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Abstract

Scene recognition is a basic task towards image under-
standing. Spatial Pyramid Matching (SPM) has been shown
to be an efficient solution for spatial context modeling. In
this paper, we introduce an alternative approach, Orienta-
tional Pyramid Matching (OPM), for orientational context
modeling. Our approach is motivated by the observation
that the 3D orientations of objects are a crucial factor to
discriminate indoor scenes. The novelty lies in that OPM
uses the 3D orientations to form the pyramid and produce
the pooling regions, which is unlike SPM that uses the s-
patial positions to form the pyramid. Experimental results
on challenging scene classification tasks show that OPM
achieves the performance comparable with SPM and that
OPM and SPM make complementary contributions so that
their combination gives the state-of-the-art performance.

1. Introduction
Scene recognition is a fundamental task in computer vi-

sion. Conventional approaches, such as the Bag-of-Features

(BoF) model [7], the Object Bank (OB) model [26], and the

Bag-of-Parts (BoP) model [23], are shown capable of gener-

ating discriminative descriptors. Spatial Pyramid Matching

(SPM) [25] together with the BoF model has achieved sat-

isfactory performance in many recognition tasks. However,

those approaches have limited ability to deal with the chal-

lenging indoor scene recognition problem as many indoor

scenes are composed of almost the same set of objects with

similar spatial layouts.

Let us take the scene images in Figure 1 (a) as the ex-

amples. The top two rows show the example images of t-

wo categories, classroom and meeting room. One can see

that these two scenes contain almost the same objects: a

∗This work was done when Lingxi Xie was an intern at Microsoft Re-
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Figure 1. (a) Sample images for 4 scene categories from the MIT

Indoor-67 dataset [32]: classroom, meeting room, inside bus and

inside subway (from top to bottom). For both category pairs, the

orientational features are more discriminative than the spatial fea-

tures. (b) The spatial distributions of chairs in both confusing pairs

are very similar. (c) The orientational distribution of chairs are

much more dispersive.
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large number of chairs, desks (tables), tidy walls, and day-

light lamps. These objects are visually similar, resulting

in the appearance features, e.g., SPM with BoF, have lim-

ited disciminative ability. However, we notice that the 3D

orientations of some objects, e.g., chairs, in the rooms are

different: the chairs in a classroom are often oriented to

the same direction, towards the teacher’s desk or the black-

board, whereas the chairs in a meeting room are oriented to

different directions so that people in the room can face to

others for talk convenience. Similar situations also occur in

other scene categories, such as subway carriages and bus
carriages (shown in the bottom rows), and others.

Figures 1 (b) and (c) show the quantitative illustration of

the above analysis: the spatial and orientational histograms

of chairs in the classroom and meeting room examples in the

MIT Indoor-67 dataset [32]. We manually count the num-

bers of chairs with different spatial locations and 3D orien-

tations in the two scene categories. The statistical results

on 100 classroom and meeting rooms images are plotted as

histograms. It can be seen that the divergence between the

histograms from the orientations is much larger than the di-

vergence between the histograms from the spatial location-

s, and thus orientation is a crucial cue to differentiate the

classroom category from the meeting room category.

The above observation suggests that 3D orientations are

helpful to discriminate confusing indoor scene categories.

We follow the data-driven model [15] to estimate 3D ori-

entations of image patches. and propose a so-called Ori-

entational Pyramid Matching (OPM) model, which is the

key novelty of this paper, to encode 3D orientations into the

image-level feature vectors. OPM partitions the set of local

features into a hierarchical set of pooling regions. Different

from SPM that uses the positions of the local image patch-

es, OPM uses the 3D orientations to index the patches and

form the pyramid in the orientational space. Experimental

results indicate that OPM achieves recognition performance

comparable to SPM, and that OPM and SPM make com-

plementary contributions to recognition task, therefore the

integration of SPM and OPM achieves the state-of-the-art

performance on challenging scene classification datasets.

The remainder of this paper is organized as follows.

First, we give a survey of related works in Section 2. Then

we introduce the state-of-the-art methods for scene recogni-

tion in Section 3. In Section 4, we illustrate our approach in

two parts, i.e., the Orientational Pyramid Matching (OPM)

algorithm in Section 4.1, and the 3D orientation extraction

in Section 4.2. After experimental results are shown in Sec-

tion 5, we draw the conclusions in Section 6.

2. Related Works
Scene recognition is a fundamental task towards image

understanding. Most often, we refer to scene as a place

where an event or action happens, and it is possible for hu-

mans to recognize hundreds or even thousands of scene cat-

egories [42]. However, it is still challenging for the comput-

er algorithms to discriminate even a small number of scene

concepts. Many previous works are focused on represent-

ing scenes with statistics-based features, such as the glob-

al [30] and local [11] image descriptors. Beyond the Bag-

of-Features (BoF) model [7], efforts are made to improve

the description power of the features, such as incorporat-

ing spatial context in the scene representation [14][25], in-

tegrating multiple types of descriptors [4], quantizing local

descriptors with less information loss [40][13], constructing

mid-level concepts for better representation [45][44], con-

structing visual topic models [29], adopting kernel method-

s [41], discovering semantic regions for feature summariza-

tion [22] [43], and normalizing features to cooperate with

various pooling strategies [46].

It is well known that geometric context, such as spatial

layout, planar surfaces and orientational features, are more

important in scene understanding than in object recogni-

tion tasks [3]. Based on basic geometric elements such as

vanishing points [33], straight lines [19] and rectangles [2],

various types of geometric features could be efficiently ex-

tracted, such as the occlusion boundaries [18], orthogonal

planes [28], box layouts [16][17], and so on. This paper

will study another type but not yet well studied geometric

feature, 3D orientation, for scene recognition.

There are some works investigating 3D orientations.

For example, in the areas of 3D image processing [35] or

video action recognition [36], various techniques have been

adopted to generalize the 2D descriptors to the correspond-

ing 3D version. It is verified that 3D descriptors are much

more descriptive since richer information has been encoded

into the histograms [36]. Those 3D orientation based fea-

tures are different from ours as their data are 3-dimensional

while the 3D orientations described in this paper come from

the 3D geometric information of a 2D image.

3. The State-of-the-Art
The BoF model and its variants are popular image rep-

resentation methods for classification. They are composed

of three basic stages: local descriptor extraction, feature en-

coding, and spatial pooling.

The local feature extraction stage usually extracts a set

of local descriptors, e.g., SIFT [27] or HOG [8], from the

interest points or densely-sampled image patches of an im-

age. The feature encoding module then assigns each de-

scriptor to the closest entry in a visual vocabulary: a code-

book learned offline by clustering a large set of descriptors

with K-Means or Gaussian Mixture Model (GMM) algo-

rithm. The descriptor assignment can also be soft [47] and

the assignment weights can be determined according to the

distances to the dictionary elements or learned using the

Locality-constrained Linear Coding (LLC) algorithm [40].
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Recently coding techniques includes Fisher Vector [31], the

Vector of Locally Aggregated Descriptors (VLAD) [20],

and the Super Vector [49]. The BoF model and other coding

techniques have been compared in [34].

Spatial pooling consists of partitioning an image into

a set of regions, aggregating feature-level statistics over

these regions, and concatenating the region descriptors as an

image-level feature vector. Image partition can be obtained

by Spatial Pyramid Matching (SPM) [25] or some learn-

ing techniques [21]. Aggregation of descriptors within a

region is often performed with pooling strategy [5], such as

average-pooling, max-pooling, or Geometric �p-norm Pool-

ing (GLP) [12]. Geometric or semantic attributes has also

been proposed in the previous literatures [38][42][37] for

visual representation.

In this paper, we propose to complement spatial pooling

with orientational pooling, and introduce a novel algorithm,

i.e., Orientational Pyramid Matching (OPM).

4. Our Approach
In this section, we first introduce the proposed Orienta-

tional Pyramid Matching model, and then present the algo-

rithm of estimating the 3D orientations for image patches.

4.1. Orientational Pyramid Matching

Given a set of patch descriptors that are extracted from

interest points or densely-sampled regions, the goal is to

summarize then into an image-level feature vector. Differ-

ent from Spatial Pyramid Matching (SPM) in which each

patch descriptor is associated with its spatial position, our

approach augments the patch descriptor f with an addition-

al 3D orientation denoted by the azimuth and polar angles

o = (θ, ϕ)
�

. We denote the set of encoded local features

as S = {(f1,o1) , (f2,o2) , . . . , (fM ,oM )}.
The proposed Orientational Pyramid Matching (OPM)

algorithm starts with partitioning the set S into subsets

{St}, t = 1, 2, . . . , TO, where each subset consists of the

patch descriptors that are close in the orientational angles

rather than the spatial positions used in Spatial Pyramid

Matching (SPM). The partition can be done in various ways,

such as clustering the angles. In this paper, we follow the

simple way similar to SPM and perform a regular partition

scheme, i.e., dividing the orientational space U =
[−π

2 ,
π
2

]2

into regular grids, which is shown to perform well in prac-

tice. Let LA and LP be the numbers of the pyramid layers

along the azimuth and polar angles, respectively. The bin

in the l-th layer along the azimuth (polar) angle is then of

size π

2min{l,LA} × π

2min{l,LP} , i.e., the number of orientational

pooling bins in the l-th layer is 2min{l,LA} × 2min{l,LP}.

Denote the set of partitions produced from orientation-

al pyramid by R1,R2, . . . ,RTO . Each region Rt con-

tains a set of Mt patch descriptors {ft,1, ft,2, . . . , ft,Mt
}.

(a) (b)

(c) (d)x

y

θ

ϕ
spatial
space

orientational
space

Figure 2. Comparison of the 2nd-layer bins in Spatial Pyra-

mid Matching (SPM) and Orientational Pyramid Matching (OP-

M). The local features (quantized into 4 types) are grouped ac-

cording to their spatial positions in (a), and according to their 3D

orientations in (b). The SPM pooling results on the (x, y) space

and OPM pooling results on the (θ, ϕ) space are plotted in (c) and

(d), respectively. Since the spatial and orientational distributions

of each kind of local features are not always similar, the feature

distributions on the spatial and orientational spaces might be very

different. See the purple diamonds (floor) for example.

We aggregate the Mt features together to generate a de-

scriptor ft for region Rt. In this paper, we choose to use

the max-pooling strategy for the LLC-based features, i.e.,
fLLCt [i] = maxMt

m=1ft,m[i], and sum-pooling for the Fisher

Vectors, i.e., fFishert [i] =
∑Mt

m=1ft,m[i]. The overall image

feature is then obtained by concatenating the pooled feature

vectors of all the regions.

An illustration of Orientational Pyramid Matching and

Spatial Pyramid Matching is given in Figure 2. The two

schemes are very similar, where the only difference lies

in the way of producing pooling regions: OPM uses ori-

entational pooling and SPM uses spatial pooling. The t-

wo schemes share many common properties. The feature

length is the same if LX = LA and LY = LP or LX = LP

and LY = LA, where LX and LY being the layers along

the x and y directions in SPM. The time complexities of

computing the SPM and OPM features are the same as each

patch feature in one layer is checked only once.

Most techniques extending SPM can also be adopted in

extending OPM. For example, we can learn receptive field-

s [21] or pose pooling kernels [48] based on orientational
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pooling. In this paper, we study the performance of Ori-

entational Pyramid Matching with the LLC algorithm [40]

and Fisher Vector [31] for encoding patch descriptors.

4.2. Extracting 3D Orientations

We follow the data-driven algorithm [15] for 3D orien-

tation assignment. The KNN criterion is used to judge the

planarity of a patch, and predict the 3D orientations of the

planar patches.

We use the Bristol dataset in [15] for training and val-

idating the model. Each image in the dataset is equipped

with a set of manually labelled landmark points, and a set

of regions defined by contouring some of the landmarks.

Each region is labeled as planar or non-planer, and each

planar region is also annotated with an orientation unit vec-

tor (x, y, z)
�

, i.e., x2 + y2 + z2 = 1. In practice, the scene

images are taken with cameras which could be considered

as a point light-collector. Therefore the z-component on the

planner surface is non-negative, and all the orientation vec-

tors fall onto a unit semi-sphere. This means the azimuth

(θ) and polar (ϕ) angles are enough to represent the 3D ori-

entation: θ = arctan
(
z
x

)
and ϕ = arcsin(y).

We then extract local patches {P1,P2, . . . ,PM} dense-

ly from each training image. Each patch is assigned into one

of the three categories, i.e., planar (it falls completely with-

in a planar region), non-planar (it falls completely within

a non-planar region) and boundary (it falls on two or more

regions). We denote these categories by C1, C2, and C3,

respectively, and define the orientation of the planar patch

as the orientation of the corresponding region. In summary,

each patch Pm is represented by the SIFT descriptor fm, the

planar information cm ∈ {C1, C2, C3} and the orientation

(θm, ϕm). We collect 100000 patches (50000 planar, 30000
non-planar and 20000 boundary) for the KNN prediction.

Given a new patch P with the descriptor f , the prediction

process finds its K nearest neighbors in the feature space

and checks if there are τ enough neighbors supporting the

patch P is planar. In practise, τ = K
2 works very well. If

the patch P is planar, the orientation is then estimated by

averaging the orientations of its τ planar neighbors. About

half of the patches are classified to be not planar, and they

are simply ignored, i.e., not used in feature pooling.

The 3D orientation extraction process is evaluated with

two measures: the planarity classification accuracy, and the

orientation estimation accuracy. The planarity classification

score (c-score) is the percentage of correctly classified sam-

ples (planar vs. not planar), and the orientation estimation

score (r-score) is calculated using the cosine similarity be-

tween true and estimated orientations. Averaged scores over

the densely sampled testing patches are reported. The re-

sults with different parameters, K, are listed in Table 1. We

choose the best parameter K = 100 for prediction in the

later experiments.

K c-score r-score

0 0.5000 0.5676
1 0.7694 0.6458
5 0.8653 0.6882
10 0.8872 0.6946
50 0.8896 0.6980
100 0.8902 0.6990
500 0.8899 0.6985
1000 0.8896 0.6968

Table 1. The classification score (c-score) and regression score

(r-score) with respect to K, the number of nearest neighbors used

for prediction, where K = 0 means random guess.

It is worth noting that the Bristol dataset only contains

outdoor images. Using outdoor images to train the orien-

tation prediction model for indoor images is questionable.

However, experimental results show that the model learn-

t from Bristol is relatively reliable to estimate orientation-

s, yet we also think the estimation will be better using the

same database, if it is labeled with orientations.

5. Experimental Results
In this section, we first provide detailed analysis on the

model and parameters with the MIT Indoor-67 dataset, then

report our results on several challenging scene and generic

classification databases.

5.1. The Dataset and Implementation Details

We have used two scene datasets to evaluate the perfor-

mance of our algorithm.

The MIT Indoor-67 dataset [32] is the currently largest

indoor scene recognition dataset, which contains 67 class-

es and 15620 images. Sample images in this dataset are

shown in Figure 1. The SUN-397 dataset [42] is a much

larger dataset containing both indoor and outdoor scene cat-

egories. There are 397 well sampled scene concepts and

more than 100K images in the database. We follow the set-

ting in the previous literatures to choose a fixed number of

images for training the classifier, and test it on another fixed

set of images to report the average classification accuracy.

The numbers of images used for training and testing per

category are (80, 20) for the Indoor-67 dataset, and (50, 50)
for the SUN-397 dataset. The accuracy is averaged over 10
fixed training/testing splits.

The basic setting in our experiments follows [45]

and [34]. Images are resized so that the larger axis has 600
pixels. We use the VLFeat [39] library to extract grayscale

RootSIFT descriptors [1]. We extract two sets of SIFT de-

scriptors with the spatial stride and window size equal to

(8, 8) and (16, 16), respectively. The 128-D SIFT descrip-

tors are reduced into 64 dimensions in the case of Fisher
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(LX, LY) = (LA, LP) SPM OPM OPM+SPM

(1, 1) 41.93 41.93 41.93
(1, 2) 49.10 43.57 52.35
(1, 3) 54.10 43.75 56.14
(2, 1) 48.78 46.31 52.98
(2, 2) 53.55 46.47 56.09
(2, 3) 55.42 46.48 57.30
(3, 1) 53.61 48.64 57.20
(3, 2) 55.09 48.79 58.19
(3, 3) 57.83 48.83 59.57

Table 2. MIT Indoor-67 classification accuracy (%) with different

models and parameters. We have used the LLC algorithm in the

encoding step.

(LX, LY) = (LA, LP) SPM OPM OPM+SPM

(1, 1) 46.63 46.63 46.63
(1, 2) 57.21 48.25 59.14
(2, 1) 56.47 50.99 59.55
(2, 2) 61.22 51.45 63.48

Table 3. MIT Indoor-67 classification accuracy (%) with different

models and parameters. We have used the Fisher Vectors in the

encoding step.

Vector encoding. For LLC encoding, we train a codebook

with 8192 codewords using K-Means clustering, while for

Fisher Vector encoding, we train a codebook with 256 cen-

ters using the Gaussian Mixture Model (GMM). The num-

ber of descriptors collected for clustering is around 5 mil-

lion. For LLC encoding, we adopt the GPP [45] algorithm

to enhance the local features with geometric visual phrases.

Both SPM and OPM algorithms are used to capture the s-

patial layouts of the scene images. The number of layers of

SPM is 3 for LLC encoding and 2 for Fisher Vector encod-

ing. We use the LibLINEAR toolbox [9] as a scalable SVM

implementation. The penalty parameter C is set to 10.

5.2. Model and Parameters

Here we enumerate different combinations of LA and

LP, and report classification accuracies on the MIT Indoor-

67 dataset with three different features, i.e., SPM features,

OPM features, and the concatenation of SPM and OPM fea-

tures (denoted as OPM+SPM). Please note that we are al-

ways using LX = LA and LY = LP, which results in

the same length of spatial and orientational features vectors,

i.e., we are using the same amount of information to model

the spatial and orientational contexts.

The results are listed in Table 2 and 3. We can ob-

serve that the classification accuracy grows with the num-

ber of spatial and orientational pooling bins. To preven-

t the feature vectors from becoming too long, we selec-

t LX = LY = LA = LP = 3 with LLC features, and

Algorithm Accuracy

Quattoni et.al. [32] 26.0
Li et.al. [26] 37.6
Wang et.al. [40] 54.62
Xie et.al. [45] 57.83
Juneja et.al. [23] (BoP) 46.10
Juneja et.al. [23] (SPM+BoP) 56.66

Ours (OPM) 48.83
Ours (SPM+OPM) 59.57

Table 4. MIT Indoor-67 classification accuracy (%) of our algo-

rithm and previous works without Fisher Vector encoding.

Algorithm Accuracy

Perronnin et.al. [31] 61.22
Kobayashi [24] 58.91
Juneja et.al. [23] (BoP) 46.10
Juneja et.al. [23] (SPM+BoP) 63.10

Ours (OPM) 51.45
Ours (SPM+OPM) 63.48

Table 5. MIT Indoor-67 classification accuracy (%) of our algo-

rithm and previous works with Fisher Vector encoding.

LX = LY = LA = LP = 2 with Fisher Vectors. One can

observe that OPM produces inferior classification results to

SPM. When we concatenate the feature vectors produced

by SPM and OPM, we achieve higher accuracies than using

SPM and OPM features alone. This gives us the evidence

that features provided by SPM and OPM are complemen-

tary to each other.

5.3. Comparison with Previous Works

We compare our algorithm with some previous works

on the MIT Indoor-67 dataset. Since Fisher Vector encod-

ing [31] is verified very efficient in this dataset, we list the

algorithms without and with Fisher Vector encoding in Ta-

ble 4 and Table 5, respectively, and compare our algorithms

(without and with Fisher Vector encoding) with them. We

can see that in both cases, our algorithm achieves the state-

of-the-art classification accuracy. The improvement over

the second best without using Fisher vectors, as shown in

Table 4, is around 2%, which is not trivial in the challeng-

ing indoor scene recognition task. As shown in Table 5, a

Bag-of-Parts (BoP) model is proposed in the very recently-

published approach [23], and the concatenation of the BoP

and SPM features improves the performance of the SPM

features from 60.77% to 63.10%. Our approach improves

the performance of SPM features from 61.22% to 63.48%.

In addition, the performance from the BoP features is only

46.10%, which is significantly lower than 51.45% report-

ed by OPM features. This shows that OPM provides more
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44.6 1.1 2.7 14.6 23.4 2.8 4.8 6.0

0.9 71.8 8.5 2.1 1.8 7.9 3.6 3.3

2.6 15.6 44.1 9.4 5.9 6.8 8.2 7.4

11.0 1.4 5.2 61.4 3.3 3.3 8.1 6.2

18.2 4.6 3.4 5.0 51.0 3.6 8.8 5.5

3.6 12.2 9.1 11.0 5.5 45.5 3.9 9.3

5.9 9.0 19.3 8.6 16.2 8.3 27.2 5.5

8.6 5.6 10.0 13.1 10.3 9.4 8.9 34.6

52.7 0.6 1.2 11.7 22.6 1.8 4.1 5.3

0.9 80.9 5.8 0.6 3.0 4.8 0.6 3.3

5.1 19.1 44.1 4.1 3.5 3.2 10.3 4.1

6.2 1.4 2.4 71.4 0.5 7.1 5.2 5.7

17.1 2.5 2.6 4.7 58.2 2.6 6.8 5.3

1.4 10.8 4.6 6.7 6.9 59.5 3.3 6.9

5.5 6.9 14.8 6.9 15.2 6.2 36.2 8.3

5.4 3.9 5.9 10.6 8.9 9.3 8.7 47.3

Figure 3. The difference between the confusion matrices without

(left) and with (right) OPM features. We have used the LLC-based

features for classification.

category A category B OPM� Comb�
bookstore library +6.69% +3.75%
auditorium concert hall +5.35% +3.93%
computer room office +4.40% +1.80%
jewellery shop lobby +2.90% +1.06%
bakery buffet +2.88% +2.18%

category A category B SPM� Comb�
gameroom garage +4.78% +1.95%
rest. kitchen studiomusic +4.64% +2.33%
library clothingstore +4.62% +3.40%
children room kindergarden +4.47% +1.91%
laboratorywet kindergarden +4.47% +2.48%

Table 6. Categorie pairs better distinguished by OPM (top) and

SPM (bottom) features. For example, the confusion value from

bookstore to library is reduced by 6.69% by using OPM features

instead of SPM features, and 3.75% by using combined features

instead of SPM features.

complementary information to SPM than the BoP model.

In the future, we will investigate the combination of OPM

with several advanced features such as BoP.

5.4. Empirical Analysis

We present empirical comparisons of the SPM and OP-

M features in scene recognition. Let us first look at 8 cate-

gories: bedroom, classroom, computer room, hospital room,

living room, meeting room, office and waiting room, which

are the case that SPM features cannot discriminate very

well. The confusion matrices of the SPM features and of

the combination of SPM and OPM features are shown in

the left and right part of Figure 3, respectively. One can see

that most of the off-diagonal elements of the right confusion

matrix are smaller, e.g., the confusion value from comput-
er room to hospital room is reduced from 9.4% to 4.1%.

In addition, it can also be seen that most of the diagonal

elements of the right confusion matrix are larger, e.g., the

classification accuracy of meeting room increases to 45.5%
from 59.5%. The above analysis suggests that OPM is ca-

bookstore library

comptr.room office

auditorium concerthall

jewel. shop lobby

bakery buffet

+6.69%
OPM SPM

shelves

+4.40%
OPM SPM

computers

+5.35%
OPM SPM

chairs

library clothin. store

+4.62%
OPM SPM

shelves

game room garage

+4.78%
OPM SPM

tables

lab. wet kindergarden

+4.47%
OPM SPM

tables

OPM

OPM

+2.90%

+2.88%

SPM
chairs

plates
SPM

restr. kitchen studio music

+4.64%
OPM SPM

cabinets

child. room kindergarden

+4.47%
SPM

beds
OPM

Figure 4. Category pairs with largest differences in confusion

values (best viewed in color PDF). The 2nd-layer spatial and ori-

entational distributions of a common object are plotted as well.

The red and green histogram bins correspond to the category with

the same color of title.
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Algorithm Accuracy

Xiao et.al. [42] 38.0
Sanchez et.al. [34] 43.2

Ours (SPM) 43.58
Ours (OPM) 34.61
Ours (SPM+OPM) 45.91

Table 7. SUN-397 classification accuracy (%) of our algorithm

and previous works.

pable of producing the complementary information that is

ignored by SPM.

We also check those pairs of categories that are difficult

to discriminate using single SPM or OPM features. Top and

bottom parts of Table 6 show the pairs on which the per-

formance improvements of OPM over SPM are the largest,

and those improvements of SPM over OPM are the largest,

respectively. To observe the spatial and orientational distri-

butions of objects in these categories, we manually labeled

about 20 objects in the images from the corresponding cate-

gories, and find the most frequent visual word (in a 8-entry

codebook) in the labeled regions to represent the object.

Then the spatial and orientational histograms are calculat-

ed automatically using the visual words. Results are shown

in Figure 4. One can see that for the pairs on which OPM

performs better the histograms from orientations are more

discriminative, while for the pairs on which SPM performs

better the histograms from locations are more discrimina-

tive. This indicates that the complementary information of

OPM indeed comes from the orientational distribution. The

better performance of their combination is because of the

complementary benefits of SPM and OPM.

5.5. Large-scale and General Cases

To evaluate the scalability of our model, we test it on

the SUN-397 dataset [42]. We report the classification per-

formance with Fisher vectors in Table 8. One can observe

again in this case, that OPM provides complementary ori-

entational information, which helps our classifier beat the

competitors using only spatial information. It is also worth

noting that the SUN-397 dataset contains a number of out-

door scene concepts. We can therefore conclude that the

OPM model designed for recognizing indoor scenes could

be generalized to the outdoor scene categories.

We also report the results using OPM features on the Cal-

tech101 dataset [10], a widely adopted database for gener-

alized object categorization. It is a little surprising to ob-

serve that OPM, a model designed for indoor scenes, also

provides useful information for classifying general objects

(combined model obtains 1.02% accuracy gain). The im-

provement looks small, but is not easy for such datasets.

We believe that OPM benefits from the orientational fea-

Algorithm Accuracy

Chatfield et.al. [6] 77.78
Jia et.al. [21] 75.3

Ours (SPM) 80.73
Ours (OPM) 65.59
Ours (SPM+OPM) 81.75

Table 8. Caltech101 classification accuracy (%) of our algorithm

and previous works.

tures extracted on the background regions, e.g., a car often

appears in an outdoor scene, while a TV is more likely to

be put in a living room. This suggests that OPM could also

provide auxiliary cues in generic classification.

6. Conclusions

In this paper, we discuss the use of 3D orientational fea-

tures in scene classification tasks. We propose a novel Ori-

entational Pyramid Matching (OPM) algorithm to capture

the orientational contexts in the images, and combine the

OPM features with SPM features to capture the comple-

mentary information for scene recognition. State-of-the-art

classification performance is achieved on both MIT Indoor-

67 and SUN-397 datasets. In the future, we will investigate

the combination of OPM with many other approaches, and

look forward to some more accurate orientation assignment

algorithms to improve the OPM performance.
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