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Abstract

During a long period of time we are combating over-
fitting in the CNN training process with model regulariza-
tion, including weight decay, model averaging, data aug-
mentation, etc. In this paper, we present DisturbLabel,
an extremely simple algorithm which randomly replaces a
part of labels as incorrect values in each iteration. Al-
though it seems weird to intentionally generate incorrect
training labels, we show that DisturbLabel prevents the
network training from over-fitting by implicitly averaging
over exponentially many networks which are trained with
different label sets. To the best of our knowledge, Distur-
bLabel serves as the first work which adds noises on the
loss layer. Meanwhile, DisturbLabel cooperates well with
Dropout to provide complementary regularization function-
s. Experiments demonstrate competitive recognition results
on several popular image recognition datasets.

1. Introduction

Deep Convolutional Neural Networks (CNNs) [17] have

shown significant performance gains in image recogni-

tion [15]. The large image repository, ImageNet [3], and the

high-performance computational resources such as GPUs

played very important roles in the resurgence of CNNs.

Meanwhile, a number of research attempts on various as-

pects have been made to learn the deep hierarchical struc-

ture better [30][34] and faster [10]. CNN also provides

efficient visual features for other tasks [4][26][39][40][41].
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Many regularization techniques have been developed

to prevent neural network from over-fitting, e.g., the �2-

regularization over the weights (a.k.a., weight decay) [14],

Dropout [8] which discards randomly-selected activations
on the (hidden) layers during training, DropConnect [38]

which sets randomly-selected weights to zero during train-

ing, data argumentation which manipulates the input da-
ta [2][15], and early stopping the iteration [25].

In this paper, we propose DisturbLabel which imposes

the regularization within the loss layer. In each training

iteration, DisturbLabel randomly selects a small subset of

samples (from those in the current mini-batch) and ran-

domly sets their ground-truth labels to be incorrect, which

results in a noisy loss function and, consequently, noisy

gradient back-propagation. To the best of our knowledge,

this is the first attempt to regularize the CNN on the loss
layer. We show that DisturbLabel is an alternative approach

to combining a large number of models that are trained with

different noisy data. Experimental results show that Dis-

turbLabel achieves comparable performance with Dropout

and that it, in conjunction with Dropout, obtains better

performance on several image classification benchmarks.

The rest of this paper is organized as follows. Section 2

briefly introduces related work. The DisturbLabel algo-

rithm is presented in Section 3. The discussions and the

cooperation with Dropout are presented in Sections 4 and 5,

respectively. Experimental results are shown in Section 6,

and we conclude our work in Section 7.

2. Related Work

The recent great success of CNNs in image recogni-

tion has benefitted from and inspired a wide range of re-

search efforts, such as designing deeper network struc-

tures [30][34], exploring or learning non-linear activa-

tion functions [5][21][7], developing new pooling oper-
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Method weight decay Dropout DropConnect data augmentation stochastic pooling DisturbLabel
Units weights hidden nodes weights input nodes pooling layer loss layer

Table 1. Comparison with different CNN regularization techniques. Please refer to the texts for detailed references.
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Figure 1. An illustration of the DisturbLabel algorithm (α = 10%). A mini-batch of 10 training samples is used as the toy example. Each

sample is disturbed with the probability α. A disturbed training sample is marked with a red frame and the disturbed label is written below

the frame. Even if a sample is disturbed, the label may remain unchanged (e.g., the digit 3 in the 3rd mini-batch).

ations [42][6][18], introducing better optimization tech-

niques [19], regularization techniques preventing the net-

work from over-fitting [8][38], etc.

Avoiding over-fitting is a major challenge against train-

ing robust CNN models. The early solutions include re-

ducing the model complexity by using fewer parameters or

sharing parameters [16], early stopping [25] in which train-

ing is stopped before convergence, weight decay [14] which

can be interpreted as a way of constraining the parameters

using the �2-regularization and is now widely-adopted.

Recently, various regularization methods have been in-

troduced. Data augmentation generates more training data

as the input of the CNN by randomly cropping, rotating and

flipping the input images [15][2], and adding noises to the

image pixels [27]. Dropout [8] randomly discards a part

of neuron response (the hidden neurons) during the train-

ing and only updates the remaining weights in each mini-

batch iteration. DropConnect [38] instead only updates

a randomly-selected subset of weights. Stochastic Pool-

ing [42] changes the deterministic pooling operation and

randomly samples one input as the pooling result in prob-

ability during training. Probabilistic Maxout [31] instead

turns the Maxout operation [5] to stochastic. In contrast,

our approach (DisturbLabel) imposes the regularization at

the loss layer. A comparison of different regularization

methods is summarized in Table 1.

There are other research works that are related to noisy

labeling. [33] explores the performance of discriminatively-

trained CNNs on the noisy data, where there are some

freely available labels for each image which may or may

not be accurate. In contrast, our approach (DisturbLabel)

assumes the labeling is correct and randomly changes the

labels in a small probability in each mini-batch iteration,

which means that the label of a training sample is correct in

most iterations. Different from other works adding noise

to the input unit [36][37][22][23], our work is a way of

regularizing a neural network by adding noise to its loss

layer (related to the output unit).

3. The DisturbLabel Algorithm
We start with the typical CNN training process. The

image dataset is given as D = {(xn,yn)}Nn=1, in which the

data point is a D-dimensional vector xn ∈ R
D, and the la-

bel is a C-dimensional vector yn = [0, · · · , 0, 1, 0, · · · , 0]�
with the entry of the corresponding class being 1 and all

the others being 0. The goal is to train a CNN model M:

f(x;θ) ∈ R
C , in which θ represents the model parameters.

θ is often initialized as a set of white noises θ0, then

updated using stochastic gradient descent (SGD) [1]. The

t-th iteration of SGD updates the current parameters θt as:

θt+1 = θt + γt · 1

|Dt|
∑

(x,y)∈Dt

∇θt [l(x,y)]. (1)

Here, l(x,y) is a loss function, e.g., softmax or square loss.

∇θt
[l(x,y)] is computed using gradient back-propagation.

Dt is a mini-batch randomly drawn from the training dataset

D, and γt is the learning rate.

DisturbLabel works on each mini-batch independently.

It performs an extra sampling process, in which a disturbed

label vector ỹ = [ỹ1, ỹ2, . . . , ỹC ]
�

is randomly generat-

ed for each data (x,y) from a Multinoulli (generalized
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Bernoulli) distribution P(α):⎧⎨
⎩

c̃ ∼ P(α),
ỹc̃ = 1,
ỹ̃i = 0, ∀i �= c̃.

(2)

The Multinoulli distribution P(α) is defined as pc =
1− C−1

C · α and pi = 1
C · α for i �= c. α is the noise

rate, and c is the ground-truth label (i.e., in the true label

vector y, yc = 1). In other words, we disturb each training

sample with the probability α. For each disturbed sample,

the label is randomly drawn from a uniform distribution

over {1, 2, . . . , C}, regardless of the true label.

Algorithm 1 DisturbLabel

1: Input: D = {(xn,yn)}Nn=1, noise rate α.

2: Initialization: a network model M: f(x;θ0) ∈ R
C ;

3: for each mini-batch Dt = {(xm,ym)}Mm=1 do
4: for each sample (xm,ym) do
5: Generate a disturbed label ỹm with Eqn (2);

6: end for
7: Update the parameters θt with Eqn (1);

8: end for
9: Output: the trained model M′: f(x;θT ) ∈ R

C .

The pseudo codes of DisturbLabel are listed above. An

illustration of DisturbLabel is shown in Figure 1.

3.1. The Effect of the Noise Rate

The noise rate α determines the expected fraction (C−1
C ·

α) of training data in a mini-batch which are assigned in-

correct labels. When α = 0%, there are no noises involved,

and the algorithm degenerates to the ordinary case. When

α → 100%, we are actually discarding most of the labels

and the training process becomes nearly unsupervised (as

the probability assigned to any class is nearly 1
C ). It is often

necessary to set a relatively small α, although it is possible

to obtain an efficient network with a rather large α (e.g.,
training the LeNet with α = 90% achieves < 2% testing

error rate on MNIST).

We evaluate the recognition accuracy on both MNIST
and CIFAR10, by training the LeNet with different noise

rates α, We summarize the results in Figures 2 and 3, re-

spectively. It is observed that DisturbLabel with a relatively

small α (e.g., 10% or 20%) achieves higher recognition

accuracy than the model without regularization (α = 0%).

This verifies that DisturbLabel does improve the generaliza-

tion ability of the trained CNN model (Section 3.2 provides

an empirical verification that the improvement comes from

preventing over-fitting). When the noise rate α goes up

to 50%, DisturbLabel significantly causes the network to

converge slower, meanwhile produces lower recognition

accuracy compared to smaller noises, which is reasonable

as the labels of the training data are not reliable enough.

3.2. DisturbLabel as a Regularizer

We empirically show that DisturbLabel is able to prevent

the network training from over-fitting. Figures 4 and 5 show

the results on the MNIST and CIFAR10 datasets using the

normal training without regularization and the DisturbLabel

algorithm over the same CNN structure. In addition, we

also report the results when training the CNN with Dropout

which is an alternative approach of CNN regularization.

We can observe that without regularization, the training

error quickly drops to quite a low level, e.g., almost 0% on

MNIST and close to 3% on CIFAR10, but the testing error

stops decreasing at a high level. In contrast, the training

error with DisturbLabel drops slower and is consistently

larger than that without regularization. However, the test-

ing error becomes lower, verifying that the improvement

comes from preventing over-fitting. Similar results are also

obtained in the case with the Dropout regularization. This

reveals that training a CNN with regularization (either Dis-

turbLabel or Dropout) yields stronger generalization ability.

Theoretically, we apply DisturbLabel to a convex mod-

el. Consider a linear regression task on the dataset D,

the linear model y = w�x, and the loss function L =
1
2

∑N
n=1

∣∣w�xn − yn
∣∣2. The gradient over w is ∂L

∂w =∑N
n=1

(
w�xn − yn

)
xn. In our approach, each label yn

may be disturbed as ỹn, and the gradient becomes ∂L
∂w =∑N

n=1

(
w�xn − ỹn

)
xn. Their difference is

∑N
n=1(ỹn −

yn)xn assuming w is the same. With �2-regularization, the

extra term λ
2 ‖w‖22 is added to the loss function, and the

term λw added to the gradient over w. It is different from

our approach which adds
∑N

n=1 (ỹn − yn)xn. Therefore,

our approach, observed from the simple convex problem,

has a damping effect, but different from �2-regularization.

4. Discussions
4.1. Difference from Soft Labeling

Consider the soft labeling problem, where each data

point x is assigned to a label with probability. Denote the

label vector by y′, which is a C-dimensional vector, with

the c-th dimension being 1 − C−1
C · α and all others being

α
C , and α is the noise level. Then we can normally train

the CNN over the same data x and the soft label y′, using

which the loss function is changed. Here we consider the

standard cross-entropy loss function, and the derivation of

other choices (e.g., logistic loss, square loss, etc.) is similar.

The gradient for a training sample (x,y′) is:

∂

∂θ
|y′n − f |1 = −

[
∂ |y′n − f |1
∂ (y′n − f)

]�
· ∂f
∂θ

(3)

However in DisturbLabel, the gradient is computed as:

∂

∂θ
|ỹn − f |1 = −

[
∂ |ỹn − f |1
∂ (ỹn − f)

]�
· ∂f
∂θ

(4)
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Figure 2. MNIST recognition error rate with respect to the

noise level α (using LeNet).
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Figure 3. CIFAR10 recognition error rate with respect to

the noise level α (using LeNet).
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Figure 4. MNIST training vs. testing error on the LeNet
with: no regularization, Dropout and DisturbLabel.

� �� �� �� �� �� �� 	� 
� �� ���
�

����

���

����

���

����

���

����

���

����

���
%�&'���

����������������

�
��
� 
!"
#"�
!�
�
��
��
��
$#
�

No Reg., training
No Reg., testing
Dropout, training
Dropout, testing
DropLabel, training
DropLabel, testing

Figure 5. CIFAR10 training vs. testing error on the LeNet
with: no regularization, Dropout and DisturbLabel.

The empirical evaluation on the MNIST and CIFAR10
datasets is shown in Figures 6 and 7, respectively. One

can observe that using soft labels generates nearly the same

accuracy compared to ordinary training, whereas Distur-

bLabel significantly improves recognition accuracy. It is not

surprising that DisturbLabel is not equivalent to soft label

though the expectation of the gradient in DisturbLabel is

equal to the gradient in soft label (as E(ỹ) = y′). This re-

veals that using soft labels does not bring the regularization

ability as DisturbLabel does, which is also validated in the

distillation solution [9], similar to the soft labeling, though

it brings an advantage, making the network converge faster.

4.2. Interpretation as Model Ensemble

We show that DisturbLabel can be interpreted as an

implicit model ensemble. Consider a normal noisy dataset

D̃ =
{
(xn, ỹn)

N
n=1

}
, which is generated by assigning an

incorrect label ỹn �= yn to xn with a probability α for

each data point in D. Combining neural network models

that are trained on different noisy sets is usually helpful [9].

However, separately training nets is prohibitively expensive

as there are exponentially many noisy datasets. Even if we

have already trained many different networks, combining

them at the testing stage is very costly and often infeasible.

Each iteration in the DisturbLabel training process is like

an iteration when the network is trained over a different

noisy dataset D̃ where a mini-batch of samples D̃t are

drawn. Thus, training a neural network with DisturbLabel

can be regarded as training many networks with massive

weight sharing but over different training data, where each

training sample is used very rarely.

It is interesting that Dropout can be interpreted as a way

of approximately combining exponentially many different
neural network architectures trained on the same data ef-

ficiently, while DisturbLabel can be regarded as a way of

approximately combining exponentially many neural net-

works with the same architecture but trained on different
noisy data efficiently. In Section 5, we will show that

DisturbLabel cooperates with Dropout to produce better

results than individual models.
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Figure 6. MNIST recognition error rate with soft labels

and noisy labels (using the LeNet).
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Figure 7. CIFAR10 recognition error rate with soft labels

and noisy labels (using the LeNet).

4.3. Interpretation as Data Augmentation

We analyze DisturbLabel from a data augmentation per-

spective. Considering a data point (x,y) and its incorrect

label ỹ, the contribution to the loss is |f(x)− ỹ|1. This

contribution can be rewritten as |(f(x)− ỹ + y)− y|1,

where f̃(x)
.
= f(x)− ỹ + y can be viewed as a noisy

output. Inspired by [13], we can project the noisy output

f̃(x) back into the input space by minimizing the squared

error
∥∥∥f̃(x)− f(x̃)

∥∥∥2

2
, where x̃ is the augmented sample.

In summary, the data point with a disturbed label (x, ỹ) can

be transformed to an augmented data point (x̃,y).

To verify that DisturbLabel indeed acts as data aug-

mentation, we evaluate the algorithm on the MNIST
dataset [16] with only 1% (600) and 10% (6000) training

samples, meanwhile keep the total number of iterations

unchanged, i.e., each training sample is used 100× and

10× times as it is used in the original training process.

With the LeNet [17], we obtain 10.92% and 2.83% error

rates on the original testing set, respectively, which are

dramatic compared to 0.86% when the network is trained

on the complete set. Meanwhile, in both cases, the training

error rates quickly decrease to 0, implying that the limited

training data cause over-fitting. DisturbLabel significantly

decreases the error rates to 6.38% and 1.89%, respectively.

As a reference, the error rate on the complete training

set is further decreased to 0.66% by DisturbLabel. This

indicates that DisturbLabel improves the quality of network

training with implicit data augmentation, thus it serves as

an effective algorithm especially in the case that the amount

training data is limited.

4.4. Relationship to Other CNN Training Methods

We briefly discuss the relationship between DisturbLabel

and other network training algorithms.

• Other regularization methods. There exist other

network regularization methods, including DropCon-

nect [38], Stochastic Pooling [42], Probabilistic Max-

out [31], etc. Like Dropout [8] which regularizes

CNNs on the hidden neurons, these methods add reg-

ularization on other places such as neuron connection-

s and pooling operations. DisturbLabel regularizes

CNNs on the loss layer, which, to the best of our

knowledge, has never been studied before. As we will

show in the next section, DisturbLabel cooperates well

with Dropout to obtain superior results to individu-

al modules. We believe that DisturbLabel can also

provide complementary information to other network

regularization methods.

• Other methods dealing with noises. Some previous

works [9][33] aim at training CNNs with noisy labels.

We emphasize that DisturbLabel is intrinsically dif-

ferent with these methods since the problem settings

are completely different. In these problems, training

data suffer from noises (incorrect annotations), and

researchers discuss the possibility of overcoming the

noises towards an accurate training process. Distur-

bLabel, on the other hand, assumes that all the ground-

truth labels are correct, and intentionally generates

incorrect labels on a small fraction of data to prevent

the network from over-fitting. In summary, inaccurate

annotations may be harmful, but factitiously introduc-

ing noises is helpful to training a robust network.

• Other network structures. We are also interested

in other sophisticated network structures, such as the

Maxout Networks [5], the Deeply-Supervised Net-

s [19], the Network-in-Network [21] and the Recurrent

Neural Networks [20]. Thanks to the generality, Dis-

turbLabel can be adopted on these networks to improve

their generalization ability.
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Figure 8. MNIST recognition error rate with drop rate 0.5
and different noise levels α (using the LeNet).
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Figure 9. CIFAR10 recognition error rate with drop rate

0.5 and different noise levels α (using the LeNet).

5. Cooperation with Dropout

We have shown that DisturbLabel regularizes the CNN

on the loss layer. This is different from Dropout [8], which

regularizes the CNN on hidden layers. DisturbLabel is

an approximate ensemble of many CNN models with the

same structure trained over different noisy datasets, while

Dropout is an approximate ensemble of many CNN mod-

els with different structures trained over the same data.

These two regularization strategies are complementary. We

empirically discuss the combination of DisturbLabel with

Dropout, which leads to an ensemble of many CNN models

with different structures trained over different noisy data.

We report the results with various noise levels α for

DisturbLabel and a fixed drop rate for Dropout over the

MNIST and CIFAR10 datasets in Figures 8 and 9, respec-

tively. In general, the proper combination of Dropout with

DisturbLabel benefits the recognition accuracy improve-

ment. In the MNIST dataset, the best result is obtained

when α = 10%, meanwhile α = 20% performs much

worse. We note that in Figure 2, without Dropout, α = 10%
and α = 20% produce comparable results. In the CIFAR10

dataset, α = 10% does not help to improve the accuracy

(close to baseline), while in Figure 3, we get comparable

better results using α = 10% and α = 20%. The above

experiments show that both DisturbLabel and Dropout add

regularization to network training. If both strategies are

adopted, we need to reduce the regularization power prop-

erly to prevent “under-fitting”.

In the later experiments, if both Dropout and DisturbLa-

bel are used, we will reduce the noise level α by half to

prevent the regularization on network training from being

too strong. In the case that DisturbLabel provides strong

regularization, e.g., in the case of ImageNet training where

the wrong label is distributed over all the 1000 categories,

we will slightly decrease the drop rate of Dropout for the

same purpose.

6. Experiments
We evaluate DisturbLabel on five popular datasets, i.e.,

MNIST [16] and SVHN [24] for digit recognition, CI-
FAR10/CIFAR100 [14] for natural image recognition, and

ImageNet [3] for large-scale visual recognition.

6.1. The MNIST Dataset

MNIST [16] is one of the most popular datasets for

handwritten digit recognition. This dataset consists of

60000 training images and 10000 testing images, uniformly

distributed over 10 classes (0–9). All the samples are

28× 28 grayscale images.

We use a modified version of the LeNet [17] as the

baseline. The input image is passed through two units con-

sisting of convolution, ReLU and max-pooling operations.

In which, the convolutional kernels are of the scale 5×5, the

spatial stride 1, and max-pooling operators are of the scale

2× 2 and the spatial stride 2. The number of convolutional

kernels are 32 and 64, respectively. After the second max-

pooling operation, a fully-connect layer with 512 filters is

added, followed by ReLU and Dropout. The final layer is

a 10-way classifier with the softmax loss function. We use

a set of abbreviation to represent the above network con-

figuration as: [C5(S1P0)@32-MP2(S2)]-[C5(S1P0)@64-

MP2(S2)]-FC512-D0.5-FC10.

To obtain higher recognition accuracy, we also train

a more complicated BigNet. The cross-map normaliza-

tion [15] is adopted after each pooling layer, and the param-

eter K for normalization is proportional to the logarithm

of the number of kernels. The network configuration is ab-

breviated as: [C5(S1P2)@128-MP3(S2)]-[C3(S1P1)@128-

D0.7-C3(S1P1)@256-MP3(S2)]-D0.6- [C3(S1P1)@512]-

D0.5-[C3(S1P1)@1024-MPS(S1)]-D0.4-FC10. Here, the

number S is the map size before the final (global) max-

pooling, before which the down-sampling rate is 4. There-

fore, if the input image size is W ×W , S = 	W/4
. The
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MNIST w/o DA with DA SVHN w/o DA with DA

Jarrett [11] 0.53 − Sermanet [29] 5.15 −
Zeiler [42] 0.47 − Zeiler [42] 2.80 −
Lin [21] 0.47 − Goodfellow [5] 2.47 −
Goodfellow [5] 0.45 − Lin [21] 2.35 −
Lee [19] 0.39 − Wan [38] − 1.94
Liang [20] 0.31 − Lee [19] 1.92 −
Wan [38] 0.52 0.21 Liang [20] 1.77 −
LeNet, no Reg. 0.86 0.48 LeNet, no Reg. 3.93 3.48
LeNet, Dropout 0.68 0.43 LeNet, Dropout 3.65 3.25
LeNet, DisturbLabel 0.66 0.45 LeNet, DisturbLabel 3.69 3.27
LeNet, both Reg. 0.63 0.41 LeNet, both Reg. 3.61 3.21
BigNet, no Reg. 0.69 0.39 BigNet, no Reg. 2.87 2.35
BigNet, Dropout 0.36 0.29 BigNet, Dropout 2.23 2.08
BigNet, DisturbLabel 0.38 0.32 BigNet, DisturbLabel 2.28 2.21
BigNet, both Reg. 0.33 0.28 BigNet, both Reg. 2.19 2.02

Table 2. Recognition error rates (%) on the MNIST and SVHN datasets. DA: data augmentation (random cropping).

BigNet is feasible for data augmentation based on image

cropping as the input image size is variable.

For data augmentation, we randomly crop input images

into 24 × 24 pixels. We apply (40, 20, 20, 20) training

epochs for the LeNet-based configurations with learning

rates
(
10−3, 10−4, 10−5, 10−6

)
. For the BigNet-based

configurations, the numbers are (200, 100, 100, 100) and(
10−2, 10−3, 10−4, 10−5

)
, respectively.

We evaluate DisturbLabel with the noise level α = 20%.

According to the results shown in Table 2, DisturbLabel

produces consistent accuracy gain over models without reg-

ularization, and also cooperates with Dropout to further

improve the recognition performance. Train the BigNet us-

ing both Dropout and DisturbLabel achieves a 0.33% error

rate without data augmentation, which outperforms several

recently reported results [5][19]. In comparison with [2]

which applies more complicated data augmentation (e.g.,
image rotation), we only use randomly image cropping and

obtain a comparable error rate (0.28% vs. 0.23%).

6.2. The SVHN Dataset

The SVHN dataset [24] is a larger collection of 32× 32
RGB images, i.e., 73257 training samples, 26032 testing

samples, and 531131 extra training samples. We preprocess

the data as in the previous methods [24], i.e., selecting 400
samples per category from the training set as well as 200
samples per category from the extra set, using these 6000
images for validation, and the remaining 598388 images as

training samples. We also use Local Contrast Normalization

(LCN) for data preprocessing [5].

We use another version of the LeNet. A 32 ×
32 × 3 image is passed through three units consisting

of convolution, ReLU and max-pooling operations. Us-

ing abbreviation, the network configuration can be written

as: [C5(S1P2)@32-MP3(S2)]-[C5(S1P2)@32-MP3(S2)]-

[C5(S1P2)@64-MP3(S2)]-FC64-D0.5-FC10. Padding of

2 pixels wide is added in each convolution operation to

preserve the width and height of the data. The BigNet is

also used to achieve higher accuracy. The training epochs,

learning rates and data augmentation settings remain the

same as in the MNIST experiments.

We evaluate DisturbLabel with the noise level α = 20%,

and summarize the results in Table 2. We can observe that

DisturbLabel improves the recognition accuracy, either with

or without using Dropout. With data augmentation and both

regularization methods, we achieve a competitive 2.02%
error rate.

6.3. The CIFAR Datasets

The CIFAR10 and CIFAR100 datasets [14] are both

subsets drawn from the 80-million tiny image database [35].

There are 50000 images for training, and 10000 images for

testing, all of them are 32 × 32 RGB images. CIFAR10
contains 10 basic categories, and CIFAR100 divides each

of them into a finer level. In both datasets, training and test-

ing images are uniformly distributed over all the categories.

We use exactly the same network configuration as in the

SVHN experiments, and add left-right image flipping into

data augmentation with the probability 50%.

We evaluate DisturbLabel with the noise level α = 10%.

In CIFAR-100, we slightly modify DisturbLabel by only

allowing disturbing the label among 10 finer-level cate-

gories. We compare our results with the state-of-the-arts

in Table 3. Once again, DisturbLabel produces consistent

accuracy gain in every single case, either with or without

Dropout. On CIFAR10, the BigNet with Dropout produces

an excellent baseline (7.08% error rate), and DisturbLabel

further improves the performance (6.98% error rate) with
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CIFAR10 w/o DA with DA CIFAR100 w/o DA with DA

Zeiler [42] 15.13 − Zeiler [42] 42.51 −
Goodfellow [5] 11.68 9.38 Goodfellow [5] 38.57 −
Lin [21] 10.41 8.81 Srivastava [32] 36.85 −
Wan [38] − 9.32 Lin [21] 35.68 −
Lee [19] 9.69 7.97 Lee [19] 34.57 −
Liang [20] 8.69 7.09 Liang [20] 31.75 −
LeNet, no Reg. 22.50 15.76 LeNet, no Reg. 56.72 43.31
LeNet, Dropout 19.42 14.24 LeNet, Dropout 49.08 41.28
LeNet, DisturbLabel 20.26 14.48 LeNet, DisturbLabel 51.83 41.84
LeNet, both Reg. 19.18 13.98 LeNet, both Reg. 48.72 40.98
BigNet, no Reg. 11.23 9.29 BigNet, no Reg. 39.54 33.59
BigNet, Dropout 9.69 7.08 BigNet, Dropout 33.30 27.05
BigNet, DisturbLabel 9.82 7.93 BigNet, DisturbLabel 34.81 28.39
BigNet, both Reg. 9.45 6.98 BigNet, both Reg. 32.99 26.63

Table 3. Recognition error rates (%) on the CIFAR10 and CIFAR100 datasets. DA: data augmentation (random cropping and flipping).
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Figure 10. The error rate and accuracy gain curves on the

ILSVRC2012 validation set (the AlexNet [15] is used).

a complementary regularization function to Dropout. The

success on the CIFAR datasets verifies that DisturbLabel is

generalized: it not only works well in relatively simple digit

recognition, but also helps natural image recognition tasks.

6.4. The ImageNet Database

Finally we evaluate DisturbLabel on the ILSVRC2012
classification task [28], a subset of the ImageNet
database [3] which contains 1000 object categories. The

training set, validation set and testing set contain 1.3M, 50K
and 150K images, respectively. We use the AlexNet [15]

(provided by the CAFFE library [12]) with the dropout rate

0.5 as the baseline. The AlexNet structure is abbreviated as:

C11(S4)@96-MP3(S2)-LRN-C5(S1P2)@256-MP3(S2)-

LRN- C3(S1P1)@384-C3(S1P1)@384-C3(S1P1)@256-

MP3(S2)-FC4096-D0.5-FC4096-D0.5-FC1000. We note

that when a training sample is chosen to be disturbed, the

label will be uniformly distributed among all the 1000

classes, introducing strong noises to the training process,

even when the noise level is relatively low (α = 5% is

used). Therefore, we decrease the dropout rate to 0.43 (less

data are dropped) to perform weaker regularization.

The top-1 and top-5 error rates produced by the original

AlexNet are 43.1% and 19.9%, respectively. When Dis-

turbLabel is adopted, the error rates are reduced to 42.8%
and 19.7%, respectively. We emphasize that the accuracy

gain is not so small as it seems (e.g., the VGGNet [30]

combines two individually trained nets to get a 0.1% gain),

which, once again, verifies that DisturbLabel and Dropout

cooperate well to provide regularization in different aspect-

s. Figure 10 shows the error rate curve on the validation

set. After about 20 epochs, the model with DisturbLabel

produces higher recognition accuracy at each testing phase.

While we only evaluate DisturbLabel on the AlexNet,
we believe that it can also cooperate with other network

architectures, such as the GoogLeNet [34] and the VG-
GNet [30], since regularization is a common requirement

of deep neural networks.

7. Conclusions
In this paper, we present DisturbLabel, a novel algorith-

m which regularizes CNNs on the loss layer. DisturbLabel

is surprisingly simple, which works by randomly choosing a

small subset of training data, and intentionally setting their

ground-truth labels to be incorrect. We show that Distur-

bLabel consistently improves the network training process

by preventing it from over-fitting, and that DisturbLabel can

be explained as an alternative solution of implicit model

ensemble and data augmentation. Meanwhile, DisturbLabel

cooperates well with Dropout, which regularizes CNNs on

the hidden neurons. Experiments verify that DisturbLabel

achieves competitive performance on several popular image

classification benchmarks.
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