords in the
feature space. Hard quantization uses the nearest codeword to
quantize a descriptor, resulting in a large quantization error.
As an alternative solution, soft quantization allows a descriptor
to be reconstructed by a small number of codewords. Sparse
coding [35] is a special case of soft quantization, which is
verified to be very efficient in image classification [36], [37].
After encoding, each descriptor dm is represented as a
K -dimensional sparse feature vector wm , i.e., in which only
one or few of the dimensions are nonzero.

If the codebook is trained with a GMM, i.e., geometric
context information is preserved, richer discriminative features
could be captured by computing the Fisher vectors [28].
It works by decomposing the Fisher information matrix toward
maximal discrimination [38]. In this case, both the first- and
second-order statistics are encoded, resulting in a much longer
(2DK dimensions) and denser (around 50% dimensions are
nonzero) feature vector. Consequently, the time and memory
costs are much more expensive than using K -means-based
encoding. Similar ideas are also used in other
high-dimensional features, such as super vector encoding [39]
and oriented SIFT/HOG encoding [40].

After the encoding stage, the set of local descriptors is
transformed into a set of feature vectors

W = {(w1, l1), (w2, l2), . . . , (wM , lM )} (4)

in which dM in (1) is replaced by wM , for m = 1, 2, . . . , M .
Besides, there are also learning-based feature encoding [41]
algorithms. Various methods have been proposed to encode
richer information into image features, including constructing
feature groups [42] (visual phrases [26]), assigning weights on
visual words [43], or embedding additional information [44].

D. Feature Pooling

After feature encoding, the pooling stage follows to
summarize features as a global image representation.

This stage is crucial in the BoF model, not only for it
summarizes different numbers of local features into a vector
of the same length but also for its effect of canceling out the
translation variance, allowing an object to appear on different
positions of an image.

A natural way of feature pooling is to calculate a global
statistics based on all the quantized vectors. Max pooling
and average pooling are probably the most widely adopted
approaches. The max-pooling strategy calculates the maximal
response on each codeword: f = max1≤m≤M wm , while the
average-pooling strategy calculates the average response:

f = (1/M)
∑M

m=1wm . Here, the notations maxm and
∑

m
denote dimension-wise maximization and summation,
respectively. Researchers have discussed the choice of max
pooling versus average pooling [45], showing that max
pooling gives more discriminative representation under soft
quantization strategies, while average pooling fits hard
quantization better. Generalized max pooling [46] discusses
the relationship between max pooling and Fisher vectors.

Both max pooling and average pooling are special
cases of �p-norm pooling, which calculates the �p-norm:
f = [∑1≤m≤Mwp

m ]1/p, where wp
m denotes the dimension-

wise pth power of the feature vector wm . When p → +∞
and p = 1, �p-norm pooling degenerates to max pooling
and average pooling, respectively. Rather than adjusting norm
p manually, the geometric �p-norm pooling algorithm [47]
uses a complex objective function to find out an optimal p for
each image individually.

Global pooling algorithms ignore rich spatial information
that could be very useful for image understanding. Based
on the kernel matching theory, spatial pooling algorithms,
such as Pyramid Matching (PM) [48] or Spatial Pyramid
Matching (SPM) [49], are proposed, partitioning images into
smaller regions for spatial context modeling. Explicitly, let
J = {1, 2, . . . , M} be the index set of the feature set W . The
spatial pooling algorithm defines S subsets of J , denoted by
{J1,J2, . . . ,JS}, and summarizes the feature vectors in each
subset individually, obtaining S pooled vectors {f1, f2, . . . , fS}.
Efforts are also made to improve naive spatial matching
methods. To capture more flexible spatial contexts [50]–[52],
it is proposed to design a larger set of pooling bins and
perform a wise optimization to choose some of them for
feature summarization. For fine-grained recognition, it is also
suggested to design the pooling bins according to the semantic
parts of the objects [53]–[55].

The output of the pooling stage is a set of S individual
vectors {f1, f2, . . . , fS}. These vectors can be of equal [49] or
unequal [56] lengths. Most often, they are concatenated as an
image-level vector F.

In Section III, we will study feature pooling in depth.

E. Feature Normalization

Feature normalization, or feature scaling, is a crucial data
preprocessing stage aimed at avoiding attributes in greater
numeric ranges dominating those in smaller numeric ranges
and controlling the similarity measure between feature vectors.

One of the most popular feature normalization methods is
the �p-norm normalization, in which we divide each feature
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vector by its length in the �p space: F̃ = F/‖F‖p , so
that all the vectors become �p unit length. The selection of
the norm p might significantly impact the performance of
generalized classifiers. For instance, it is demonstrated that
in support vector machine (SVM), �2 normalized vectors have
the minimal structural risk [57].

Besides the naive normalization method, researchers have
proposed various techniques to fit different machine learning
models, such as SVM [58]–[60], Naive Bayes classifier [61],
hidden Markov model estimation [62], kernel Fisher discrimi-
nant analysis [63], and even the inverted index structure [64].
It is also important to consider the proper order of feature
normalization and concatenation, which might heavily impact
the discriminative power of feature vectors, especially in the
scenarios of part-based classification [53].

We will provide a detailed discussion on feature
normalization in Section IV.

F. Classification

The output of the BoF model is usually a set of very
long feature vectors. Since the number of training samples
is relatively smaller, the SVM is often adopted to avoid
overfitting.

Recent years, as the number of image categories grows from
hundreds to tens of thousands [65], scalability has become
more and more important for practical classification systems.
In general, training one-versus-one classifiers is much more
expensive than training one-versus-rest classifiers, and there-
fore the latter strategy is often adopted when the number of
categories is large [66]. Besides the flat classifiers, hierarchical
techniques [67], [68] have also been proposed for training
large-scale classifiers, but the obtained accuracy is often lower
than that of flat classifiers [66]. Moreover, image-to-class
distance [69] is often more robust in classification.

It is also crucial to select a proper kernel function for
SVM training. Although nonlinear kernels such as the χ2 [70]
or Hellinger’s kernel [28] often produce higher accuracy for
linear nonseparable cases, the linear kernel is verified to be
more efficient in training large-scale classifiers [71].

The detailed discussion of classifiers goes out of the goal
of this paper.

III. GENERALIZED REGULAR SPATIAL POOLING

In this section, we present the GRSP algorithm. It is
considered as a generalization of SPM [49].

In essential, spatial pooling algorithms are aimed at
constructing a group of index subsets {J1,J2, . . . ,JS} of the
full index set J = 1, 2, . . . , M , and then performing a specific
pooling method on each subset. Following this basic rule, we
define the subsets in both SPM and GRSP.

A. Spatial Pyramid Matching

SPM defines the number of layers L for spatial matching
and partitions the image plane into equal-sized regular grids in
each layer. Mathematically, let P be the set of pixels in image
I: P = {l = (x, y) | 0 < x � W, 0 < y � H}. At the lth layer,
l = 0, 1, . . . , L − 1, the image is partitioned into Al × Bl

pooling bins. Therefore, the size of each bin at the lth layer is

(W/Al)× (H/Bl), and the (a, b)th bin, a = 0, 1, . . . , Al − 1,
b = 0, 1, . . . , Bl − 1, is defined as

Pl,a,b =
{

l = (x, y)

∣
∣
∣
∣
aW

Al
< x � (a + 1)W

Al

∧ bW

Bl
< y � (b + 1)H

Bl

}

. (5)

In the original SPM model [49], we have Al = Bl = 2l

for l = 0, 1, . . . , L − 1, implying that the image is divided
into 2 × 2 subregions at the first layer, and then each of the
subregion is recursively divided into 2 × 2 smaller subregions
at the next layer. Recently, it has been verified that horizontal
stripes are also efficient pooling bins [50], especially in the
case of using Fisher vectors [66], [72], [73].

We define the index sets directly using the pooling bins

Jl,a,b = {m | 1 � m � M ∧ lm ∈ Pl,a,b}. (6)

The number of index sets equals to the number of pooling
bins, i.e., S = ∑L−1

l=0 Al × Bl , in an L-layer model.

B. Generalized Regular Spatial Pooling

As a generalization to SPM, GRSP also uses rectangular
pooling bins, but allows changing the number of the bins in
each layer for either denser or sparser spatial context modeling.

Let us still assume that the size of bins at the lth layer
is (W/Al) × (H/Bl), i.e., using the same setting as
in the SPM model. Then, we define another sequence
(A′

0, B ′
0), (A′

1, B ′
1), . . . , (A′

L−1, B ′
L−1), which means that

there are A′
l × B ′

l equal-sized pooling bins in the lth layer.
We then place a (W/Al) × (H/Bl) rectangle at the top-left
corner of the image and move the bin along both x and y axes
of the image, from top-left to bottom-right corner, making
sure that the spatial strides at each move, either horizontal or
vertical, are equal. Mathematically, it is easy to derive
that the spatial strides in the lth layer are sl,x =
(W − (W/Al)/(A′

l − 1) and sl,y = (H − (H/Bl)/B ′
l − 1),

respectively. Following (5), the (a, b)th bin at this layer,
a = 0, 1, . . . , A′

l − 1 and b = 0, 1, . . . , B ′
l − 1, is defined as

Pl,a,b =
{

l = (x, y) |a × sl,x < x � a × sl,x + W

Al

∧ b × sl,y < y � b × sl,y + H

Bl

}

. (7)

Obviously, if we have A′
l = Al and B ′

l = Bl for any l,
l = 1, 2, . . . , L − 1, GRSP degenerates to SPM. Otherwise,
the pooling bins at the lth layer might become either denser
(A′

l > Al and B ′
l > Bl) or sparser (A′

l < Al and B ′
l < Bl ).

Fig. 2 illustrates the denser spatial pooling on the original 2×2
layer: A′

1 = B ′
1 = 3, and Fig. 3 shows the sparser spatial

pooling on the original 4 × 4 layer: A′
2 = B ′

2 = 3. When a
denser pooling is performed at one layer, some local features
could be covered by more than one bin, while a sparser pooling
might ignore a fraction of local features (not covered by any
of the bins). One might certainly adopt a larger pooling bin to
fill up the whole image in the latter case; for simplicity, we
just use a straightforward solution to preserve the same bin
size as in SPM.
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Fig. 2. Example of original (left) and denser (right) spatial pooling in the
first layer (A1 = B1 = 2 and A′

1 = B ′
1 = 3; please note that the definition

starts with the zeroth layer). Each pooling bin shares half of its pixels with
its neighboring bins.

Fig. 3. Example of original (left) and sparser (right) spatial pooling in the
second layer (A2 = B2 = 4 and A′

2 = B ′
2 = 3; please note that the definition

starts with the zeroth layer). Some regions on the image plane are not occupied
by any of the pooling bins.

The definition of index sets in GRSP simply follows (6).
The number of index sets is S = ∑L−1

l=0 A′
l × B ′

l .

C. Comparison With Previous Works

There are many works aimed at providing more reasonable
ways of spatial pooling beyond SPM [49]. Liu et al. [56]
propose computing smaller codebooks for feature encoding in
the lower levels (smaller bins), while [36] suggests combining
sparse coding algorithms with spatial pyramids toward better
image representation. When the encoded feature vectors are
very long and dense, such as in the case of Fisher vector
encoding [28], [73], it is suggested to use a smaller number of
pooling bins to reduce the time and memory complexity [72].

Maybe the most relevant works to our algorithm
are [50] and [51]. In [50], a larger number of receptive field
candidates are extracted on the image plane, and a classifier is
trained with structured sparsity to use only a subset of all the
features. In [51], a hierarchical ROI dictionary is trained for
spatial pooling, and partial least-square analysis is employed
to learn a compact image representation. These methods often
produce larger improvement on object recognition than on
scene recognition [51], for the reason that scene images are
somewhat regular, thus naive pooling strategy works very well.
For example, the accuracy gain on the Caltech101 data set
by [50] and [51] are 1.9% and 3.1%, respectively, but the gain
on the Scene-15 data set by [51] is merely 1.1%. Our simple
solution gives ∼1% gain on both data sets (see Section V-B).
In comparison, the proposed GRSP algorithm is extremely
simple and generalizable: one needs only few lines of
codes to implement the algorithm, and it produces consistent
improvement in a wide range of classification tasks.

Fig. 4. Classification results based on LLC [37] and IFV [28] on the
Caltech101 data set. Different normalization parameters (power p and
coefficient w) are used. w is a dominant factor in LLC encoding with
�1-normalization.

IV. HIERARCHICAL FEATURE NORMALIZATION

In this section, we present the HFN algorithm. It is
previously described in [4] as an optimization of
conventional �p-norm normalization. We first show that
tuning parameters in normalization help to achieve good
performance, and then generalize from global normalization to
weighted part-wise normalization based on two assumptions,
i.e., equal/hierarchical contribution assumption.

A. Conventional Normalization: Power and Coefficient

One of the simplest and most widely adopted normalization
techniques is the �p-normalization, in which a feature vector
is projected onto the �p-norm unit hypersphere

F̃ = F
‖F‖p

(8)

where ‖F‖p is the �p-norm: ‖F‖p = (
∑

i F p
i )1/p and

p is named the normalization power. When p → +∞,
‖F‖p = maxi Fi . In most cases, the normalized feature vectors
are fed into SVM, which is quite sensitive to the numerical
ranges of input data [74], and therefore it is reasonable to
choose a proper normalization coefficient w and modify (8) as

F̃ = w × F
‖F‖p

. (9)

We observe the impact of normalization power and
coefficient on the Caltech101 data set [75]. Detailed
experiment settings could be found in Section V-A. The
classification results using different combinations of power p
and coefficient w are shown in Fig. 4. One can observe
the importance of choosing proper normalization parameters.
Especially, when p = 1, i.e., �1-norm normalization is
adopted, it is instructive to use a larger w to prevent the
SVM classifier from being disturbed by small feature values.
When a relatively larger w is used, there are less numerical
stability issues observed, and consequently, �1-norm produces
comparable performance than that of �2-norm in the case
of LLC encoding. This provides a different opinion from
that �1-normalization would cause classification accuracy drop
dramatically [37]. Although the performance of �1-norm with
improved Fisher vector (IFV) encoding is always much worse
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Fig. 5. Global normalization versus SFN. We use �1-norm (sum norm) as
an example. Different spatial regions are set with equal weights to preserve
nearly the same amount of information.

than that of �2-norm, adopting a larger coefficient w still
helps to boost classification accuracy. Therefore, in the later
experiments, we fix w = 100 in every single case.

B. Separate and Hierarchical Feature Normalization

The above normalization method simply considers each
feature vector as a whole. However, a feature vector generated
by the BoF model usually contains several parts. For example,
if there are S spatial pooling bins, the image-level feature
vector comprises of S originally individual regional feature
vectors. It is not instructive to ignore its intrinsic structure.

A straightforward modification of the global pooling
formula (9) starts from the equal contribution assumption,
i.e., each part of F equally contributes to recognition. Denote
F = [f1; f2; . . . ; fS], where fs is the feature vector of the sth
pooling bin, for s = 1, 2, . . . , S. Instead of normalizing F in a
global manner, we perform a separate normalization technique,
which normalizes f1, f2, . . . , fS individually

f̃s = w

S1/p
× fs

‖fs‖p
, s = 1, 2, . . . S (10)

and concatenates f̃1, f̃2, . . . , f̃S as F̃: F̃ = [f̃1; f̃2; . . . ; f̃S]. The
modified normalization coefficient w/S1/p in (10) confirms
‖F̃‖p = w as it is in (9). Equation (10) defines the separate
feature normalization (SFN) algorithm.

SFN is illustrated with a real part-based model in Fig. 5.
In this case, the scene image is partitioned into several regions
(pooling bins) with various saliencies on the image, and
therefore pooled feature vectors in different parts might have
different lengths in the feature space. Under the assumption
that these parts equally contribute to image classification,
we shall normalize the feature vectors separately in order to
prevent small parts being dominated by the large ones. It is
also worth noting that SFN is the default strategy used in the
IFV encoding [28], in which it is claimed that SFN helps to
provide more discriminative feature vectors.

However, it is not always true that each part contributes
equally. Most often, larger pooling bins consist of more basic
regions and are consequently more robust and discriminative.
Therefore, we slightly modify the equal contribution
assumption into the hierarchical contribution assumption, i.e.,
the contribution of a pooling bin is proportional to its

Fig. 6. Comparison among global normalization, SFN, and HFN. We use
�1-norm (sum norm) as an example. HFN provides more reasonable results
for a multilayer spatial pooling structure.

area (number of pixels) on the image plane. Let us denote ks by
the number of pixels contained in sth pooling bin. Appending
the fixed constraint ‖F‖p = w obtains

⎧
⎪⎨

⎪⎩

w
p
s ∝ ks

S∑

s=1
w

p
s = wp.

(11)

Solving (11) gives a group of new coefficients for
part-wise normalization, in which we enhance the spatial
weights on larger pooling bins to emphasize global
information. We name (11) the HFN algorithm.

HFN is illustrated in Fig. 6 using a three-layer spatial
pooling model with {1×1, 2×2, 1×3} pooling bins. It is also
convenient to add more layers of pooling bins (e.g., 4×4) into
the model. With hierarchical normalization, features generated
by smaller regions are assigned lower weights, implying that
features extracted on smaller regions are more likely to be
unstable and less trustworthy.

C. Comparison With Previous Works

Although the feature normalization stage is often considered
a less interesting issue, previous literatures have verified
that classification accuracy is greatly impacted by different
normalization strategies. In [37], it is claimed that
�1-normalization results in dramatic accuracy drop compared
with �2-normalization. We make a strong defense for
�1-norm by noting that it works very well with a large
normalization coefficient. In [28], the Fisher vector is
improved with power normalization, which implicitly intro-
duces the Hellinger’s kernel to calculate the distance in the
feature space. Reference [72] also suggests to choose the
feature normalization strategy carefully so as to achieve higher
classification accuracy.
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Our work is also related to several feature pooling
algorithms that do not discuss the feature normalization strate-
gies explicitly. In [56], it is suggested to use smaller codebooks
to quantize the local descriptors on smaller pooling bins,
resulting in extracting lower dimensional feature vectors on
the smaller pooling bins. In this paper, we preserve the same
feature length for large and small pooling bins, but adopt a
hierarchically decayed weighting scheme for similar effects.

V. EXPERIMENTS

A. Datasets and Settings

We test our approach on three types of image classification
tasks, i.e., scene recognition, generic object recognition, and
fine-grained object recognition.

For scene recognition, the following data sets are used.
1) The UIUC Sport-8 data set [76] contains 8 sporting

scenes and 1579 images. A total of 70 images per
category are randomly selected for training.

2) The Scene-15 data set [49] contains 15 scenes and
4485 images. A total of 100 images per category are
randomly selected for training. It is one of the most
widely used data sets for scene understanding tasks.

3) The LandUse-21 data set [77] contains 21 land-use
scenes with 100 images for each class. A total of
80 images per category are randomly selected for
training.

4) The MIT Indoor-67 data set [78] contains 67 indoor
scenes and 15 620 images. A total of 80 images per
category are randomly selected for training.

5) The SUN-397 data set [79] contains 397 indoor/outdoor
scenes and 108 792 images. A total of 50 images per
category are randomly selected for training.

For generic object recognition, the following image corpora
are evaluated.

1) The Bird-6 data set [80] contains 6 bird categories and
100 images per class. A total of 50 images per category
are randomly selected for training.

2) The Butterfly-7 data set [81] contains 619 butterfly
images from 7 species. A total of 26 images per category
are randomly selected for training.

3) The Flower-17 data set [82] contains 17 flower
categories with 80 images per class. A total of 60 images
per category are randomly selected for training.

4) The Caltech101 data set [75] contains 9144 images of
102 classes. A total of 30 images per category are
randomly selected for training.

5) The Caltech256 data set [83] contains 30 607 images
of 257 classes. A total of 60 images per category are
randomly selected for training.

6) The PascalVOC-2007 data set [84] is one of the most
popular and challenging cases for multilabel concept
learning and object retrieval. This data set, with around
10 000 images, provides a fixed training/testing split.
Performance is evaluated by the mean average precision
score of each query image.

Although bird and flower data sets also appear in the
fine-grained data sets, we emphasize that generic object

recognition often deals with very small numbers of
fine-grained concepts. There could be a large difference when
classifying increasing numbers of fine-grained concepts, such
as the following fine-grained object recognition cases.

1) The Oxford Pet-37 data set [85] contains 37 cat or dog
breeds and 7349 images. A total of 100 images per
category are randomly selected for training.

2) The Aircraft-100 data set [86] contains 100 aircraft
models and 100 images for each model. A total of
67 images per category are randomly selected for
training.

3) The Oxford Flower-102 data set [87] contains
8189 flower images from 102 categories. A total of
20 images per category are randomly selected for
training.

4) The Stanford Dog-120 data set [88] contains 20 580 dog
images of 120 breeds. A total of 100 images per category
are randomly selected for training.

5) The Caltech-UCSD Bird-200-2011 data set [89] contains
11 788 bird images of 200 different species. A total
of 30 images per category are randomly selected for
training.

The basic experimental settings used in the later sections
follow the recent proposed BoF models, i.e., based on weak
[locality-constrained linear coding (LLC) [37]] and strong
IFVs [28] feature encoding algorithms.

1) Image Rescale: Images are scaled, with the aspect ratios
preserved, so that the larger axis is 300 pixels for
LLC and 600 pixels for IFV. When a bounding box is
available, we use only the region within the box.

2) Local Descriptors: We use the VLFeat [90] library to
extract dense RootSIFT [24] descriptors. The spatial
stride and window size of dense sampling are 6 and 12
for LLC, while 8 and 16 for IFV, respectively.
On the same patches, 96D LCS descriptors [28] are
also extracted. The dimensions of both descriptors are
reduced to 64 using PCA in the case of IFV encoding.

3) Codebook Training: We then cluster the descriptors with
K -means clustering (K = 2048) and GMM (K = 256),
respectively, for the LLC [37] and IFV [28] encoding
methods. The number of descriptors collected for
clustering does not exceed two million.

4) Feature Encoding and Pooling: We use LLC and IFV
algorithms for feature encoding. After LLC encoding,
we use max pooling with a {1 × 1, 2 × 2, 4 × 4} spatial
pyramid, while after IFV encoding, we use sum pooling
with a {1 × 1, 2 × 2, 1 × 3} spatial pyramid.

5) Classification: We use SGD [91], a scalable SVM
implementation for training and testing. The training and
testing split follows the original setting of each data set.
The average accuracy over all the tested categories is
calculated. We repeat the random selection 10 times and
report the averaged results.

B. Generalized Regular Spatial Pooling

We observe the impact of using different numbers of pooling
bins in the GRSP algorithm. Here, we fix the bin size in the
lth layer as (W/2l )× (H/2l). The classification results on the
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TABLE I

CLASSIFICATION RESULTS OF DIFFERENT POOLING PARAMETERS ON FOUR DATA SETS WITH FEWER TRAINING SAMPLES

TABLE II

CLASSIFICATION RESULTS OF DIFFERENT POOLING PARAMETERS ON FOUR DATA SETS WITH MORE TRAINING SAMPLES

data sets with smaller and larger numbers of training samples
are summarized in Tables I and II, respectively.

First, we compare the classification results on the data sets
with fewer training samples (see Table I). With LLC encod-
ing [37] (cases 1–9), one can observe significant accuracy gain
as the number of pooling bins increases from 2 × 2 to 3 × 3
on the first layer, [see case pairs (1, 4), (2, 5), and (3, 6)].
However, when the number is further increased from 3 × 3
to 4 × 4, one can observe only a limited accuracy gain or
even accuracy drop [see case pairs (4, 7), (5, 8), and (6, 9)].
This suggests that denser spatial pooling bins do provide extra
information into image representation, but using too many bins
could also introduce considerable redundance, which actually
harms the classification accuracy. On the second layer, things
become different: the best classification accuracy is obtained
with 3×3 pooling bins, and increasing the number to 4×4 or
6 × 6 causes slight accuracy drop [see case groups (1, 2, 3),
(4, 5, 6), and (7, 8, 9)]. A similar discipline is also summarized

from the results using IFV encoding [28] (cases 10–18).
When the originally used 2×2 grid is replaced by a 3×3 grid,
the classification accuracy is improved significantly, whereas
the even denser 4 × 4 grid does not help much to provide
complementary information in image representation. When
using horizontal stripes for spatial pooling, the best choice
is to use original 1 × 3 bins.

However, quite different results are observed when there
are more training samples for classification (see Table II).
With LLC encoding [37] (cases 19–27), the best classification
accuracy is obtained with the largest number of pooling bins,
i.e., 4×4 on the first layer and 6×6 on the second layer. With
IFV encoding, it is also instructive to introduce more pooling
bins to improve the representative power of features, and the
best performance is obtained with 3 × 3 and 1 × 4 bins on
the first and second layers, respectively. We have also tested
the algorithm with even larger numbers of pooling bins, e.g.,
5×5 on the first layer and 1×8 on the second and third layers
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TABLE III

CLASSIFICATION RESULTS OF DIFFERENT FEATURE NORMALIZATION STRATEGIES ON SCENE RECOGNITION DATA SETS

for IFV, respectively. The accuracy improvement is relatively
smaller.

As assistant experiments, we also perform cross validation
using training samples only. On each data set, the training
subset is equally partitioned into five equal parts. Every time,
four of them are used for training and the remaining one is left
for testing. In these experiments, we observe the same results,
i.e., increasing the number of pooling bins works better on
larger training sets, which implies that the above parameter
selection process could be performed automatically.

The different disciplines observed in the cases with smaller
and larger numbers of training samples could be explained
with overfitting. In the case of fewer training samples,
classification models in a high-dimensional feature space may
not be well trained. As the number of training samples
grows, machine learning algorithms become more confident
in fitting classification models into a high-dimensional
space.

In conclusion, we will use different settings of pooling bins
according to the number of training samples in the data sets.
For those data sets with less or equal than 1000 training
samples, we use {1 × 1, 3 × 3, 4 × 4} pooling bins for
LLC encoding and {1 × 1, 3 × 3, 1 × 3} pooling bins for
IFV encoding. For those data sets with more than 1000 training
samples, we use {1 × 1, 4 × 4, 6 × 6} pooling bins for
LLC encoding and {1 × 1, 4 × 4, 1 × 4} pooling bins for
IFV encoding. Although it is not perfect to discriminate differ-
ent data sets merely using the number of training samples, our
model provides a simple solution toward extracting features
with varying descriptive power in different cases.

In the cases of smaller data sets such as those presented
in Table I, the accuracy gain is relatively small, i.e., most
often less than 1% beyond standard SPM. However, the
gain could be as large as 2% in larger data sets (SUN-397
and Caltech256 in Table II). Moreover, we point out that
GRSP provides consistent accuracy gain, which verifies our

motivation, i.e., a properly constructed spatial pooling set
helps image classification, which is just the goal of this
paper.

The time and memory complexity of SVM classification is
linear to the total number of pooling bins S, which is the same
as previous algorithms [50], [51]. Thanks to the simplicity of
GRSP, computational costs on the feature pooling stage are
almost ignorable.

C. Hierarchical Feature Normalization

We evaluate different feature normalization models,
i.e., global, separate, and hierarchical normalization, on a
wide range of image data sets for scene recognition and
generic/fine-grained object recognition. We choose three most
widely adopted norms, i.e., �1-norm, �2-norm, and �∞-norm
(max norm), and fix the normalization coefficient w = 100.
The classification results are summarized in Tables III and IV,
respectively.

One can observe that, in most cases, classification accuracy
is improved by adopting the SFN and HFN algorithms. This
indicates the benefit from normalizing the feature vectors
according to their intrinsic structure. Moreover, HFN always
works better than SFN, validating that larger pooling bins
indeed provide more trustworthy information.

It is also instructive to observe the difference among scene
recognition, generic object recognition, and fine-grained object
recognition. In general, the separate/hierarchical contribution
assumption would be better satisfied when the image is
partitioned into semantic parts or regions in spatial context
modeling. In the case of fine-grained recognition, pose
variation between different samples is relatively small, and
therefore the accuracy gain using HFN is significantly larger
than in the cases of scene or generic object recognition.
In [4], we also perform HFN on a part-based classification
model on the Bird-200 data set [89] and observe even more
significant accuracy gain (relatively more than 10%) over the
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TABLE IV

CLASSIFICATION RESULTS OF DIFFERENT FEATURE NORMALIZATION STRATEGIES ON OBJECT RECOGNITION DATA SET

TABLE V

COMPARISON OF OUR CLASSIFICATION RESULTS WITH PREVIOUS WORKS ON SCENE RECOGNITION

global normalization method. This is not strange since our
normalization strategy treats each section of a feature vector
as a single part. It works better when the BoF model fits the
part-based assumption better, i.e., parts are more semantically
meaningful.

D. Comparison With the State of the Art

We compare the results produced by GRSP and HFN with
the state-of-the-art algorithms.

1) Scene Recognition: The classification results on scene
recognition data sets are shown in Table V. Since spatial
context plays an important role in scene image understanding,
regular spatial division models such as SPM [49] work well
on these tasks. The proposed GRSP algorithm follows the idea
of SPM and generalizes it onto a more flexible set of pooling
bins. It improves SPM and works even better than algorithms

using complicated pooling techniques such as [95]. Although
GRSP produces slightly lower accuracy than [94] in which
important spatial pooling regions (ISPRs) are learned for
semantic pooling, we point out that GRSP is more generalized
than ISPR, which is only applied to scene recognition tasks.

2) Generic Object Recognition: We next report generic
object recognition results in Table VI. Here, GRSP also
produces accuracy gain over SPM, owing to that extra pooling
bins help to represent possible objects and/or parts on the
image. In [50], an automatic learning algorithm is proposed to
construct pooling bins. In comparison, our algorithm is more
generalized and easier to implement.

We also provide object retrieval results on the
PascalVOC-2007 data set [84]. In these tasks, more similar
to image retrieval, our algorithm also produces consistent
accuracy gain. It is worth noting that there exist some cases
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TABLE VI

COMPARISON OF OUR CLASSIFICATION RESULTS WITH PREVIOUS WORKS ON GENERIC OBJECT RECOGNITION

TABLE VII

COMPARISON OF OUR CLASSIFICATION RESULTS WITH PREVIOUS WORKS ON FINE-GRAINED OBJECT RECOGNITION

with small objects in PascalVOC-2007. The use of GRSP
significantly increases the possibility of detecting semantic
contents in these images (please see Fig. 7 for examples).

3) Fine-Grained Object Recognition: Finally, the
fine-grained object recognition results are summarized
in Table VII. Although GRSP still works better than SPM,
the results are poor compared with those using semantic
parts as pooling regions, such as [53]–[55] and [100]. The
reason that our algorithm is trailed by a large margin by
the above competitors is that we do not use detected object
parts that are verified crucial for fine-grained recognition
tasks. We leverage the part detection results in [53] on the
Bird-200 data set [89]. With detected parts, our algorithm
reports 58.09% and 65.41% accuracy, using LLC and
IFV encoding, respectively. After adopting the hierarchical
structure learning (HSL) algorithm [53], the results are

boosted to 59.86% and 66.87%, which are competitive
among those reported in Table VII. Since HSL could also be
considered as an alternative solution of increasing pooling
regions, this experiment once again verifies our statement:
a well-designed pooling algorithm is crucial for image
classification.

The impact of HFN on fine-grained object recognition
is also worth emphasizing. In both scene and generic
object recognition tasks, HFN improves the accuracy less
significantly, since it is not likely to partition the image
into semantic parts with simple rectangular pooling bins.
Exceptions come from the fine-grained object recognition,
in which the objects are better described by the underlying
semantic parts. Although regular grids are not perfect part
detectors, it does capture useful information since the
pose variation in fine-grained data sets is much smaller.
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Fig. 7. Example images on which classification algorithms with (above the
dashed line) and without (below) using GRSP. Red frames indicate pooling
regions that are additionally generated by GRSP, which better capture visual
concepts. On the other hand, yellow frames indicate those less meaningful
regions generated by GRSP, which confuse classifiers.

Therefore, normalizing each region individually produces
more discriminative feature vectors. Similar results on detected
parts are reported in [4].

E. Discussion

Some necessary discussions are made here.
1) Significance of Accuracy Gain: We perform student’s

t-test to verify that the accuracy gain of our algorithm is
statistically significant. On each data set, we compute the
likelihood of null hypothesis (p-value) in each of the 10 fixed-
split testing rounds. The p-value is smaller than 0.01 in all the
small data sets such as Bird-6 and smaller than 10−4 in the
data sets with more than 100 categories such as SUN-397.

2) Qualitative Analysis: We provide some sample images
in Fig. 7 as qualitative analysis. One might observe that GRSP
helps to improve classification performance on some images
with small objects. However, GRSP also produces wrong
results on some images that are correctly classified by SPM.
Overall, we find more positive cases than negative cases in
every single data set.

3) Weakness of Our Algorithm: The main weakness of our
algorithm lies in the GRSP module. Although GRSP could
be easily implemented, the increasing number of pooling bins
brings in heavier computational overheads on the classifica-
tion stage. In the future, we will leverage feature selection
algorithms such as [50] to alleviate the extra costs.

4) Contribution: The main contribution of this paper lies in
that we provide solid evidences, showing that feature pooling
and normalization are crucial modules in image classification.

Finally, we shall emphasize that the proposed normalization
techniques, i.e., SFN and HFN, are extremely simple

and efficient. One needs only few lines of codes to implement
them, and there are almost no extra costs on both time and
memory. Therefore, we suggest adopting these two algorithms
in every part-based image classification model.

VI. CONCLUSION

In this paper, we propose two simple algorithms, i.e.,
GRSP and HFN, for summarizing encoded features in the
BoF model. Although feature pooling and normalization stages
are considered less interesting compared with other modules,
we can still obtain consistent accuracy gain with intuitive
analysis on the nature of image representation. The proposed
algorithms are extremely easy to implement yet very efficient
to carry out, and could be freely transplanted onto various
types of classification tasks based on the BoF model. The
experimental results have revealed that the combined model
(GRSP with HFN) helps to improve the classification accuracy
on every single case, using either LLC or IFV encoding.
We achieve state-of-the-art performance on a wide range of
image classification tasks.
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