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Abstract

Infinite SVM (iSVM) is a Dirichlet process (DP) mix-
ture of large-margin classifiers. Though flexible in
learning nonlinear classifiers and discovering latent
clustering structures, iSVM has a difficult inference
task and existing methods could hinder its applicabil-
ity to large-scale problems. This paper presents a small-
variance asymptotic analysis to derive a simple and effi-
cient algorithm, which monotonically optimizes a max-
margin DP-means (M2DPM) problem, an extension of
DP-means for both predictive learning and descriptive
clustering. Our analysis is built on Gibbs infinite SVMs,
an alternative DP mixture of large-margin machines,
which admits a partially collapsed Gibbs sampler with-
out truncation by exploring data augmentation tech-
niques. Experimental results show that M2DPM runs
much faster than similar algorithms without sacrificing
prediction accuracies.

Introduction
Clustering is a fundamental task in descriptive unsupervised
learning with many popular methods such as K-means and
various Bayesian models. It also plays an important role
in predictive supervised learning for discovering subgroup
structures and improving time efficiency. For example, when
learning SVM classifiers, it could be computationally ex-
pensive to directly solve a large optimization problem on all
training data. To improve efficiency and/or disclose descrip-
tive structures, practitioners have used clustering methods to
partition the data into subgroups and learn a simple classifier
within each cluster (Fu, Robles-Kelly, and Zhou 2010).

Recent work on DP mixtures of generalized linear mod-
els (Shahbaba and Neal 2009; Hannah, Blei, and Powell
2011) provides flexible solutions to jointly learn classi-
fiers and perform clustering; meanwhile these methods au-
tomatically resolve the unknown number of clusters, thereby
bypassing the model selection problem of K-means and
parametric mixture models. Along this line, infinite SVM
(iSVM) (Zhu, Chen, and Xing 2011), a DP mixture of large-
margin machines, provides an alternative approach that en-
joys the advantages of Bayesian nonparametrics to resolve
the number of components as well as the discriminative
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property of large-margin machines. However, these nonpara-
metric methods normally have difficult inference problems,
for which both variational and Monte Carlo methods could
be too expensive to be applied to large-scale applications.

Small-variance asymptotics (SVA) offers useful tech-
niques to setup conceptual links between probabilistic and
non-probabilistic models and derive new algorithms that can
be simple and scalable. For instance, connections between
probabilistic PCA (pPCA) and standard PCA can be made
by letting the covariance of the likelihood in pPCA approach
zero (Tipping and Bishop 1999); and similarly the K-means
algorithm can be obtained from the EM algorithm for Gaus-
sian mixtures when the covariances of Gaussian components
go to zero. Recent progress has been made on deriving new
computational methods. For example, DP-means is a deter-
ministic extension to K-means by applying SVA analysis to
the Gibbs sampling algorithm of DP mixtures (Kulis and
Jordan 2012); and the work (Broderick, Kulis, and Jordan
2013) provides a generic SVA analysis on MAP estimates
and presents an example of latent feature learning. However,
SVA analysis has been exclusively performed in unsuper-
vised learning, while little work has been done for super-
vised learning, which imposes new challenges and requires
more careful analysis as shown later.

This paper presents an SVA analysis to DP mixtures of
SVMs and derives simple and scalable algorithms that per-
form descriptive clustering and predictive classifier learning
jointly. Technically, our analysis is built on Gibbs infinite
SVMs (Gibbs-iSVM) which learns component-wise clas-
sifiers by exploring the ideas of Gibbs classifiers, a pow-
erful paradigm in learning theory (Germain et al. 2009).
For Gibbs-iSVM with the generic exponential family like-
lihood, we present a partially collapsed Gibbs sampler by
exploring data augmentation (Tanner and Wong 1987; Pol-
son and Scott 2011; Zhu et al. 2014) techniques. Compared
to the variational algorithm of iSVM, the Gibbs sampler
does not require truncated mean-field assumptions, thus con-
verging to the true posterior. However, some expectations
in the Gibbs sampler are hard to compute in closed forms.
To improve efficiency, we perform SVA analysis to the
Gibbs sampler and derive a simple deterministic algorithm
by scaling both the covariances of the likelihood and the
regularization parameters appropriately, where scaling the
regularization parameters is a key new feature for extend-



ing SVA analysis to supervised models. In addition, by ex-
pressing the Chinese Restaurant Process (CRP, a marginal-
ized version of DP) prior as exchangeable partition prob-
ability functions (EPPF) (Blackwell and MacQueen 1973;
Pitman 1995; Aldous 1985) and adopting the same set of
scalings to the posterior directly, we obtain a max-margin
DP-means (M2DPM) optimization problem, an extension to
the descriptive DP-means for both predictive learning and
descriptive clustering. We prove that the deterministic algo-
rithm monotonically optimizes the M2DPM problem for lo-
cal optimums. Experimental results on both synthetic and
real datasets demonstrate the efficiency and effectiveness of
the M2DPM algorithm compared to other competitors.

Preliminaries
Exponential family distributions
An exponential family distribution can be characterized as
follows (Barndorff-Nielsen 1978):

p(x|θ) = exp(〈x,θ〉 − ψ(θ)− h(x)), (1)

where θ is the natural parameter and ψ(θ) is the log-
partition function. The mean and covariance of an exponen-
tial family are given by∇ψ(θ) and∇2ψ(θ) respectively. In
the Bayesian setting, a convenient prior would be the conju-
gate prior (Agarwal and Daume 2010)

p(θ|τ , κ) = exp(〈θ, τ 〉 − κψ(θ)−m(τ , κ)), (2)

where τ and κ are hyper-parameters.
Given a convex set S ⊆ Rd and a differentiable, strictly

convex function ϕ : S → R, Bregman divergence (Bregman
1967) Dϕ(·, ·) is defined over pairs of points x,y ∈ S as
Dϕ(x,y) = ϕ(x)− ϕ(y)− 〈x− y,∇ϕ(y)〉. In (Banerjee
et al. 2005), a bijection between exponential family distri-
butions and Bregman divergence was established. Specifi-
cally, we can use the mean parameter of an exponential fam-
ily distribution to equivalently characterize the distribution
and conjugate prior as:

p(x|µ) = exp(−Dϕ(x,µ))fϕ(x), (3)

p(µ|τ , κ) = exp
(
−κDϕ

(τ
κ
,µ
))

gϕ(τ , κ), (4)

where ϕ(·) is the Legendre-conjugate function of the
log-partition function ψ(·) and fϕ(x) = exp(ϕ(x) −
h(x)). These representations can greatly simplify our small-
variance analysis (Jiang, Kulis, and Jordan 2012).

Infinite SVMs: a DP mixture of SVMs
A DP mixture (DPM) is a nonparametric Bayesian mixture
model (Hjort et al. 2010), where the number of cluster com-
ponents is unbounded. Given an instance xi ∈ Rd and its
component assignment zi ∈ N, we consider the general ex-
ponential family likelihood of the data instance:

p(xi|zi,µ) = exp(−Dϕ(xi,µzi))fϕ(xi), (5)

where µk is the mean parameter of component k. For pri-
ors, the cluster assignments z1:n follow a CRP with the con-
centration parameter α, and the parameter of each compo-
nent µk follows a conjugate prior as in (4) with the hyper-
parameters (τ , κ).

Given a set of data X = {xi}ni=1, we can apply Bayes’
rule to obtain the posterior distribution p(z,µ|X), which is
equivalent to the solution of the convex problem:

min
q(z,µ)∈P

KL(q(z,µ)‖p0(z,µ))− Eq[log p(X|z,µ)], (6)

where p0 is the prior; p(X|z,µ) =
∏n
i=1 p(xi|zi,µ) is the

likelihood; and P is a space of normalized distrubtions.
Infinite SVMs (iSVM) extends the unsupervised DPM for

both predictive supervised learning and descriptive cluster-
ing. Let’s consider binary classification, where each instance
is a pair of input features xi and class label yi ∈ {−1,+1}.
In iSVM, each cluster k is associated with a mean parameter
µk to characterize the likelihood of x and a classifier ηk to
predict y. For the common linear classifiers, the discriminant
function is

f(xi;η, zi) = η>zixi =

∞∑
k=1

δzi,kη
>
k xi. (7)

To resolve the uncertainty of Θ := {µ,η, z}, characterized
by a distribution q(Θ), iSVMs defines the averaging (or ex-
pected) discriminant function f(xi; q) = Eq[f(xi;η, zi)],
and makes predictions using the rule ŷ = signf(xi; q). For
this averaging classifier, we can measure its performance by
using the hinge loss, R(q,X) =

∑n
i=1(l − yif(xi; q))+,

where (x)+ = max(0, x) and l ≥ 1 is the cost of a wrong
prediction. The hinge loss is an upper bound of training er-
ror. Then, iSVM solves the regularized Bayesian inference
(RegBayes) (Zhu, Chen, and Xing 2014) problem

min
q(Θ)∈P

L(q(Θ)) + 2c · R(q(Θ),X), (8)

where L(q(Θ)) = KL(q‖p0)−Eq[log p(X|z,η)] is the ob-
jective of Bayesian inference for the DPM, and c is a pos-
itive regularization parameter balancing the two terms. For
η, a common Gaussian prior is ηk ∼ N (ηk|0, ν2Id).

Variational methods have been developed for approximate
inference in iSVM, with a truncated mean-field assumption
for tractability (Zhu, Chen, and Xing 2011). Generally, it
is hard to develop Monte Carlo methods for such Bayesian
max-margin models, which may involve solving a dual prob-
lem still with mean-field assumptions (Jiang et al. 2012).

Gibbs Infinite SVMs
We present Gibbs iSVMs with the generic exponential fam-
ily likelihood and develop a Gibbs sampler that grounds our
small-variance asymptotic (SVA) analysis. Gibbs iSVMs is
formulated as a DP mixture of Gibbs classifiers (Germain et
al. 2009; Zhu et al. 2014; Zhang, Zhu, and Zhang 2014).

Learning with an expected hinge loss
For our DP mixtures, a Gibbs classifier randomly draws a
sample (η, z) from the target posterior q(Θ), and makes
predictions using the linear discriminant function (7) via the
rule ŷi = signf(xi;η, zi). We measure the performance of
this latent classifier using the hinge loss as a surrogate to the
training error, R′(η, z,X) =

∑n
i=1(l − yiη>zixi)+. To re-

solve the uncertainty, we take the expectation and define the
expected hinge loss

R′(q(Θ),X) = Eq [R′(η, z,X)]. (9)



Then, Gibbs iSVMs solves the new RegBayes problem:

min
q(Θ)∈P

L(q(Θ)) + 2c · R′(q(Θ),X). (10)

Note: by using Jensen’s inequality, we can show the relation-
ship between the two hinge losses as:R′(q,X) ≥ R(q,X).

Representation with data augmentation
One nice property of Gibbs iSVMs is that we can develop
a Gibbs sampler without making truncated mean-field
assumptions. This sampler will lead to a simple determin-
istic algorithm via our SVA analysis, as shown soon later.
Specifically, we can express the solution to (10) as

q(Θ) =
p0(Θ)

∏n
i=1 p(xi|zi,µ)φ(yi|zi,η)

Z(D)
, (11)

where φ(yi|zi,η) = exp(−2c(ζzii )+) is an unnormalized
likelihood corresponding to the hinge loss, ζki = l−yiη>k xi
is the margin achieved by applying classifier ηk on data xi
and Z(D) is the normalization factor. As in (Polson and
Scott 2011), we can show that

φ(yi|zi,η) =

∫ ∞
0

1√
2πωi

exp

(
− (ωi + cζzii )2

2ωi

)
dωi, (12)

where ωi > 0 is an augmented variable. Then, q(Θ) can be
written as a marginal of the complete distribution:

q(Θ,ω) =
p0(Θ)

∏n
i=1 p(xi|zi,µ)φ(yi, ωi|zi,η)

Z(D)
, (13)

where φ(yi, ωi|zi,η) = 1√
2πωi

exp(− (ωi+cζ
zi
i )2

2ωi
) is the

augmented (unnormalized) likelihood for the hinge loss.

Partially collapsed Gibbs sampling
With data augmentation, we develop a Gibbs sampler that it-
eratively samples z,µ,η andω from the posterior (13); thus
the samples of Gibbs iSVM by dropping the variables ω. To
improve the convergence rate, we also adopt a partially col-
lapsed approach (van Dyk and Park 2008) when sampling z
by integrating out ω. The Gibbs sampler iteratively samples
from the following conditional distributions:

For µk: the conditional distribution is q(µk|z) ∝
p(µk|τ , κ)

∏
i∈Nk

p(xi|µk), where Nk := {i : zi = k} is
the set of instances assigned to cluster k. With the conjugate
prior, q(µk|z) is still an exponential family distribution:

q(µk|z) ∝ exp

(
−κ′Dϕ

(
τ ′

κ′
,µk

))
, (14)

where τ ′ = τ +
∑
i∈Nk

xi, κ′ = κ+ nk and nk = |Nk| is
the number of data samples in cluster k.

For zi: let n−i,k be the number of instances other than xi
that belong to cluster k. Then, for cluster k with n−i,k > 0,
the conditional probability of getting zi = k is

q(zi = k|z−i,η)∝ p0(zi = k|z−i)p(xi|µk)φ(yi|zi = k)

∝ n−i,kp(xi|µk)φ(yi|zi = k,η). (15)

The probability of assigning xi to a new cluster is

q(zi = znew|α) ∝ αp(xi)
∫
φ(yi|η)p0(η)dη, (16)

where p(xi) =
∫
p(xi|µ)p0(µ)dµ and φ(yi|η) =

exp(−2c(l − yiη
>xi)+). Though p(xi) has closed forms

because of conjugate priors, the integral
∫
φ(yi|η)p0(η)dη

does not have a simple closed form due to the hinge loss
term φ(yi|η) and approximation is needed in practice.

For ωi: when the margin ζzii is fixed, the conditional
distribution over the augmented variable ωi is a generalized
inverse Gaussian distribution (Devroye 1986). Conse-
quently, ω−1

i follows an inverse Gaussian distribution

q(ω−1
i |z,η) = IG

(
ω−1
i ;

1

c|ζzii |
, 1
)
, (17)

where IG(x; a, b) =
√

b
2πx3 exp(− b(x−a)2

2a2x ) for a > 0 and

b > 0. We can sample ω−1
i from an inverse Gaussian distri-

bution in O(1) time (Michael, Schucany, and Haas 1976).
For ηk: the conditional distribution of ηk is

q(ηk|z,ω,µ) ∝ exp
(
− ‖ηk‖

2

2ν2
−
∑
i∈Nk

(ωi + cζki )2

2ωi

)
, (18)

a Gaussian distribution with covariance and mean: Λk =

( 1
ν2 I+c2

∑
i∈Nk

xix
>
i

ωi
)−1; λk = Λk(c

∑
i∈Nk

yi
ωi+cl
ωi

xi).

Small-Variance Asymptotics
In the above sampler, the integral in Eq. (16) is normally
hard to compute. Though we can approximate it, e.g., using
importance sampling, it could be inaccurate and may sig-
nificantly slow down the algorithm. Also, in practice, deter-
ministic algorithms like K-means are sometimes preferred
because they are fast and easy to implement. This motivates
us to perform SVA analysis to derive new algorithms.

Asymptotic behavior of the Gibbs sampler
We first analyze the asymptotic behavior of the Gibbs sam-
pler under the small-variance setting. Our SVA analysis will
use one fact that under the scaling of exponential family pa-
rameters (i.e. θ̃ = βθ), the mean remains the same while the
variance is scaled down. This fact is formulated in Lemma
1, following (Jiang, Kulis, and Jordan 2012).
Lemma 1. Denote µ(θ) as the mean and cov(θ) as the co-
variance of p(x|θ) with log-partition ψ(θ). For the scaled
exponential family with θ̃ = βθ and ψ̃(θ̃) = βψ(θ̃/β),
its mean and covariance are µ̃(θ̃) = µ(θ) and ˜cov(θ̃) =
cov(θ)/β, respectively.

Therefore, with the scaling θ̃ = βθ, Eq. (1) and (2) be-
come Eq. (19) and (20) respectively, where ϕ̃ := βϕ.

p(x|θ̃(µ)) = exp(−βDϕ(x,µ))fϕ̃(x), (19)

p(θ̃(µ)|τ , κ, β) = exp
(
−κDϕ

(τ
κ
,µ
))
gϕ̃

(
τ

β
,
κ

β

)
, (20)

Below, we present the detailed SVA analysis of each step
of the Gibbs sampler, and provide insights of our new algo-
rithm. Our analysis will focus on the cluster assignments z,
classifiers η and augmented variablesω. Compared to previ-
ous work on SVA, both η and ω are unique to our methods;
and the analysis of z also needs new techniques, as we shall
see.



For µk: applying the scaling θ̃k = βθk, and the fact in
Eq. (19), the conditional in Eq. (14) now becomes:

q(µk|z, β) ∝ exp

(
−κ′′Dϕ

(
τ ′′

κ′′
,µk

))
, (21)

where κ′′ = κ+βnk and τ ′′ = τ +β
∑
i∈Nk

xi. Similar as
in (Jiang, Kulis, and Jordan 2012) we can show that as β →
∞ the conditional distribution of µk will be concentrated on
the empirical mean. See Appendix A for details.

For zi: since we are performing both classification and
clustering, we need both the likelihood (e.g. Dϕ(xi,µk))
and hinge loss (e.g. φ(yi|zi,η)) to play a role in determin-
ing zi. A straightforward application of existing SVA tech-
niques will drop the hinge loss. To avoid such artifacts, we
develop a new analysis by scaling the regularization param-
eter c. Specifically, let c̃ = β′c and φ(yi|zi = k,η, β′) =
exp(−2c̃(ζki )+). We also set a connection between the two
scaling constants β := (β, β′) as β = sβ′, where s is a con-
stant. Then, by Eq. (19), the conditional in Eq. (15) becomes

q(zi = k|z−i,µ,η,β) =
n−i,k
Z
· fϕ̃(xi)

· exp
(
−β′

(
s ·Dϕ(xi,µk) + 2c(ζki )+

))
. (22)

When generating new clusters, we need to retain the reg-
ularization term (i.e. prior) of η. Therefore, the variance of
the prior distribution, ν2, should be properly scaled. To this
end, we use the scaling ν̃2 = ν2/β′. Then, the conditional
probability in Eq. (16) can be expressed as

q(zi = znew|α,β) =
α

Z
· I1 · I2, (23)

where the two integrals are I1 :=
∫
p(xi|θ̃)p0(θ̃)dθ̃ and

I2 :=
∫
φ(yi|zi,η, β′)p0(η|ν̃2)dη. Though the integrals are

hard to compute, we can apply the Laplace’s method to de-
rive meaningful SVA results, as detailed below.

For integral I1, using Eqs. (19,20), we can expand it as

I1 = fϕ̃(xi)gϕ̃

(
τ

β
,
κ

β

)
A(ϕ̃,τ ,κ,β)(xi) · βdJ, (24)

where A(ϕ̃,τ ,κ,β)(xi) := exp(−(βϕ(xi) + κϕ(τβ ) −
(β + κ)ϕ(βxi+τ

β+κ ))) arises when combining the expo-
nential family distribution with its conjugate prior; and
J :=

∫
exp

(
−(β + κ)Dϕ

(
βxi+τ
β+κ ,µ(θ)

))
dθ is an-

other integral, which can be further expanded via the
Laplace’s method. Let θ̂ = θ(µ̂) be a local minimum of
D(θ) = Dϕ(βxi+τ

β+κ ,µ(θ)). We then have

J =
exp

(
− (β + κ)D(θ̂)

)
(2π/(β + κ))−d/2

(∣∣∣∣∂2D(θ̂)

∂θ∂θ>

∣∣∣∣−1/2

+ o(1)

)
. (25)

As limβ→∞
βxi+τ
β+κ = xi, we have D(θ̂) = D(θ(xi)) = 0.

Thus, limβ→∞ J = (2π/(β + κ))
d/2 · cov(xi)

−1/2. Note
also that limβ→∞A(ϕ̃,τ ,κ,β)(xi) = exp(−κ(ϕ(τ/κ) −
ϕ(xi))) (Jiang, Kulis, and Jordan 2012). Since cov(xi) and
A(ϕ̃,τ ,κ,β)(xi) do not scale with β, we have

I1 = fϕ̃(xi)gϕ̃

(
τ

β
,
κ

β

)
· (2πβ)

d
2 · C1(xi), (26)

as β →∞, where C1(·) is a function independent of β.
The integral I2 can be analyzed similarly via the

Laplace’s method. Let L(η) = 2c(l − yiη
>xi)+ + ‖η‖2

2ν2

be the hinge loss and regularization term induced by the
classifier η. Let η∗ be the classifier that minimizes L(η).
Then we have I2 = (2πν2/β′)−d/2

∫
exp(−β′L(η))dη

expanded as

I2 =
exp(−β′L(η∗))

(2πν2/β′)
d
2

(
2π

β′

)d
2

(∣∣∣∣∂2L(η∗)

∂η∂η>

∣∣∣∣− 1
2

+ o(1)

)
. (27)

Since the terms 2π/β′ cancel out in Eq. (27), ν2 and cov(η∗)
do not scale with β′, the integral I2 can be written as

I2 = exp(−β′L(η∗)) · C2(xi), (28)
as β′ →∞, where C2(·) is a function independent of β′.

Substituting Eqs. (26,28) into Eq. (23), we obtain

q(zi = znew|α,β) =
α

Z
· fϕ̃(xi)gϕ̃

(
τ

β
,
κ

β

)
· (2πβ)

d
2

· exp(−β′L(η∗)) · C1(xi)C2(xi). (29)
Further, we scale the concentration parameter α with β, but
independent of the data xi, aa in Eq. (30)

α =

(
gϕ̃

(
τ

β
,
κ

β

)
· (2πβ)

d
2

)−1

· exp(−β′λ), (30)

for some parameter λ and cancel out the fϕ̃(xi) term in
both Eq. (22) and (29). Clearly, as β → ∞, the exponen-
tial term dominates the other terms in both probabilities. In
other words, define “cost functions” Qi(k) as

Qi(k) = s ·Dϕ(xi,µk) + 2c(l − yiη>k xi)+ (31)
for existing components and

Qi(znew) = λ+ 2c(l − yiη∗>xi)+ + ‖η∗‖2/(2ν2) (32)
for new components. The conditional distribution of zi is
then concentrated on the component with the smallest cost
Qi(·) when β →∞.

For ωi and ηk: under the same scalings (i.e., c̃ = β′c
and ν̃2 = ν2/β′), Eq. (17) becomes q(ω̃−1

i |z,η, ) =

IG
(
ω̃−1
i ; 1

c̃|ζzii |
, 1
)
. Since the variance of IG(x; a, b) is a3

b

and as β′ →∞ we have a→ 0, the distribution of ω̃−1
i will

concentrate on its mean 1
c̃|ζzii |

. Thus, ω̃i will concentrate on

β′ · c|ζzii |. Finally, replacing c, ν2 and ωi with c̃, ν̃2 and ω̃i
in Eq. (18), we have λ̃k = λk and Λ̃k = Λk/β

′. Thus,
the conditional distribution of ηk will also concentrate on
its posterior mean λk.

In summary, the small-variance analysis results in an it-
erative algorithm, as outlined in Alg. 1. The algorithm is
easier to implement compared to the Gibbs sampler and
also runs faster because it avoids sampling from complex
distributions. Note that η∗, the solution to the “one-point
SVM” that minimizes L(η) = 2c(l − yiη

>xi)+ + ‖η‖2
2ν2 ,

has the closed-form solution (Crammer et al. 2006): η∗ =
min(2cν2, 1/‖xi‖2) · yixi. Thus, we can compute η∗ for
each instance xi in a constant time. Finally, the above anal-
ysis can be generalized to multi-class classification. See Ap-
pendix C for details.



Algorithm 1 The M2DPM algorithm
Initialize: z(0),µ(0),η(0),ω(0); g ← 0.
repeat

For each instance i: z(g+1)
i ← argminkQi(k).

For each cluster k: µ(g+1)
k ← (

∑
i δzi,kxi)/(

∑
i δzi,k).

For each instance i: ω(g+1)
i ← c · |ζzii |.

For each cluster k: η(g+1)
k ← λk.

Update: g ← g + 1.
until converge

Asymptotics of the posterior distribution
We now perform SVA analysis to posterior in Eq. (11)
directly and derive an optimization objective. The analysis
is based on the fact that the CRP prior can be written as an
exchangeable partition probability function (Pitman 1995;
Aldous 1985):

p0(z|α) = αK−1 Γ(α+ 1)

Γ(α+ n)

K∏
k=1

(nk − 1)!, (33)

where K is the number of nonempty clusters. Since Γ(α+1)
Γ(α+n)

only depends onD, the posterior (11) can be written as

q(Θ) ∝ αK−1ψ(n)

K∏
k=1

p0(µk,ηk)

n∏
i=1

p(xi|µzi)φ(yi|zi,η),

where ψ(n) :=
∏K
k=1 (nk − 1)!. Scaling θ, c and ν2 by

putting θ̃ = βθ, c̃ = β′c, ν̃2 = ν2/β′ and β = sβ′, the
posterior q(Θ) becomes1

q(Θ|β)∝ αKψ(n)

(
gϕ̃

(
τ

β
,
κ

β

))K n∏
i=1

fϕ̃(xi)

· exp

(
−β′L(z,µ,η)−

K∑
k=1

κDϕ
(τ
κ
,µk

))
,(34)

where L(z,µ,η) =
∑K
k=1

‖ηk‖
2

2ν2 + 2c
∑n
i=1(ζzii )+ +

s
∑n
i=1Dϕ(xi,µzi). Assuming the scaling of the concentra-

tion parameter α in Eq. (30) and noting the fact that fϕ̃(xi)
only depends on data xi, the posterior distribution (34) then
concentrate on the values of z,µ,η that minimize the loss
function in Eq. (35) when β and β′ approach infinity2:

Lsv(z,µ,η) = L(z,µ,η) + λ ·K. (35)

For the terms in the right-hand side of Eq. (35), we can see
that the first and second terms of L indicate the error of the
supervised classification task, one for the hinge loss and the
other for the regularization; the third term of L character-
izes the inference error on input feature vectors; and the last
term of Lsv is a penalty term on model complexity, which re-
sembles the classic AIC criteria (Akaike 1974). This penalty
term originates from the CRP prior and was also derived in
the work of (Kulis and Jordan 2012).

1We multiply α into the posterior to simplify scaling. It doesn’t
change the posterior as α is a constant independent of z,µ and η.

2Actually we only need α =
(
gϕ̃
(

τ
β
, κ
β

))−1

· exp(−β′λ),
but the extra terms in Eq. (30) do not affect the result.

Theorem 1 (with a proof in Appendix B) characterizes the
consistency between Alg. 1 and the objective in Eq. (35).
Specifically, it states that each iteration of Alg. 1 decreases
the loss function in Eq. (35) monotonically. This consistency
is desirable, as we are adopting the same set of scaling as-
sumptions in small-variance asymptotic analysis on both the
Gibbs sampler and the posterior distribution.
Theorem 1. Let Lsv(z,µ,η) be the loss function defined in
Eq. (35). After each iteration of Algorithm 1, we have

Lsv(z(g+1),µ(g+1),η(g+1)) ≤ Lsv(z(g),µ(g),η(g)). (36)

Experiments
Results on synthetic datasets
We first compare M2DPM with various competitors on syn-
thetic data generated under 2 settings. For each setting, we
generate 20 datasets at random and report the average accu-
racy and running time. In each dataset, we randomly pick
80% instances for training and use the rest 20% for testing.
Hyper-parameters are determined by 5-fold cross-validation
on training data. The algorithm terminates when the relative
change of the loss function is less than ε = 10−3.

Setting I: we first assign each of the 1,000 instances to
a cluster according to a CRP with the concentration param-
eter α = 1. For each instance in cluster k, we then sam-
ple its 10-dimensional feature vector from a Gaussian dis-
tribution N (µk, σ

2Id), where we set σ = 0.5 and µk =
(k, · · · , k)>. Note that the instances from different clusters
may overlap due to the random samples from Gaussian dis-
tributions. The maximum number of clusters is 10. For each
cluster k, we sample a linear classifier ηk from a Gaus-
sian distribution N (0, Id). We sample binary labels from
a Bernoulli model

p(yi = 1|xi, k) = Sigmoid
(
η>k (xi − µk)

)
. (37)

Setting II: we uniformly divide 10,000 10-dimensional
instances into 10 clusters. For each cluster k, values of
each feature are sampled from a uniform distribution U [k −
0.5, k + 0.5], and a linear classifier is generated as in Set-
ting I. The true labels are sampled from the same Bernoulli
model as in Eq. (37). Note that the clusters are disjoint.

Table 1 shows the average accuracy and running time of
M2DPM (std in parentheses), compared to Gibbs iSVM3,
dpMNL (Shahbaba and Neal 2009) and other baseline algo-
rithms. We also compare with a pipeline algorithm that first
uses DP-means to cluster the data and then trains an SVM
classifier for each cluster. The results show that M2DPM
achieves comparable performance with the best methods in
both settings, while requires much less running time than
other sampling methods (e.g. dpMNL, Gibbs-iSVM) and
kernel SVMs (e.g. RBF-SVM) when the data size is large.

Though RBF-SVM has slightly higher accuracy in Set-
ting II, M2DPM has the advantage of identifying latent clus-
ter structures. As a nonparametric method, M2DPM can
infer the number of clusters adaptively. Table 2 illustrates
how the number of clusters is automatically resolved from

3iSVM using truncated mean-field is worse; omitted for space.



Table 1: Averaging testing accuracy (%) and running time (s) of different algorithms on synthetic datasets.
Linear-SVM RBF-SVM MNL dpMNL DPmeans+SVM Gibbs-iSVM M2DPM

Setting I accuracy 66.4 (6.9) 69.5 (5.5) 66.2 (7.2) 68.8 (7.5) 70.8 (5.6) 70.9 (4.9) 71.1 (5.2)
time (s) 0.1 (0.0) 0.1 (0.0) 0.2 (0.0) 29.8 (2.8) 0.1 (0.0) 4.2 (0.1) 0.1 (0.0)

Setting II accuracy 54.4 (1.7) 65.5 (1.2) 54.6 (1.6) 54.6 (1.8) 58.9 (1.4) 62.9 (1.2) 64.4 (1.2)
time (s) 11.1 (0.6) 14.3 (0.2) 1.2 (0.1) 126.2 (11.0) 2.4 (0.8) 40.7 (2.4) 3.6 (1.4)

Table 2: The actual number of components (K0) compared
to the one inferred by M2DPM (K)

n0 100 300 1000 3000 10000
K0 8 9 11 13 14
K 8 8 11 12 14

time (s) 0.03 0.07 0.54 0.91 5.45

Table 3: Performance and running time of different models
on the protein classification task.

Model Accuracy (%) F1 (%) Time (s)
MNL 50.0 41.2 2.9
LSVM 50.5 47.3 0.5
RBF-SVM 53.1 49.5 1.6
dpMNL 56.3 49.5 98.2
DP+SVM 51.2 47.9 0.2
Gibbs-iSVM 55.8 50.1 223.4
M2DPM 54.6 49.9 8.1

datasets with different sizes. Here, we generated 10,000 10-
dimensional instances from a DP mixture and used the first
n0 ones as training data for each run of M2DPM, under the
same set of hyper-parameters. Note that the first n0 instances
may belong to fewer latent clusters due to the nature of DP.
We can see that M2DPM gave quite accurate predictions of
the number of latent clusters and it can adapt to datasets with
different sizes very well. Table 2 also shows that the running
time of M2DPM scales near linearly with respect to the data
size, a desirable property for learning on large datasets.

Results on Real Datasets
Protein Fold Classification The first real dataset was cre-
ated in (Ding and Dubchak 2001) for protein fold classifica-
tion. It consists of 698 samples, each classified into one of
the 27 different 3-d folding patterns. Each sample is repre-
sented by its percentage composition of 20 amino acids as
well as its length of the protein sequence. Our objective is to
classify data samples into one of the 27 classes given these
types of features. We follow the previous setup that uses 313
samples as training data and the reamining 385 as testing
data. The classification accuracy, F1 scores and running time
are reported in Table 3. We select the hyper-parameters of
M2DPM by a 5-fold cross-validation on the training set.

We can see that our method outperforms all the other al-
gorithms except dpMNL and Gibbs-iSVM, in terms of both
accuracy and F1 scores. Though dpMNL and Gibbs-iSVM
give better accuracy, they require significantly longer time
to train and predict. This demonstrates that our algorithm
can perform training and predicting with extraordinarily fast
speed while still maintaining adequate performance.

Detecting Parkinson’s Disease The second real dataset is
described in (Little et al. 2009) for detecting Parkinson’s dis-

Table 4: Accuracy, F1 scores and running time of different
models on the Parkinson’s disease detection dataset

Model Accuracy (%) F1 (%) Time (s)
MNL 85.6 (2.2) 79.1 (2.8) 0.1 (0.0)
LSVM 87.2 (2.3) 80.6 (2.8) 0.1 (0.0)
RBF-SVM 87.2 (2.7) 79.9 (3.2) 0.1 (0.0)
dpMNL 87.7 (3.3) 82.6 (2.5) 22.2 (1.4)
DP+SVM 86.2 (2.1) 78.9 (3.4) 0.1 (0.0)
Gibbs-iSVM 88.9 (1.5) 85.1 (1.3) 1.8 (0.0)
M2DPM 88.7 (2.9) 82.4 (4.8) 0.1 (0.0)

Table 5: Characteristics of patients within each group
Avg. age Avg. stage (0-4)

Group I 65.9 1.74
Group II 67.0 1.71
Group III 65.3 1.30
Group IV 77.0 2.3
Group V 65.4 1.50

ease. It consists of 195 instances (i.e. patients), each associ-
ated with 22 real-valued features and a binary label indicat-
ing whether the patient has Parkinson’s disease. We follow
the previous setup (i.e., performing 5-fold cross-validation)
and compare with the results reported in (Shahbaba and
Neal 2009) in Table 4. The results are reported using hyper-
parameters λ = 150, s = 0.01, ν = 1 and c = 2.5, which
were selected by a 5-fold cross-validation performed on the
data set. The results show that our method achieves compa-
rable performance compared to the best competitors while
requires much less running time.

Apart from having good accuracy, M2DPM is also able to
cluster patients into several groups that have different char-
acteristics. Our algorithm divides patients into five groups,
and Table 5 shows average ages and disease stages of the
five groups. Note that the age and disease stage information
are not contained in the original dataset and are cited from
Table 1 in (Little et al. 2009). It is clear that patients in the
4-th group are senior than patients in the other groups, and
are in more serious conditions in terms of disease stages.

Conclusions
We present max-margin DP-means (M2DPM), an effi-
cient algorithm for both clustering and classification, with
the number of clusters automatically resolved from data.
M2DPM was developed by performing small-variance
asymptotic analysis to a Gibbs sampler of DP mixtures of
SVMs. By exploring the similar analysis, we show that
M2DPM monotonically minimizes an objective function.
Experiments on synthetic and real-world datasets demon-
strate that M2DPM runs much faster than various competi-
tors while still maintaining accurate predictions.
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