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Abstract

Scene recognition is a basic task towards image under-
standing. Spatial Pyramid Matching (SPM) has been shown
to be an efficient solution for spatial context modeling. In
this paper, we introduce an alternative approach, Orienta-
tional Pyramid Matching (OPM), for orientational context
modeling. Our approach is motivated by the observation
that the 3D orientations of objects are a crucial factor to
discriminate indoor scenes. The novelty lies in that OPM
uses the 3D orientations to form the pyramid and produce
the pooling regions, which is unlike SPM that uses the s-
patial positions to form the pyramid. Experimental results
on challenging scene classification tasks show that OPM
achieves the performance comparable with SPM and that
OPM and SPM make complementary contributions so that
their combination gives the state-of-the-art performance.

1. The Bag-of-Features Model

The BoF model is composed of three basic stages: local
descriptor extraction, feature encoding, and spatial pooling.
The local feature extraction stage usually extracts a set of lo-
cal descriptors, e.g., SIFT [8] or HOG [2], from the interest
points or densely-sampled image patches of an image. The
feature encoding module then assigns each descriptor to the
closest entry in a visual vocabulary: a codebook learned of-
fline by clustering a large set of descriptors with K-Means
or Gaussian Mixture Model (GMM) algorithm. Feature en-
coding can also be sparse [13] or high-dimensional [9]. S-
patial pooling consists of partitioning an image into a set
of regions, aggregating feature-level statistics over these re-
gions [18], and normalizing then concatenating the region
descriptors as an image-level feature vector [16]. Image
partition can be obtained by Spatial Pyramid Matching (SP-
M) [7]. Aggregation of descriptors within a region is often
performed with a pooling strategy.

2. Our Approach

In this section, we first introduce the proposed Orienta-
tional Pyramid Matching model, and then present the algo-
rithm of estimating the 3D orientations for image patches.

2.1. Orientational Pyramid Matching

Given a set of patch descriptors that are extracted from
interest points or densely-sampled regions, the goal is to
summarize then into an image-level feature vector. Differ-
ent from Spatial Pyramid Matching (SPM) in which each
patch descriptor is associated with its spatial position, our
approach augments the patch descriptor f with an addition-
al 3D orientation denoted by the azimuth and polar angles
o = (θ, ϕ)

>. We denote the set of encoded local features
as S = {(f1,o1) , (f2,o2) , . . . , (fM ,oM )}.

The proposed Orientational Pyramid Matching (OPM)
algorithm starts with partitioning the set S into subsets
{St}, t = 1, 2, . . . , TO, where each subset consists of the
patch descriptors that are close in the orientational angles
rather than the spatial positions used in Spatial Pyramid
Matching (SPM). The partition can be done in various ways,
such as clustering the angles. In this paper, we follow the
simple way similar to SPM and perform a regular partition
scheme, i.e., dividing the orientational space U =

[
−π2 ,

π
2

]2
into regular grids, which is shown to perform well in prac-
tice. Let LA and LP be the numbers of the pyramid layers
along the azimuth and polar angles, respectively. The bin
in the l-th layer along the azimuth/polar angles is then of
size π

2min{l,LA} ×
π

2min{l,LP} , i.e., the number of orientational

pooling bins in the l-th layer is 2min{l,LA} × 2min{l,LP}.
Denote the set of partitions produced from orientational

pyramid by R1,R2, . . . ,RTO
. Each region Rt contains a

set of Mt patch descriptors {ft,1, ft,2, . . . , ft,Mt}. We ag-
gregate the Mt features together to generate a descriptor ft
for regionRt. The overall image feature is then obtained by
concatenating the pooled feature vectors of all the regions.
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2.2. Extracting 3D Orientations

We follow the data-driven algorithm [4] for 3D orienta-
tion assignment. The KNN criterion is used to judge the
planarity of a patch, and predict the 3D orientations of the
planar patches. We use the Bristol dataset in [4] for train-
ing and validating the model. Each image in the dataset is
equipped with a set of manually labelled landmark points,
and a set of regions defined by contouring some of the land-
marks. Each region is labeled as planar or non-planar, and
each planar region is also annotated with an orientation unit
vector (x, y, z)>, z > 0. We use the azimuth (θ) and polar
(ϕ) angles to represent the 3D orientation: θ = arctan

(
z
x

)
and ϕ = arcsin(y).

We then extract local patches {P1,P2, . . . ,PM} dense-
ly from each training image. Each patch is assigned into
one of the three categories, i.e., planar (it falls completely
within a planar region), non-planar (it falls completely with-
in a non-planar region) and boundary (it intersects with two
or more regions). We denote these categories by C1, C2,
and C3, respectively, and define the orientation of the pla-
nar patch as that of the corresponding region. In summary,
each patch Pm is represented by the SIFT descriptor fm, the
planar information cm ∈ {C1, C2, C3} and the orientation
(θm, ϕm). We collect 100000 patches (50000 planar, 30000
non-planar and 20000 boundary) for KNN prediction.

Given a new patch P with the descriptor f , the prediction
process finds its K nearest neighbors in the feature space
and checks if there are τ neighbors supporting the patch P
is planar. In practice,K = 100 and τ = K

2 works very well.
If the patch P is planar, the orientation is then estimated by
averaging the orientations of its planar neighbors. About
half of the patches are classified to be not planar, and they
are simply ignored, i.e., not used in feature pooling.

3. Experimental Results

We evaluate our algorithm on two scene datasets, the
MIT Indoor-67 dataset [10] and the SUN-397 dataset [14].

The basic setting follows [11]. Images are resized so that
the larger axis has 600 pixels. We use VLFeat [12] to extrac-
t RootSIFT descriptors [1]. The spatial stride and window
size are (8, 8) and (16, 16), respectively. The 128-D de-
scriptors are reduced into 64 dimensions by PCA. We train
a GMM with 256 centers by collecting around 5 million
descriptors for clustering. Fisher vectors [9] are extracted
as the image-level feature. 2-layer SPM and OPM are used.
We use LibLINEAR [3] as a scalable SVM implementation.
The penalty parameter C is set to 10.

The comparison with previous algorithms is listed in Ta-
ble 1. It is verified that OPM provides complementary in-
formation to SPM, which is useful for scene understanding.
For more details, please refer to our CVPR paper [17].

Algorithm Indoor-67 SUN-397
Xie et.al. [15] 57.83 −
Perronnin et.al. [9] 61.22 −
Kobayashi [6] 58.91 −
Juneja et.al. [5] (SPM+BoP) 63.10 −
Xiao et.al. [14] − 38.0
Sanchez et.al. [11] − 43.2
Ours 63.48 45.91
Table 1. Performance comparison with previous methods.
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