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a b s t r a c t

Image classification is a fundamental problem in computer vision which implies a wide range of real-
world applications. Conventional approaches for image classification often involve image description and
training/testing phases. The Bag-of-Features (BoF) model is one of the most popular algorithms for image
description, in which local descriptors are extracted, quantized, and summarized into global image

In the BoF model, all the visual descriptors are naturally treated as nouns, and plenty of useful
contents are ignored. In this paper, we suggest to extract descriptive information, known as adjectives, to
help visual recognition. We propose a simple framework to integrate various types of adjectives, i.e., color
(or brightness), shape and location, for more powerful image representation. Experimental results on both
scene recognition and fine-grained object recognition reveal that our approach achieves superior clas-
sification accuracy with reasonable computational overheads. It is also possible to generalize our model
to many other multimedia applications such as large-scale image search.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Image classification is a fundamental problem, which is closely
related to a wide range of computer vision applications, including
object recognition and detection, multimedia information retrie-
val, image tagging and recommendation, etc. Recent years have
witnessed the emersion of fine-grained and large-scale image
classification, introducing new challenges into this traditional
research field.

The Bag-of-Features (BoF) model [1] is one of the most popular
algorithms for image classification. It is a statistics-based model
aimed at producing better image representation. Due to the lim-
ited descriptive power of raw pixels, handcrafted descriptors such
as SIFT [2] are extracted. A visual vocabulary or codebook is then
built to capture data distribution in the feature space. Descriptors
are thereafter quantized on the codebook as compact signatures,
and summarized as an image-level vector, which is the output of
the BoF model. The high-dimensional representation vector could
also be used for other multimedia applications, such as image
retrieval [3] and object detection [4].

In the conventional BoF model, all the extracted descriptors are
actually treated as nouns. By nouns we mean that they are
a.edu.cn (B. Zhang),
concentrated on describing a specific aspect of an object, and no
descriptive information is incorporated. We illustrate the short-
coming of this model in Fig. 1. When we are concerning about
some fine-grained properties of an image, such as the model of an
aircraft, or the weather condition of a scene, it is most often the
subtle differences in local patches that reveal the answer. For
example, an A380 might be distinguished from a Tornado by the
shape of the plane nose, and the brightness of the ground is the
main evidence to judge if the weather is sunny or cloudy. Both
shape and brightness are examples of descriptive information of a
patch. Without such information, the BoF model might either
ignore the subtle differences (e.g., quantizing dark and bright

grounds into an identical word), or fail to capture the relationship
between them (e.g., regarding blunt and sharp plane noses as
two independent words). Both strategies might introduce con-
siderable information loss and harm the discriminative power of
image representation.

In this paper, we present a simple idea which integrates visual
adjectives for image classification. Our main contribution is to
design an efficient framework and suggest various types of
adjectives, e.g., color (or brightness), shape and location signatures,
to enhance local descriptors. By jointly training and testing with
both concrete (noun) and descriptive (adjective) information, our
approach achieves superior classification accuracy without
requiring extra online computational overheads. It is also worth
emphasizing that we do not aim at developing a novel approach,
since all the adjectives extracted are pre-existed meanwhile we
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Fig. 1. Descriptive information, such as shape and brightness, helps to recognize
visual concepts, such as the weather condition and the model of an aircraft. Bold
and italic fonts indicate visual adjectives and nouns, respectively.
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just perform feature fusion before the classification stage. What
we want to deliver is an alternative efficient way of combining
multiple sources of visual clues together.

The remainder of this paper is organized as follows. First,
several related works are reviewed in Section 2. In Section 3, we
illustrate our framework and introduce several descriptive adjec-
tives for classification. After experimental results are shown in
Section 4, we draw the conclusions in Section 5.
2. Related works

The related works to our research could be roughly partitioned
into two parts, i.e., the conventional Bag-of-Features (BoF) Model
for basic image description, and the approaches of incorporating
complementary information into image representation.

2.1. The Bag-of-Features model

The Bag-of-Features (BoF) model is one of the most popular
algorithms for image representation. It is composed of three major
stages, i.e., descriptor extraction, feature encoding and feature
summarization.

2.1.1. Descriptor extraction
The BoF model starts from extracting local descriptors. Due to

the limited descriptive power of raw pixels, handcrafted descrip-
tors are often extracted from small patches named interest points
on an image.

For patch detection, gradient-based operators try to find local
maxima which may correspond to well-defined interest points.
Typical examples include Differential of Gaussian (DoG) [2], Hes-
sian/Harris Affine [5], Maximally Stable Extremal Region (MSER)
[6] operators and dense interest points [7]. Particularly, in image
classification, it is also suggested to densely extract descriptors
from a regular grid on the image [8].

For patch description, popular cases include Scale Invariant
Feature Transform (SIFT) [2], and Histogram of Oriented Gradients
(HOG) [9]. Other variants, such as Gradient Location and Orien-
tation Histogram (GLOH) [10], Speeded Up Robust Features (SURF)
[11], Binary Robust Independent Elementary Features (BRIEF) [12],
DAISY descriptor [13] and Oriented FAST and Rotated BRIEF (ORB)
[14], are also verified efficient and robust in image classification/
retrieval tasks.

Either combination of patch detection or description algo-
rithms yields a set D of local descriptors:

D¼ d1; l1ð Þ; d2; l2ð Þ;…; dM ; lMð Þ� � ð1Þ
where dm and lm denote the D-dimensional description vector and
the geometric location of the mth descriptor, respectively. M is the
total number of dense descriptors. There might be more than one
descriptor sets for an image in the cases of using multiple local
descriptors.

2.1.2. Codebook training
After descriptor extraction and prior to feature encoding, a

visual vocabulary (codebook) is trained to estimate the feature
space distribution. The codebook is often computed with iterative
algorithms such as K-Means or Gaussian Mixture Models (GMM).

K-Means is based on the kernel density model, which con-
structs K vectors with D dimensions:

B¼ c1; c2;…; cKf g ð2Þ
The element ck, k¼ 1;2;…;K , is named a codeword, and each
descriptor is then related to its nearest codeword(s) by Euclidean
distance in the feature space.

On the other hand, the Gaussian Mixture Model (GMM) is
trained to capture richer geometric contexts in the feature space. It
describes the feature space with a mixture of K multi-variant
Gaussian distributions:

M¼ π1;μ1;Σ1
� �

;…; πK ;μK ;ΣK
� �� � ð3Þ

Parameters πk, μk and Σk denote the prior, mean value and cov-
ariance of the kth Gaussian component, respectively, for
k¼ 1;2;…;K .

Both K-Means and GMM could be solved iteratively with EM-
based algorithms.

2.1.3. Feature encoding
Then, the feature encoding stage is aimed at quantizing each of

the descriptors into a compact representation.
If the codebook is trained with K-Means clustering, i.e., com-

posed of a set of codewords, then a descriptor could be encoded
according to its distances to the codewords in the feature space.
Hard quantization uses the nearest codeword to quantize a
descriptor, resulting in a large quantization error. As an alternative
solution, soft quantization allows a descriptor to be reconstructed
by a small number of codewords. Sparse Coding [15] is a special
case of soft quantization, which is verified very efficient in image
classification [16,17]. After encoding, each descriptor dm is repre-
sented as a K-dimensional, sparse feature vector wm, i.e., in which
only one or few of the dimensions are non-zero.

If the codebook is trained with a GMM, i.e., geometric context
information is preserved, richer discriminative features could be
captured by computing the Fisher vectors [18]. It works by
decomposing the Fisher Information Matrix towards maximal
discrimination [19]. In this case, both the first-order and the
second-order statistics are encoded, resulting in a much longer
(2DK dimensions) and denser (around 50% dimensions are non-
zero) feature vector. Consequently, the time and memory costs are
much more expensive than using K-Means based encoding. Similar
ideas are also used in other high-dimensional features, such as
Super Vector encoding [20] and Oriented SIFT/HOG encoding [21].

After the encoding stage, the set of local descriptors is trans-
formed as a set of feature vectors:

W ¼ w1; l1ð Þ; w2; l2ð Þ;…; wM ; lMð Þ� � ð4Þ

In which, dm in Eq. (1) is replaced by wm, for m¼ 1;2;…;M.

2.1.4. Feature summarization
As the final stage, quantized feature vectors are summarized

into a compact image representation. For this respect, both feature
pooling and normalization techniques are adopted.
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The pooling stage is crucial in the BoF model, not only for it
summarizes different numbers of local features into a vector of the
same length, but also for its effect of canceling out the translation
variance, allowing an object to appear on different positions of an
image. A natural way of feature pooling is to calculate a global
statistics based on all the quantized vectors. Max-pooling and
average-pooling are probably the most widely adopted approa-
ches. The max-pooling strategy calculates the maximal response
on each codeword: f ¼max1rmrMwm, while the average-pooling
strategy calculates the average response: f ¼ ð1=MÞPM

m ¼ 1 wm.
Here the notations maxm and

P
m denote dimension-wise max-

imization and summation, respectively. Researchers have dis-
cussed the choice of max-pooling versus average-pooling [22],
showing that max-pooling gives more discriminative representa-
tion under soft quantization strategies, while average-pooling fits
hard quantization better. Generalized Max Pooling (GMP) [23]
discusses the relationship between max-pooling and Fisher
vectors.

Feature normalization, or feature scaling, is a crucial data pre-
processing stage aimed at avoiding attributes in greater numeric
ranges dominating those in smaller numeric ranges, and control-
ling the similarity measure between feature vectors. One of the
most popular feature normalization methods is the ℓp-norm nor-
malization, in which we divide each feature vector by its length in
the ℓp space: ~F ¼ F=JFJp, so that all the vectors become ℓp-unit-
length. The selection of the norm p might significantly impact the
performance of generalized classifiers. For instance, it is demon-
strated that in SVM, ℓ2 normalized vectors have the minimal
structural risk [24].

Representation vectors are finally fed into a generic classifier
such as a Support Vector Machine (SVM). The detailed discussion
of classifiers goes out of the goal of this paper.

2.2. Incorporating complementary information

It is well known that each type of feature has its speciality and
limitation. For example, SIFT is good at describing textual features
but less capable of capturing color [25] or shape [26] properties. To
provide complementary description, researchers suggest to extract
multiple types of local features, including Color-SIFT [25] and Local
Color Statistics (LCS) [18] for color description, Shape Context (SC)
[27] and Inner-Distance Shape Context (IDSC) [28] for shape
formulation, etc.

Based on the various kinds of visual features, there are several
research efforts aimed at combining multiple features into one
image representation. Most of them could be categorized accord-
ing to the stage on which features are fused. When two or more
types of descriptors/features are extracted, it is possible to fuse
them at the descriptor-stage (mixing both descriptors on the image
plane) [29], at the feature-stage (concatenating encoded feature
vectors into one) [26,30], or at the classifier-stage (fusing individual
classification scores for final judgement) [31]. Besides extracting
explicit features, visual clues could also be captured in an implicit
manner. For example, Spatial Pyramid Matching (SPM) [32]
encodes the position information of local patches by partitioning
an image onto individual pooling regions and performing feature
summarization in each bin. In [33], it is suggested to model spatial
layouts in a more efficient way.

There are more previous works exploring a sophisticated way
of visual feature fusion. In [34], the co-occurrence between com-
mon visual features (nouns) is considered, with the use of “pre-
positions” and “comparative adjectives” which help to express the
relationship between objects. In [35], a top-down attention map is
constructed category-specifically with color features, and then
deployed to modulate shape features by weighting heavier on the
images which are likely to contain an object instance. In [36], a
feature fusion algorithm based on logistic regression is presented,
which takes the advantage of the different cues on different fea-
tures, without being tied to any one of them. In [37], orientational
information is extracted on indoor scene images, and local features
are pooled into the pre-defined orientational bins as high-level
visual representation. In [38], an adaptive fusion strategy is
designed to compute the weight on each component auto-
matically. In all the above works, visual adjectives serve as com-
plimentary information to assist visual recognition with nouns.
Visual adjective information could also be applied to other high-
level visual tasks, such as attribute learning [39,40] and context
discovery and prediction [41].

In this work, we adopt a similar idea to [33], but allows more
types of descriptive information to be encoded. There are merely
complicated modules in the algorithm, the only thing we do is pre-
classification fusion. A main attraction of our algorithm lies in that
we are dealing with generic image settings, therefore our method
could be applied to any type of image collections (e.g., object and
scene recognition). Meanwhile, it does not require extra compu-
tational costs on the online classification stage, which could be
friendly to real-world applications such as those run on mobile
devices.
3. The proposed method

3.1. The framework

The goal of this work is to incorporate visual adjectives, i.e.,
descriptive information, to help image classification. We suggest to
extract additional signatures at the descriptor-stage, since such an
early fusion strategy increases the flexibility of the classification
model [29].

Formally, let d0 be a noun (i.e., the SIFT descriptor), and
d1;…;dL

� �
be a set of L adjectives (descriptive vectors). We aim at

obtaining a vector d that contains all the above information. We
follow a popular strategy used for fusing descriptors [25] and
features [42], which directly concatenates individual descriptors
into one and allows a simple weighting scheme:

d¼ d>
0 ;w1 � d>

1 ;…;wL � d>
L

h i>
. In which, wl controls the weight of

the lth adjective, for l¼ 1;2;…; L. In this way, we treat the
appended adjectives as new channels and maximally preserve
their descriptive power.

The main observation is that the weight wl could be computed
using the ℓ2-norm of the noun d0 and the corresponding adjective
dl, i.e., wl � Jd0 J2 � Jdl J �1

2 . An intuitive explanation is to guar-
antee that the ℓ2-norm of each adjective is approximately the
same as the noun (SIFT), i.e., Jd0 J2 � Jwl � dl J2. Since SIFT is ori-
ginally designed to be cooperated with Euclidean (ℓ2) distance [2],
we are actually assuming that the contribution of the noun is the
same as each of the appended adjectives.

The proposed framework is illustrated in Fig. 2. We shall
emphasize that our model is capable of integrating an arbitrary
number of visual adjectives. Appending these adjectives provides
the possibility of incorporating various types of visual clues for
image classification. To prevent redundancy, we adopt Principle
Component Analysis (PCA) to reduce the descriptors into a fixed
dimension. After PCA, related components from nouns and
adjectives are projected onto the same dimension, thus later
modules (codebook training, feature encoding, etc.) could be
considered as a joint learning process of nouns and adjectives.
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Fig. 2. Illustration of the proposed framework. Brightness (or color), shape and
location adjectives are computed from different visual clues, i.e., grayscale intensity,
boundary response and coordinates, providing complementary information to the
original SIFT descriptor (noun).
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3.2. Typical visual adjectives

In this part, we suggest several visual adjectives to provide
complementary information to the SIFT descriptor.

� Color is the visual perceptual property corresponding in humans
deriving from the spectrum of light. It degenerates to brightness
(also known as luminance) after grayscale transformation. We
borrow the idea from a simple color descriptor, LCS [18], which
partitions a local patch into 4� 4 grids and computes the mean
and standard deviation on each channel and each grid. Such a
96-dimensional descriptor is too long to be an adjective, so we
shorten it by computing the statistics merely on the whole
patch, resulting in a 6-dimensional vector. We can similarly
obtain a 2-dimensional brightness adjective on the grayscale
intensity map.

� Shape is the form of an object or its external boundary, outline,
or external surface, as opposed to other properties such as color,
texture and material composition. To capture shape features, we
compute boundary responses with Ultrametric Contour Map
(UCM) [43], which is a closed contour extraction method based
on a preliminary edge operator [44]. Similar to the extraction of
brightness adjectives, we compute a 2-dimensional shape adjec-
tive for each patch by computing the mean and standard
deviation on the boundary response (a grayscale intensity map).

� The importance of location for visual recognition is well known.
We take the central coordinate of a patch as a 2-dimensional
location adjective. This is very similar to [33] which also
appends scale description. It is instructive to note that in many
image retrieval systems [45,46], geometric information of local
patches, such as location, scale and orientation, is also extracted
to provide richer description. We verify that efficient embed-
ding of geometric information into local features helps classifi-
cation, just like what happens in image retrieval cases [47].

To normalize the adjectives, we first minus each number by the
average of the corresponding dimension, and then divide each
number by the maximum of the absolute value of that dimension.
Finally, each number is multiplied by the factor L which is the ℓ2-
norm of the noun, i.e., the SIFT descriptor. In this way, the average
ℓ2-norm of each adjective is approximately the same as that of the
corresponding SIFT descriptor.

We shall admit that many other options, including more types
of adjectives and more ways of computing adjectives, could be
taken. One might even extract multiple adjectives to describe one
visual property in different aspects, e.g., computing both RGB and
LAB color statistics or adding Shape Contexts (SC) [27] for shape
description. It is also possible to append long adjectives to provide
stronger descriptive information. Here we only present three
straightforward examples to reveal the ability of our model (see
the next section).
4. Experimental results

4.1. Datasets and settings

We evaluate the proposed algorithm on six popular image
classification datasets. Among these datasets, three of them are
designed for scene recognition, and the other three for fine-
grained object recognition.

For scene recognition, we use the Scene-15 dataset [32] (15
general scenes, 4485 images), the LandUse-21 dataset [48] (21
land-use scenes, 100 images for each class), and the MIT Indoor-67
dataset [49] (67 indoor scenes, 15,620 images). The numbers of
randomly selected samples per category for training are 100, 80
and 80, respectively. For fine-grained object recognition, we use
the Aircraft-100 dataset [50] (100 aircraft models, 100 images for
each model), the Oxford Flower-102 dataset [51] (102 flower
categories, 8189 images), and the Caltech-UCSD Bird-200 dataset
[52] (200 bird species, 11,788 samples). The numbers of randomly
selected samples per category for training are about 66, 20 and 30,
respectively.

We follow a recently published BoF model [42] for image
representation. An image is rescaled, with its aspect ratios pre-
served, so that the larger axis is 300 pixels. When a bounding box
is available, we only use the region within the box. We use the
VLFeat [53] library to extract dense RootSIFT [54] descriptors. The
spatial stride and window size of dense sampling are 6 and 12,
respectively. On each patch, one or more visual adjectives might
be extracted and appended, The dimension of the enhanced
descriptor (no matter how long it is) is reduced to 64 using PCA.
We then cluster the descriptors with a GMM of K ¼ 128 compo-
nents. The number of descriptors collected for clustering does not
exceed 1 million. We use the improved Fisher vectors (IFV) [18] for
feature encoding. We do not use a spatial pyramid in order to
reveal the effect of location adjectives. We use LibLINEAR [55], a
scalable SVM implementation for training and testing. The average
accuracy over all the tested categories are calculated. We repeat
the random selection 10 times and report the averaged accuracy.

4.2. Model and adjectives

We summarize the classification results on six datasets in
Table 1. The standard deviations are often less than or close to 1%
and we simply ignore them to save space. We enumerate every
possible combination of color (or brightness), shape and location
adjectives, except for the Scene-15 dataset (a grayscale image set)
on which color adjectives are not computed. We also test the
“baseline” algorithm in which no adjectives are extracted.

One may observe that adjectives produce consistent accuracy
gain on every single case. This signifies that we do obtain addi-
tional visual clues that help recognition. Sometimes, the
improvement might be surprisingly large, implying the extra
information is most useful. For example, it is well known that color
is a crucial property to recognize a flower. Our experiments verify



Table 1
Classification accuracy (%) of different models. Among which, “SIFTþC” enhances
SIFT with color adjectives, “SIFTþB” enhances SIFT with brightness adjectives, etc.
Most often, combining multiple types of adjectives leads to higher classification
accuracy. In all the cases, the feature vectors are of 16,384 dimensions, thus the
computational costs are almost the same.

Algorithm S-15 L-21 I-67 A-100 F-102 B-200

Baseline (SIFTÞ 80.03 89.10 43.12 54.41 53.17 27.44
SIFTþB 81.63 91.57 46.52 56.89 57.11 30.87
SIFTþC – 90.98 51.09 57.36 69.60 36.81
SIFTþS 81.18 90.76 44.71 56.72 55.80 30.17
SIFTþBþS 81.80 91.43 47.39 58.31 59.51 33.25
SIFTþCþS – 91.95 51.83 58.50 69.92 38.74

SIFTþL 82.31 90.95 47.49 58.46 57.16 32.03
SIFTþBþL 83.03 91.64 49.32 60.17 59.85 32.96
SIFTþCþL – 92.26 53.46 60.61 71.04 38.71
SIFTþSþL 82.57 91.62 48.04 59.73 59.18 33.56
SIFTþBþSþL 83:25 92.14 50.12 61.69 62.00 34.61
SIFTþCþSþL – 92:88 53:83 61:91 71:48 40:10

Table 2
Comparison of classification accuracy (%) with visual adjectives and multiple fea-
tures. “� 2” implies to use double-sized codebook, and “4C” means to extract
4�-length color adjectives, as illustrated in Section 4.4. The algorithms SIFTþC,
SIFTþS and SIFTþL produce feature vectors of 16,384 dimensions which is the
same as the baseline method. However, other algorithms produce either 32,768-
dimensional (color and shape adjectives) or 65,536-dimensional (location adjec-
tives) feature vectors which are much longer.

Algorithm S-15 L-21 I-67 A-100 F-102 B-200

Baseline ðSIFTÞ 80.03 89.10 43.12 54.41 53.17 27.44
SIFTþLCS – 91.71 54.24 58.43 77:03 38:55
RGB-SIFT – 90.52 51.05 57.90 71.59 31.05
OPP-SIFT – 91.14 53.57 48.03 76.19 35.20
SIFTþC – 90.98 51.09 57.36 69.60 36.81
SIFTþCð Þ � 2 – 91:98 53.67 58.75 75.69 37.39
SIFTþ4Cð Þ � 2 – 91.90 54:61 58:91 76.50 38.51

SIFTþEdge�SIFT 81.87 90.98 45.91 58.10 56.51 31.63
SIFTþS 81.18 90.76 44.71 56.72 55.80 30.17
SIFTþSð Þ � 2 82:10 91:17 46:48 58:19 57:30 31:89

SIFT with SPM (R¼ 4) 84:79 91.33 48.82 59:61 59.13 33.39
SIFTþL 82.31 90.95 47.49 58.46 57.16 32.03
SIFTþLð Þ � 4 84.28 91:62 49:19 59.48 59:71 33:61
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this point, since color adjectives produce more-than-15% boost
over the baseline algorithm. As a compressed version of color,
brightness adjectives also work well on these cases, although the
gain is much lower than using color (þ4% versus þ15%). There-
fore, we prefer color to brightness except for grayscale datasets
(e.g., Scene-15).

Similar cases also appear when either shape or location adjec-
tives are integrated. In distinguishing fine-grained concepts such
as an aircraft, a flower or a bird, incorporating shape might help to
discriminative subtle differences between two categories/species,
such as long-versus-short bird tails, and sharp-versus-blunt
plane noses. Since we do not use spatial pyramids, location adjec-
tives (coordinates) could provide complementary information in
this aspect. As observed in [33], this implicitly causes the
descriptors assigned to different codewords, leading to a soft-
assignment version of spatial pooling.

The proposed framework also allows multiple types of adjec-
tives being combined at one time. As shown in Table 1, integrating
multiple adjectives often produces higher accuracy than using a
single one. For example, appending shape and color adjectives
produces an averaged 1.02% accuracy gain over using color adjec-
tives alone, suggesting that complementary information is pro-
vided by different types of adjectives. Due to the marginal effect,
the gain is lower than appending shape adjectives directly on
baseline (2.18%). In overall, the best performance is always
achieved when all types of adjectives are incorporated. However, it
is still a kind reminder to carefully select proper adjectives for each
task to avoid introducing redundant information.

4.3. Computational costs

Additional computational costs are mainly required at the stage
of extracting adjectives. We need to compute patch statistics for
color (brightness) and shape adjectives, as well as the boundary
responses using the Ultrametric Contour Map (UCM) [43]. The
elapsed time on each image depends on the image size. For an
image with 300 pixels on its longer axis, computing UCM takes
around 15 s, SIFT takes about 0.5 s, and all the other computation
only involves simple patch statistics which could be finished
within 0.5 s. If the image has 600 pixels on the longer axis, the
computation often takes 4� time compared to above. To accel-
erate, we perform approximation on the most time-consuming
part, i.e., boundary detection, by first extracting UCM on the half-
sized image (both width and height are reduced by a half) and
then rescale the detected boundary image to the same size as the
original image with bicubic interpolation. Thus, a 600� 600
image could also be processed within 20 s. All the time costs are
evaluated on a single 3.0 GHz CPU. Considering such computations
are performed only once, the time/memory overheads are rea-
sonable and affordable.

One might notice that all local descriptors are reduced by PCA
into a fixed dimension (64 in our implementation). By which, we
guarantee that representation vectors are of the same dimension
on every single case. In other words, we significantly improve the
classification accuracy without requiring more computational
costs after PCA reduction.
4.4. Discussions

There exist many previous works aimed at integrating multiple
features for image classification. We implement three of them, i.e.,
Local Color Statistics (LCS) [18] for color features, RGB-SIFT and
Opponent-SIFT (OPP-SIFT) descriptors [25] for color image
description, Edge-SIFT [29] for shape features, and Spatial Pyramid
Matching (SPM) [32] for location. The comparison with the pro-
posed algorithm is summarized in Table 2. The standard deviations
are ignored since they are often quite small (0.5–1%).

� In [42], it is suggested to extract color information by computing
LCS descriptors, encoding them similarly as SIFT, and concate-
nating two representation vectors into one (of doubled length).
To make the comparison fair, we train a larger codebook with
2� codewords based on SIFT with color adjectives. By this we
obtain competitive results on scene recognition. For bird and
flower recognition, color is fundamentally important, therefore
it is not enough to use merely 6 dimensions for color descrip-
tion. When we extract 24-dimensional color adjectives on a 2�
2 grid, comparable accuracy is achieved.

� In [29], shape properties are described by computing SIFT on
boundary responses, i.e., Edge-SIFT. Our algorithm with shape
adjectives outperforms the competitor using equal-length
representation vectors.

� SPM [32] is one of the most popular algorithms for encoding
spatial information. We use R¼ 4 pooling regions, namely the
whole image and three horizontal stripes, on the baseline
model. We also train a codebook with 4� codewords to jointly
cluster the descriptors with location adjectives. These two
models produce comparable classification accuracy.



Table 3
Comparison of classification accuracy (%) with the state-of-the-art on scene
recognition. The term “VA” indicates visual adjectives.

Algorithm S-15 L-21 I-67

Lazebnik et al. [32] 81.4 – –

Quattoni et al. [49] – – 26.1
Yang et al. [16] 80.4 – –

Boureau et al. [56] 84.3 – –

Xiao et al. [30] 88.1 – –

Yang et al. [48] – 81.19 –

Xie et al. [29] 83.77 – 46.38
Kobayashi et al. [21] 85.63 – 58.91
Wang et al. [57] 88.7 – –

Xie et al. [37] – – 63.48
Kobayashi et al. [58] – 92.6 63.4

Ours (IFV [18]) 89.70 90.50 59.17
70:58 71:20 70:76

Ours (IFV þ VA) 91:89 93:88 65:04
70:53 70:94 70:43

Table 4
Comparison of classification accuracy (%) with the state-of-the-art (without part
detection) on fine-grained object recognition. The term “VA” indicates visual
adjectives.

Algorithm A-100 F-102 B-200

Nilsback et al. [51] – 72.8 –

Wah et al. [52] – – 10.7
Chai et al. [59] – 85.2 –

Maji et al. [50] 48.69 – –

Murray et al. [23] – 84.6 33.3
Pu et al. [60] – – 44.2

Ours (IFV [18]) 71.71 68.93 38.86
70:62 70:71 70:62

Ours (IFV þ VA) 77:98 86:31 50:12
70:48 70:51 70:47

Table 5
Comparison of classification accuracy (%) on the Bird-200 dataset with detected
parts. The baseline algorithm uses color-SIFT descriptors, so we do not extract color
adjectives.

Algorithm Chai et al. [61] Gavves et al. [62]

Baseline (CSIFT) 56.6 62.7
Our implementation 55.92 61.94
CSIFTþS 57.75 63.40
CSIFTþL 58.02 63.81
CSIFTþSþL 59:18 65:03
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The difference between our algorithm and previous works
mainly lies in the different stages and ways of performing feature
fusion. We do not aim at presenting a novel algorithm, but eval-
uating the performance of various visual clues, and providing an
alternative and efficient feature fusion method to combine them
with texture descriptors such as SIFT. The highlight of our method
is that we do not require more computational times on the online
classification stage, which is often important for real-world algo-
rithms, e.g., those run on mobile devices with limited computa-
tional resources.

4.5. Comparison to the state-of-the-art

We further compare our model with the state-of-the-art algo-
rithms on all these datasets. We extract stronger features by
rescaling the images into 600 pixels on the longer axis and using
1024 GMM components. Scene recognition and fine-grained object
recognition results are summarized in Tables 3 and 4, respectively.
In both tables, the notation “IFV” refers to the algorithm in which
SIFT descriptors are used directly and the Improved Fisher Vectors
(IFV) [18] are adopted to encode them, whereas by the notation
“IFVþVA” we mean to combine visual adjectives into the SIFT
descriptors and then encode them with IFV. One can see that our
result is competitive among the state-of-the-art performance.

In fine-grained datasets, it is verified that aligned parts provide
informative clues for visual recognition [63,61,62,64]. For com-
parison, we inherit the detected parts on the Bird-200 dataset and
the same experimental settings from [61,62]. Since they have
extracted color features explicitly, we only append shape and
location adjectives for this task. Results are shown in Table 5. One
can observe that our algorithm achieves better performance
without increasing computational overheads. Moreover, the use of
location adjectives overcomes the difficulty that integrates spatial
pooling with relatively small parts (it is often difficult to use SPM
in such cases [62]).
4.6. Generalization

In this final part, we briefly discuss the possibility of general-
izing our idea to other research areas, e.g., assisting algorithms
based on deep learning and applying on other computer vision
problems.

To inspire deep learning algorithms such as Convolutional
Neural Networks (CNNs), one might notice that CNNs directly
learn visual representation from raw-pixel inputs. This strategy
highly depends on the amount of training data. We propose to
incorporate visual adjectives, which are often simple statistics
(e.g., intensity average or patch location) and could be considered
as an additional neuron on the same input layer. We believe that
such extra clues could help to alleviate the heavy requirement of
large-scale training data.

Many other computer vision applications are based on local
features, such as large-scale image retrieval. We could transplant
the global features involving visual contexts [41] onto NN-based
retrieval algorithms, or embed the visual adjectives into a scalable
data structure such as the inverted index [65], just like those
efforts incorporating geometric information [47,46]. In the task of
near-duplicate image retrieval, e.g., the Oxford buildings dataset
[45], we believe the use of color and shape adjectives could help to
generate more accurate feature matches, and the location adjec-
tives might provide another efficient solution of geometric
verification.
5. Conclusions

In this paper, we propose to extract visual adjectives to help
BoF-based image classification. With a simple and efficient fra-
mework, various adjectives are incorporated to provide com-
plementary information and powerful image representation.
Experiments verify that our system achieves the state-of-the-art
recognition performance on both scene recognition and fine-
grained object recognition tasks.

The success of our algorithm verifies the importance of incor-
porating multiple features, as well as the joint learning strategy to
capture underlying relationship between different features. In the
future, we will try to transplant this idea to inspire deep learning
methods such as neural networks. Moreover, we will also explore
its use on other computer vision applications such as large-scale
image retrieval.
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