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Abstract

An increasing number of computer vision tasks can be
tackled with deep features, which are the intermediate out-
puts of a pre-trained Convolutional Neural Network. De-
spite the astonishing performance, deep features extracted
from low-level neurons are still below satisfaction, arguably
because they cannot access the spatial context contained in
the higher layers. In this paper, we present InterActive, a
novel algorithm which computes the activeness of neurons
and network connections. Activeness is propagated through
a neural network in a top-down manner, carrying high-
level context and improving the descriptive power of low-
level and mid-level neurons. Visualization indicates that
neuron activeness can be interpreted as spatial-weighted
neuron responses. We achieve state-of-the-art classification
performance on a wide range of image datasets.

1. Introduction
We have witnessed a big revolution in computer vision

brought by the deep Convolutional Neural Networks (C-

NN). With powerful computational resources and a large

amount of labeled training data [8], a differentiable function

for classification is trained [23] to capture different levels of

visual concepts organized by a hierarchical structure. A pre-

trained deep network is also capable of generating deep fea-

tures for various tasks, such as image classification [20][9],

image retrieval [38][48] and object detection [15].

Although deep features outperform conventional im-

age representation models such as Bag-of-Visual-Words
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(BoVW), we note that the deep feature extraction process

only involves forward propagation: an image is rescaled

into a fixed size, input into a pre-trained network, and the

intermediate neuron responses are summarized as visual

features. As we shall see in Section 3.1, such a method

ignores important high-level visual context, causing both

a “big” problem and a “small” problem (see Figure 1).

These problems harm the quality of the deep features, and,

consequently, visual recognition accuracy.

In this paper, we present InterActive, a novel deep

feature extraction algorithm which integrates high-level vi-

sual context with low-level neuron responses. For this,

we measure the activeness of neuron connections for each

specified image, based on the idea that a connection is more

important if the network output is more sensitive to it. We

define an unsupervised probabilistic distribution function

over the high-level neuron responses, and compute the score
function (a concept in statistics) with respect to each con-

nection. Each neuron obtains its activeness by collecting the

activeness of the related connections. InterActive increases

the receptive field size of low-level neurons by allowing the

supervision of the high-level neurons. We interpret neuron

activeness in terms of spatial-weighted neuron responses,

and the visualization of neuron weights demonstrates that

visually salient regions are detected in an unsupervised

manner. More quantitatively, using the improved InterAc-

tive features, we achieve state-of-the-art image classifica-

tion performance on several popular benchmarks.

The remainder of this paper is organized as follows.

Section 2 briefly introduces related works. The InterActive

algorithm is presented in Section 3. Experiments are shown

in Section 4, and we conclude this work in Section 5.

2. Related Works

Image classification is a fundamental problem in com-

puter vision. In recent years, researchers have extended
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the conventional tasks [24][11] to fine-grained [33][43][34],

and large-scale [16][46][8] cases.

The Bag-of-Visual-Words (BoVW) model [6] represents

each images with a high-dimensional vector. It typically

consists of three stages, i.e., descriptor extraction, feature

encoding and feature summarization. Due to the limited

descriptive power of raw pixels, local descriptors such as

SIFT [30] and HOG [7] are extracted. A visual vocabulary

is then built to capture the data distribution in feature space.

Descriptors are thereafter quantized onto the vocabulary as

compact feature vectors [53][44][35][49], and summarized

as an image-level representation [24][12][58]. These fea-

ture vectors are post-processed [50], and then fed into a

machine learning tool [10][1][48] for evaluation.

The Convolutional Neural Network (CNN) serves as a

hierarchical model for large-scale visual recognition. It is

based on that a network with enough neurons is able to

fit any complicated data distribution. In past years, neural

networks were shown to be effective for simple recognition

tasks [25]. More recently, the availability of large-scale

training data (e.g., ImageNet [8]) and powerful GPUs makes

it possible to train deep CNNs [23] which significantly

outperform BoVW models. A CNN is composed of several

stacked layers, in each of which responses from the previ-

ous layer are convoluted and activated by a differentiable

function. Hence, a CNN can be considered as a composite

function, and is trained by back-propagating error signals

defined by the difference between supervised and predicted

labels at the top level. Recently, efficient methods were

proposed to help CNNs converge faster [23] and prevent

over-fitting [17][18][52]. It is believed that deeper networks

produce better recognition results [40][41].

The intermediate responses of CNN, or the so-called

deep features, serve as efficient image description [9], or a

set of latent visual attributes. They can be used for various

vision applications, including image classification [20], im-

age retrieval [38][48], object detection [15][14] and object

parsing [45]. A discussion of how different CNN configu-

rations impact deep feature performance is available in [4].

Visualization is an effective method of understanding

CNNs. In [54], a de-convolutional operation was designed

to capture visual patterns on different layers of a pre-trained

network. [39] and [2] show that different sets of neurons

are activated when a network is used for detecting different

visual concepts. The above works are based on a supervised
signal on the output layer. In this paper, we define an

unsupervised probabilistic distribution function on the high-

level neuron responses, and back-propagate it to obtain the

activeness of low-level neurons. Neuron activeness can also

be visualized as spatial weighting maps. Computing neuron

activeness involves finding the relevant contents on each

network layer [31][5], and is related to recovering low-level

details from high-level visual context [29].

SMALL problem
sky

water

BIG problem

dog

Figure 1. Examples showing the “big” problem and the “small”

problem of deep feature extraction (best viewed in color PDF).

Left image (label: swimming pool): the receptive regions of

two red neurons are visually similar, but correspond to different

semantics (sky vs. water), implying that the receptive field of low-

level neurons is often too small to capture contexts. Right image

(label: a dog species): only the yellow neurons are located on the

object, but standard deep features used in classification are pooled

over all neurons, most of which are irrelevant, suggesting that the

pooling region is often too big compared to the semantic region.

3. Inter-Layer Activeness Propagation
3.1. Motivation

We start with deep features extracted from a pre-trained

CNN. Throughout this paper, we will use the very deep

VGGNet [40] with 19 convolutional layers. This produces

competitive performance to GoogLeNet [41], and outper-

forms AlexNet [23] significantly. We also adopt the same

notation for layers used in VGGNet, e.g., conv-3-3, pool-
5 and fc-7. All the referred neuron responses are ReLU-

processed, i.e., negative values are replaced by 0.

One of the popular deep feature extraction approaches

works as follows: an image is warped (resized) to the same

size as the input of a pre-trained network (e.g. 224 × 224
in VGGNet), then fed into the network, and the responses

at an intermediate layer (e.g., fc-6) are used for image

representation. A key observation of [40] is that recognition

accuracy is significantly boosted if the input images are

not warped. In what follows, we resize an image, so that

the number of pixels is approximately 5122, both width

and height are divisible by 32 (the down-sampling ratio

of VGGNet), and the aspect ratio is maximally preserved.

Using this setting, we obtain a 3D data cube at each layer

(even for fc-6 and fc-7), and perform average-pooling or

max-pooling to aggregate it as image representation. We

emphasize that such a simple resizing modification gives

significant improvement in recognition accuracy. For ex-

ample, with features extracted from the fc-6 layer, the clas-

sification accuracy is 83.51%, 61.30% and 93.54% on the

Caltech256, SUN-397 and Flower-102 datasets, whereas

features extracted from warped images only report 80.41%,

53.06% and 84.89%, respectively. On the pool-5 layer, the

numbers are 81.40%, 55.22% and 94.70% for un-warped
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input images, and 77.46%, 48.19% and 86.87% for warped

ones, also showing significant improvement.

Compared to the large input image size (approximately

5122 pixels), the receptive field of a neuron on an interme-

diate layer is much smaller. For example, a neuron on the

pool-4, pool-5 and fc-6 layers can see 124×124, 268×268
and 460×460 pixels on the input image, respectively, while

its effective receptive field is often much smaller [54][56].

We argue that small receptive fields cause the following

problems: (1) a low-level neuron may not see enough visual

context to make prediction, and (2) there may be many irrel-

evant neurons which contaminate the image representation.

We name them the “small” problem and the “big” problem,

respectively, as illustrated in Figure 1.

Both the above problems can be solved if low-level neu-

rons receive more visual information from higher levels. In

the network training process, this is achieved by error back-

propagation, in which low-level neurons are supervised

by high-level neurons to update network weights. In this

section, we present InterActive, which is an unsupervised

method allowing back-propagating high-level context on

the testing stage. InterActive involves defining a proba-

bilistic distribution function (PDF) on the high-level neuron

responses, and computing the score function which corre-

sponds to the activeness of network connections. As we

will see in Section 3.4, this is equivalent to adding spatial

weights on low-level neuron responses.

3.2. The Activeness of Network Connections

Let a deep CNN be a mathematical function h
(
X(0);Θ

)
,

in which X(0) denotes the input image and Θ the weights

over neuron connections. There are in total L layers, and the

response on the t-th layer is X(t) (t = 0 indicates the input

layer). In our approach, X(t) is a vector of length Wt ×
Ht×Dt, where Wt, Ht and Dt denote the width, height and

depth (number of channels), respectively. x
(t)
w,h,d is a neuron

on the t-th layer. The connections on the t-th layer, θ(t),

are a matrix of (Wt ×Ht ×Dt)×(Wt+1 ×Ht+1 ×Dt+1)

elements, where θ
(t)
w,h,d,w′,h′,d′ connects neurons x

(t)
w,h,d and

x
(t+1)
w′,h′,d′ . Let U (t)

w,h,d be the set of neurons on the (t+ 1)-st

layer that are connected to x
(t)
w,h,d, and V(t+1)

w′,h′,d′ be the set

of neurons on the t-th layer that are connected to x
(t+1)
w′,h′,d′ .

Hence, the convolution operation can be written as:

x
(t+1)
w′,h′,d′ = σ

⎡
⎢⎣ ∑
(w,h,d)∈V(t+1)

w′,h′,d′

x
(t)
w,h,d · θ(t)w,h,d,w′,h′,d′ + b

⎤
⎥⎦,
(1)

where b = b
(t+1)
w′,h′,d′ is the bias term, and σ[·] is the ReLU

activation: σ[·] = max (·, 0).
We study the PDF on the T -th layer f

(
x(T )

)
by sam-
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Figure 2. The statistics of neuron responses on different layers.

For better visualization, we have filtered all the 0-responses and

normalized the neuron responses and the neuron frequency.

pling, where x(T ) =
(
x
(T )
1 , . . . , x

(T )
DT

)�
is the averaged

neuron response vector over all spatial positions:

x
(T )
d =

1

WT ×HT

WT−1∑
w=0

HT−1∑
w=0

x
(T )
w,h,d. (2)

We use the Caltech256 dataset which contains 30607 natu-

ral images to simulate the distribution. We simply assume

that all the DT elements in x(T ) are nearly independent, and

summarize all the 30607×DT elements by 1D histograms

shown in Figure 2. We can observe that there are typically

fewer neurons with large responses. Therefore, we can

assume that the PDF of high-level neurons has the following

form: f
(
x(T )

)
= Cp · exp

{
− ∥∥x(T )

∥∥p

p

}
, where p is the

norm and Cp is the normalization coefficient.

In statistics, the score function indicates how a likelihood

function depends on its parameters. The score function has

been used to produce discriminative features from genera-

tive models [19], e.g., as of in Fisher vectors [35]. It is ob-

tained by computing the gradient of the log-likelihood with

respect to the parameters. Given an image X(0), we com-

pute the intermediate network output X(T ), the response

vector x(T ) using (2), and the likelihood f (T ) .
= f

(
x(T )

)
.

Then we compute the score function with respect to θ(t) to
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measure the activeness of each network connection in θ(t):

∂ ln f (T )

∂θ(t)
=

∂ ln f (T )

∂X(t+1)
· ∂X

(t+1)

∂θ(t)
, (3)

where X(t+1) is taken as the intermediate term since it

directly depends on θ(t). The two terms on the right-

handed side are named the layer-score and the inter-layer
activeness, respectively.

3.2.1 The Layer Score

We first compute the layer score ∂ ln f(T )

∂X(t+1) . From the chain

rule of differentiation we have:

∂ ln f (T )

∂X(t+1)
=

∂ ln f (T )

∂X(T )
· ∂X(T )

∂X(t+1)
(4)

The second term on the right-handed side, i.e., ∂X(T )

∂X(t+1) , can

be easily derived by network back-propagation as in the

training process. The only difference is that the gradient

on the top (T -th) layer is defined by ∂ ln f(T )

∂X(T ) . From x(T )

defined in (2) and f (T ) = Cp · exp
{
− ∥∥x(T )

∥∥p

p

}
, we have:

∂ ln f (T )

∂X(T )
= − p

WT ×HT
·
(
x(T )

)p−1

· ∂x
(T )

∂X(T )
(5)

where
(
X(T )

)p−1
is the element-wise (p− 1)-st power of

the vector. In particular, when p = 1, the layer score is

proportional to an all-one vector 1WT×HT×DT ; when p =
2, each of the WT ×HT sections is proportional x(T ).

3.2.2 The Inter-Layer Activeness

Next we compute the inter-layer activeness ∂X(t+1)

∂θ(t) . Con-

sider a single term
∂x

(t+1)

w′,h′,d′

∂θ
(t)

w,h,d,w′,h′,d′
, direct differentiation

of (1) gives:

∂x
(t+1)
w′,h′,d′

∂θ
(t)
w,h,d,w′,h′,d′

= x
(t)
w,h,d · Ix(t+1)

w′,h′,d′>0
· I

(w′,h′,d′)∈U(t)
w,h,d

,

(6)

where I· is the indicator whose value is 1 when the condi-

tional term is true and 0 otherwise.

3.3. The Activeness of Neurons

With the layer score (5) and the inter-layer gradient (6),

the score function with respect to θ(t) is derived to be:

∂ ln f (T )

∂θ
(t)
w,h,d,w′,h′,d′

= x
(t)
w,h,d · α(t)

w,h,d,w′,h′,d′ , (7)

where α
(t)
w,h,d,w′,h′,d′ is the importance of the neuron

x
(t)
w,h,d to the connection between x

(t)
w,h,d and x

(t+1)
w′,h′,d′ :

α
(t)
w,h,d,w′,h′,d′

.
= I

x
(t+1)

w′,h′,d′>0
· I

(w′,h′,d′)∈U(t)
w,h,d

· ∂ ln f(T )

∂x
(t+1)

w′,h′,d′
.

Recall that the score function can be used as visual features.

Therefore, we define the activeness of each neuron by

accumulating the activeness of all the related connections:

x̃
(t)
w,h,d =

∑
(w′,h′,d′)∈U(t)

w,h,d

∂ ln f (T )

∂θ
(t)
w,h,d,w′,h′,d′

. (8)

We summarize X̃(t) =
{
x̃
(t)
w,h,d

}Wt×Ht×Dt

with max-

pooling (2), resulting in a Dt-dimensional InterActive fea-

ture vector x̃(t). As we will see in Section 4.2, x̃(t) is a

discriminative representation of the input image X(0).

The relationship between T and t can be arbitrary, pro-

vided it satisfies T � t+ 1. In this paper, we consider two

typical settings, i.e., T = L (L is the number of layers) and

T = t+ 1, which means that the supervision comes from

the final layer (i.e., fc-7) or its direct successor. We name

them the last and the next configurations, respectively.

3.4. Visualization

Before using the InterActive features for experiments

(Section 4), we note that x̃
(t)
w,h,d is a weighted version of

the original neuron response x
(t)
w,h,d. The weighting term is:

γ
(t)
w,h,d =

∑
(w′,h′,d′)∈U(t)

w,h,d

α
(t)
w,h,d,w′,h′,d′ . (9)

It counts the activated (i.e., x(t+1)
w′,h′,d′ > 0) neurons on the

(t+ 1)-st layer, with the importance ∂ ln f(T )

∂x
(t+1)

w′,h′,d′
, which is

supervised by a higher level (the T -th layer).

We visualize the weighting term γ
(t)
w,h,d on the 2D image

plane by defining γ̂
(t)
w,h =

∑
dγ

(t)
w,h,d. The weighting map

is then resized to the original image size. Representative

results are shown in Figure 3. We observe that spatial

weighting weakly captures the interest regions, although

the network is pre-trained using an independent set (i.e.,
ImageNet [8]). Here, we discuss how different parameters

affect the weighting terms.

First, activeness measures the contribution of each neu-

ron to higher-level visual outputs. For a low-level neuron,

if the supervision comes from the next layer, its receptive

field is not significantly enlarged (e.g., a neuron on the pool-
1 receives information from the next layer to increase the

receptive field from 6 × 6 to 18 × 18). Therefore, it is

more likely that local high-contrast regions becomes more

activated, and the weighting map looks like boundary de-

tection results. As t increases, neurons have larger receptive

fields and capture less local details, thus the weighting map

is more similar to saliency detection results.
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Original Image layer
pool-1

layer
pool-2

layer
conv-3-3

layer
pool-3

layer
conv-4-3

layer
pool-4

layer
conv-5-3

layer
pool-5

bird

last config.
� = 1

last config.
� = 2

next config.
� = 2

flower

last config.
� = 1

last config.
� = 2

next config.
� = 2

cat

last config.
� = 1

last config.
� = 2

next config.
� = 2

next config.
� = 1

next config.
� = 1

next config.
� = 1

Figure 3. Typical visualization results of activeness γ̂
(t)
w,h with different configurations. Neuron weighting maps are resized to the original

image size for better visualization. Neurons with larger activeness are plotted with higher intensity values (closer to white). Regarding the

last and next configurations, please refer to the texts in Section 3.4 for details.

Second, the last and next configurations make a big

difference in activeness, especially for the low-level and

mid-level neurons. Supervised by the top layer, the last
configuration generates stable weighting maps, with the

high-weight regions corresponding to the salient objects on

the image. However, the output of the next configuration

is quite sensitive to small noises, and sometimes the back-

ground regions even receive more attention than the seman-

tic objects. As we will see in experiments (Section 4.2), the

last configuration consistently produces higher recognition

accuracy on the low-level and mid-level features.

We also compare different norms, i.e., p = 1 vs. p = 2.

When p = 2, spatial weighting rewards neurons with high

responses more heavily, and the high-activeness regions

become more concentrated. In general, p reflects the extent

that we assume high-response neurons are more important.

Although other p values can be used, we believe that p = 1
and p = 2 are sufficient to illustrate the difference and

produce good performance. We also test p → +∞, which

only considers the neuron with the maximal response, but

the performance is inferior to that using p = 1 and p = 2.
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3.5. Comparison to Related Works

Although both InterActive and network training involve

gradient back-propagation, they are propagating different

information. In the training process, a supervised loss

function is defined by the difference between ground-truth

and predicted outputs. In deep feature extraction, however,

there is no ground-truth, so we define an unsupervised loss

using the score function. Both methods lead to propagating

high-level visual context through the network to enhance

the descriptive power of low-level neurons.

Although our method and [54] share similar ideas, they

are quite different. We focus on generating better im-

age description, while [54] focuses on visualizing the net-

work; we can visualize back-propagated neuron activeness,

while [54] visualizes neuron responses; we back-propagate

the activeness of all neurons, while [54] only chooses the

neuron with maximal response; our method is unsupervised,

while [54] is supervised (by “guessing” the label). Being

unsupervised, InterActive can be generalized to many more

classification problems with a different set of image classes.

In another work on object detection [2], the neural net-

work is told a visual concept, and the supervised signal is

back-propagated to find the most relevant neurons. InterAc-

tive performs detection in an implicit, unsupervised manner,

making it feasible to be applied to image classification.

4. Experiments

4.1. Datasets and Settings

We evaluate InterActive on six popular image classifi-

cation datasets. For generic object recognition, we use the

Caltech256 [16] (30607 images, 257 classes, 60 training

samples for each class) dataset. For scene recognition, we

use the MIT Indoor-67 [37] (15620 images, 67 classes, 80
training samples per class) and the SUN-397 [46] (108754
images, 397 classes, 50 training samples per class) datasets.

For fine-grained object recognition, we use the Oxford Pet-
37 [34] (7390 images, 37 classes, 100 training samples

per class), the Oxford Flower-102 [33] (8189 images, 102
classes, 20 training samples per class) and the Caltech-

UCSD Bird-200 [43] (11788 images, 200 classes, 30 train-

ing samples per class) datasets.

We use the 19-layer VGGNet [40] (pre-trained on Ima-
geNet) for deep features extraction. We use the model pro-

vided by the MatConvNet library [42] without fine-tuning.

Its down-sampling rate is 32, caused by the five max-

pooling layers. As described in Section 3.1, we maximally

preserve the aspect ratio of the input image, constrain the

width and height divisible by 32, and the number of pixels is

approximately 5122. The InterActive feature vectors are �2-

normalized and sent to LIBLINEAR [10], a scalable SVM

implementation, with the slacking parameter C fixed as 10.

4.2. InterActive Configurations

We evaluate the InterActive features extracted from dif-

ferent layers, using different norms p, and either the last or

next configuration (please refer to Section 3.4 and Figure 3).

We also compare InterActive with the original deep features

with average-pooling or max-pooling. Classification results

are summarized in Table 1.

We first observe the low-level and mid-level layers (from

pool-1 to pool-4). InterActive with the last configuration

consistently outperforms the original deep features. Some-

times, the accuracy gain is very significant (e.g., more than

30% on conv-4-3 and pool4 for bird recognition), showing

that InterActive improves image representation by letting

the low-level and mid-level neurons receive high-level con-

text. Although these layers often produce low accuracy,

the improvement contributes when multi-level features are

combined (see Table 2). Regarding the norm, p = 2
always works better than p = 1. Recalling from (5) that

p = 2 better rewards high-response neurons, we conclude

that high-response neurons are indeed more important.

On the high-level neurons (i.e., pool-5 and fc-6), the

advantage of InterActive vanishes in scene classification,

and the original average-pooled features produce the best

accuracy. Therefore, it is more likely that all the high-level

neurons are equally important for scene understanding. On

object recognition tasks, the advantage also becomes much

smaller, since InterActive only provides limited increase on

high-level neurons’ receptive field.

The intermediate output of the t-th layer can be con-

sidered as a bunch of Dt-dimensional visual descriptors.

Possible choices of feature aggregation include average-

pooling and max-pooling. If each image region approxi-

mately contributes equally (such as in scene recognition),

average-pooling produces higher accuracy, however in the

case that semantic objects are quite small (such as on the

Bird-200 dataset), max-pooling works better. InterActive

computes neuron activeness in an unsupervised manner,

which provides a soft weighting scheme, or a tradeoff

between max-pooling and average-pooling. By detecting

interesting regions automatically, it often produces higher

accuracy than both max-pooling and average-pooling.

4.3. Comparison to the State-of-the-Arts

We compare InterActive with several recent works in Ta-

ble 2. These algorithms also extract features from statistics-

based methods, and use machine learning tools for classifi-

cation. We concatenate the feature vectors of all 9 layers in

Table 1 as a 6848-dimensional vector. Apart from the Bird-
200 dataset, the reported accuracy is the highest, to the best

of our knowledge. Although the accuracy gain over baseline

is relatively small (e.g., 0.43% in Pet-37), we emphasize

that the baseline accuracy is already very high, thanks to

the improved deep feature extraction strategy. Therefore,

275



Layer Model Dims Caltech256 Indoor-67 SUN-397 Pet-37 Flower-102 Bird-200
pool-1 Orig., AVG 64 11.12 19.96 8.52 12.09 29.36 5.10
pool-1 Orig., MAX 64 8.77 16.82 7.27 14.83 27.95 7.81
pool-1 Next, p = 1 64 11.01 19.97 8.62 11.60 29.11 4.95
pool-1 Next, p = 2 64 11.26 19.71 8.92 12.38 31.07 5.30
pool-1 Last, p = 1 64 12.93 20.83 9.83 20.64 32.93 8.55
pool-1 Last, p = 2 64 13.14 21.10 10.02 21.19 33.58 9.01
pool-2 Orig., AVG 128 21.03 31.12 18.63 20.49 45.77 8.30
pool-2 Orig., MAX 128 19.47 28.29 16.05 24.60 43.39 11.28
pool-2 Next, p = 1 128 20.98 30.93 18.59 19.89 45.62 8.01
pool-2 Next, p = 2 128 20.65 30.95 19.01 21.18 48.27 9.60
pool-2 Last, p = 1 128 25.84 33.24 20.25 37.29 53.72 18.52
pool-2 Last, p = 2 128 26.20 33.47 20.50 38.42 54.22 19.43
conv-3-3 Orig., AVG 256 26.44 36.42 22.73 27.78 49.70 10.47
conv-3-3 Orig., MAX 256 24.18 33.27 19.71 31.43 48.02 13.85
conv-3-3 Next, p = 1 256 27.29 36.97 22.84 28.89 50.62 10.93
conv-3-3 Next, p = 2 256 27.62 37.36 23.41 30.38 54.06 12.73
conv-3-3 Last, p = 1 256 34.50 39.40 25.84 49.41 60.53 24.21
conv-3-3 Last, p = 2 256 35.29 39.68 26.02 50.57 61.06 25.27
pool-3 Orig., AVG 256 29.17 37.98 23.59 29.88 52.44 11.00
pool-3 Orig., MAX 256 26.53 34.65 20.83 33.68 50.93 13.66
pool-3 Next, p = 1 256 29.09 38.12 24.05 30.08 52.26 10.89
pool-3 Next, p = 2 256 29.55 38.61 24.31 31.98 55.06 12.65
pool-3 Last, p = 1 256 36.96 41.02 26.73 50.91 62.41 24.58
pool-3 Last, p = 2 256 37.40 41.45 27.22 51.96 63.06 25.47
conv-4-3 Orig., AVG 512 49.62 59.66 42.03 55.57 76.98 21.45
conv-4-3 Orig., MAX 512 47.73 55.83 40.10 59.40 75.72 23.39
conv-4-3 Next, p = 1 512 51.83 60.37 43.59 59.29 78.54 25.01
conv-4-3 Next, p = 2 512 53.52 60.65 44.17 63.40 80.48 31.07
conv-4-3 Last, p = 1 512 61.62 62.45 45.43 75.29 85.91 52.26
conv-4-3 Last, p = 2 512 61.98 62.74 45.87 77.61 86.08 54.12
pool-4 Orig., AVG 512 60.39 66.49 49.73 66.76 85.56 28.56
pool-4 Orig., MAX 512 57.92 62.96 47.29 69.23 84.39 30.01
pool-4 Next, p = 1 512 60.59 66.48 49.55 66.28 85.68 28.40
pool-4 Next, p = 2 512 62.06 66.94 50.01 72.40 87.36 37.49
pool-4 Last, p = 1 512 68.20 67.20 51.04 81.04 91.22 57.41
pool-4 Last, p = 2 512 68.60 67.40 51.30 82.56 92.00 59.25
conv-5-3 Orig., AVG 512 77.40 74.66 59.47 88.36 94.03 55.44
conv-5-3 Orig., MAX 512 75.93 71.38 57.03 87.10 91.30 55.19
conv-5-3 Next, p = 1 512 80.31 74.80 59.63 90.29 94.84 67.64
conv-5-3 Next, p = 2 512 80.73 74.52 59.74 91.56 95.16 73.14
conv-5-3 Last, p = 1 512 80.77 73.68 59.10 90.73 95.40 69.32
conv-5-3 Last, p = 2 512 80.84 73.58 58.96 91.19 95.70 69.75
pool-5 Orig., AVG 512 81.40 74.93 55.22 91.78 94.70 69.72
pool-5 Orig., MAX 512 79.61 71.88 54.04 89.43 90.01 68.52
pool-5 Next, p = 1 512 81.50 72.70 53.83 92.01 95.41 71.96
pool-5 Next, p = 2 512 81.58 72.63 53.57 92.30 95.40 73.21
pool-5 Last, p = 1 512 81.60 72.58 53.93 92.20 95.43 72.47
pool-5 Last, p = 2 512 81.68 72.68 53.79 92.18 95.41 72.51
fc-6 Orig., AVG 4096 83.51 75.52 61.30 93.08 93.54 71.69
fc-6 Orig., MAX 4096 83.59 74.47 59.39 93.07 93.20 71.03
fc-6 Last, p = 1 4096 83.44 75.48 61.28 92.84 93.40 70.26
fc-6 Last, p = 2 4096 83.61 75.50 61.19 93.10 93.45 71.60

Table 1. Classification accuracy (%) comparison among different configurations. Bold numbers indicate the best performance in each

group (i.e., same dataset, same layer). For fc-6, the next and last layers are the same (see the texts in Section 3.4 for details).
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Model Caltech256 Indoor-67 SUN-397 Pet-37 Flower-102 Bird-200
Murray et.al. [32] − − − 56.8 84.6 33.3
Kobayashi et.al. [21] 58.3 64.8 − − − 30.0
Liu et.al. [28] 75.47 59.12 − − − −
Xie et.al. [51] 60.25 64.93 50.12 63.49 86.45 50.81
Chatfield et.al [4] 77.61 − − − − −
Donahue et.al [9] − − 40.94 − − 64.96
Razavian et.al. [38] − 69.0 − − 86.8 61.8
Zeiler et.al [54] 74.2 − − − − −
Zhou et.al. [57] − 69.0 54.3 − − −
Qian et.al. [36] − − − 81.18 89.45 67.86
Xie et.al. [48] − 70.13 54.87 90.03 86.82 62.02
Ours (Orig., AVG) 84.02 78.02 62.30 93.02 95.70 73.35
Ours (Orig., MAX) 84.38 77.32 61.87 93.20 95.98 74.76
Ours (Next, p = 1) 84.43 78.01 62.26 92.91 96.02 74.37
Ours (Next, p = 2) 84.64 78.23 62.50 93.22 96.26 74.61
Ours (Last, p = 1) 84.94 78.40 62.69 93.40 96.35 75.47
Ours (Last, p = 2) 85.06 78.65 62.97 93.45 96.40 75.62

Table 2. Accuracy (%) comparison with recent works (published after 2014) without (above) and with (middle) using deep features. We

use the concatenated feature vectors from all the 9 layers used in Table 1. For the Bird-200 dataset, most competitors use extra information

(bounding boxes and/or detected parts) but we do not. With bounding boxes, we achieve higher accuracy: 77.53%. See texts for details.

the improvement of InterActive is not so small as it seems.

On the other hand, recognition rates are consistently boost-

ed with InterActive, without requiring extra information,

which demonstrates that deep features can be intrinsically

improved when neuron activeness is considered.

On the Bird-200 dataset, it is very important to de-

tect the position and/or compositional parts of the object-

s [3][13][55][47], otherwise heavy computation is required

to achieve good performance [48]. InterActive implicitly

finds the semantic object regions, leading to competitive

75.62% accuracy. If the bounding box of each object is pro-

vided (as in [55] and [26]), the original and InterActive fea-

tures produce 76.95% and 77.53% accuracy, respectively.

Using bounding boxes provides 3.60% and 1.91% accuracy

gain on original and InterActive features, respectively. In-

terActive significantly reduces the gap with implicit object

detection. 77.53% is lower than 80.26% in [26] and 82.8%
in [22], both of which require fine-tuning the network and

R-CNN part detection [15] while InterActive does not. We

believe that InterActive can cooperate with these strategies.

4.4. ImageNet Experiments

We report results on ILSVRC2012, a subset of Ima-
geNet which contains 1000 categories. We use the pre-

trained VGGNet models and the same image cropping tech-

niques as in [40]. The baseline validation error rates on

the 16-layer model, the 19-layer model and the combined

model are 7.1%, 7.0% and 6.7%, respectively (slightly

better than [40]). We apply InterActive to update the neuron

responses on the second-to-last layer (fc-7) and forward-

propagate them to re-compute the classification scores (fc-
8). The error rates are decreased to 6.8%, 6.7% and 6.5%,

respectively. The improvement is significant given that the

baseline is already high and our method is very simple.

In the future, we will explore the use of InterActive

on some challenging datasets, such as the PASCAL-VOC
dataset and the Microsoft COCO dataset [27]. We thank

the anonymous reviewers for this valuable suggestion.

5. Conclusions

In this paper, we present InterActive, a novel algorith-

m for deep feature extraction. We define a probabilistic

distribution function on the high-level neuron responses,

and back-propagate the score function through the network

to compute the activeness of each network connection and

each neuron. We reveal that high-level visual context carries

rich information to enhance low-level and mid-level feature

representation. The output of our algorithm is the active-

ness of each neuron, or a weighted version of the original

neuron response. InterActive improves visual feature repre-

sentation, and achieves the state-of-the-art performance on

several popular image classification benchmarks.

InterActive can be applied to many more vision tasks.

On the one hand, with the last configuration, neuron active-

ness provides strong clues for saliency detection. On the

other hand, with the next configuration on a low-level layer,

neuron activeness can be used to detect local high-contrast

regions, which may correspond to edges or boundaries. All

these possibilities are left for future research.
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