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ABSTRACT
Recent interest in music information retrieval and related technolo-
gies is exploding. However, very few of the existing techniques
take advantage of the recent advancements in neural networks. The
challenges of developing effective browsing, searching and orga-
nization techniques for the growing bodies of music collections
call for more powerful statistical models. In this paper, we present
LSTM-RTRBM, a new neural network model for the problem of
creating accurate yet flexible models of polyphonic music. Our
model integrates the ability of Long Short-Term Memory (LSTM)
in memorizing and retrieving useful history information, together
with the advantage of Restricted Boltzmann Machine (RBM) in
high dimensional data modelling. Our approach greatly improves
the performance of polyphonic music sequence modelling, achiev-
ing the state-of-the-art results on multiple datasets.

Categories and Subject Descriptors
H.5.5 [Sound and Music Computing]: Modelling

General Terms
Algorithm

1. INTRODUCTION
Music is among the most widely consumed types of signal

streams. Models for finding, extracting and reproducing musical
temporal structure are of considerable interest. In particular, gener-
ative models for composing (good) music might have not only artis-
tic value but also commercial potential. Besides that, in the same
way that natural language models tremendously improve the per-
formance of speech recognition systems, musical language model
can also improve audio music recognition, i.e., the transcription of
raw audio into symbolic notations [13]. Moreover, ad hoc music re-
trieval could be possible, e.g., by building a model for every piece
of music in the collection and then ranking each piece according to
the probability that model produces when a query is provided.

A generative theory of music can be constructed by explicitly
coding music rules in some logic or formal grammar. This ap-
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proach is sometimes called an expert or knowledge engineering
system. Although these methods could achieve impressive re-
sults in some cases, they require extensive exploitation of mu-
sical knowledge, often specific to each composer or style. An-
other approach relies on statistical learning or empirical induction,
such as hidden Markov models (HMMs) [1], Markov random fields
(MRFs) [10], etc. These Markov models are statistical models of
random sequences with the typical assumption that the probability
for generating the next symbol depends only on a limited past. It is
often hard to choose the order of Markov models because a small
fixed order will certainly limit the representation ability, while a
large one will result in a large number of parameters that are diffi-
cult to estimate, with no guarantee of better performance.

Non-symbolic approaches such as Recurrent Neural Networks
(RNNs), which become popular with the recent breakthrough in
deep learning, can also capture the knowledge of music. For exam-
ple, the system in [5] could learn entire songs given a melody and
the associated chord sequence, and the RNNs combined with re-
stricted Boltzmann machines (RBMs) for feature representation [3]
have showed the best results in music generation recently. How-
ever, the music composed by RNN-type models often suffers from
a lack of global structure. Although networks can learn note-by-
note transition probabilities and even reproduce phrases, the at-
tempts to learn an entire musical form and to use that knowledge
to guide composition have been unsuccessful. The reason for this
failure seems to be that RNNs cannot keep track of temporally dis-
tant events that indicate global music structure. On the other hand,
Long Short-term Memory (LSTM) [8] has succeeded in similar do-
mains where other RNNs have failed, with state-of-the-art results
in various sequence processing tasks, including speech recognition
[7], handwriting recognition [6] and machine translation [17].

In this work, we present LSTM-RTRBM, a hybrid model for the
notoriously tricky problem of capturing the long-term structure in
polyphonic music. Our model embeds long-term memory into the

Figure 1: Layer-wise architecture of a LSTM block (peephole
connections omitted) picture adapted from [11].
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Figure 2: Structure of RTRBM.

. . .

. . .

. . .

Figure 3: Structure of LSTM-RTRBM.

Recurrent Temporal RBM (RTRBM) [16], by increasing a bypass-
ing channel from data source filtered by a recurrent LSTM layer.
We show that our LSTM-RTRBM model increases performance
and advances the state-of-the-art results even without additional op-
timizations used in the previous models.

The rest of the paper is organized as follows: In Section 2 we
briefly introduce LSTM, RBM and RTRBM as background. In Sec-
tion 3 we present our new model. We then validate our model on
benchmark datasets in Section 4, and present our results on musical
sequences in Section 5.

2. BACKGROUND
In this section, we briefly introduce the building blocks of our

model. More details can be found in supplementary materials.
LSTM is a special kind of RNN that can store and retrieve infor-

mation from input streams and do complicated tasks like classify-
ing, processing and most importantly, predicting time series when
there are very long time lags of an unknown size between impor-
tant events. As illustrated in Fig. 1, LSTM is enabled to do so by
utilizing memory cells that use logistic and linear units with multi-
plicative interactions with input and output gates. The information
gets into (out of) the memory cell whenever a logistic input (output)
gate is turned on. The memory cell state is kept from irrelevant in-
formation by keeping the input gate off, and its information stored
can be later probed by turning the output gate on. Forget gates can
reset the memory cell state for storage of new information, so that
in continuous prediction the memory cells can keep the informa-
tion when useful and forget the information when useless. With the
extension of peephole connections, which are the direct connec-
tions from memory cell states to gates, the performance of LSTM
is improved. The behavior of all these gates can be learned, ren-
dering LSTM’s ability in long term memory compared with simple
recurrent networks without such kind of architecture.

The RBM is a typical kind of product-of-experts (PoE) model,
which defines a probability distribution over the visible vector v
(inputs) and the hidden vector h as:

P (v, h) = exp(v>bv + h>bh + v>Wh)/Z (1)

where bv , bh are vectors of biases for the visible and hidden vec-
tors respectively, W is the matrix of connection weights, Z is the
usually intractable partition function that ensures P (v, h) is a well-
normalized probability distribution and x> is the transpose of x
while vT (hT ) is the entire sequence of vt(ht) from start to time T .

The Recurrent Temporal RBM (RTRBM) [16] (See Fig. 2) is a
sequence of conditional RBMs (one at each time step) whose pa-
rameters are time-dependent on the sequence history. Given pre-
vious hidden units ht−1 (t > 1), the conditional distributions for
current hidden units are factorized and takes the form:

P (ht|vt, ht−1) = σ(W>vt +W>R h
t−1 + bh) (2)

where σ(x) = (1 + e−x)−1 is the element-wise logistic sigmoid
function. To sample vT from RTRBM, we can use the following:

P (vt, ht|ht−1) = exp((vt)>bv + (vt)>Wht+ (3)

(ht)>(bh +WRh
t−1
R ))/Z(ht−1)

The RTRBM is defined by its joint probability distribution:

P (vT , hT ) =

T∏
t=2

P (vt|ht−1)P (ht|vt, ht−1) · P (v1)P (h1|v1)

3. LSTM-RTRBM
Though previous models have merits in modelling different as-

pects of data, they cannot meet all the requirements on modelling
music sequences. In this section, we present LSTM-RTRBM, a
new model that conjoins the strengths of LSTM and RTRBM.

Specifically, the creation of music is a complicated mental ac-
tivity and we would like our neural network model to mimic this
process, especially from the information memorizing and retrieving
perspective. Music feature extraction is a sort of perceptual cate-
gorization and grouping of music data. Music notes processed at
this stage can activate those parts of long-term memory evoked by
similar notes in the past. Activated long-term memory at this point
forms a context for current awareness. Long-term memory of con-
ceptual categories that reaches higher states of activation can then
persist as current short-term memory while other semi-activated re-
mains as context or degrades with time, and the information being
circulated in short-term memory will cause modifications in per-
manent long-term memory [15]. For example, in order to complete
a melody line, the beginning of the music sequence needs to be
held in mind while the rest is played, a task which is carried out
by the short-term memory. And the long-term memory will serve
as the theme and emotion that will help maintain the global coher-
ence of music. The existence of both the short-term and the long-
term memory is vital for generating melodic and coherent music
sequences.

Moreover, polyphonic music sequences are of high dimensions
where simply predicting the expected value at the next time step for
generating music sequences is not satisfying, since the conditional
distribution is very often muti-modal. For example, it is obvious
that the occurrence of a particular note at a particular time modifies
considerably the probability with which other notes may occur at
the same time. In other words, notes appear together in correlated
patterns cannot be conveniently described by a normal RNN ar-
chitecture designed for multi-class classification task, because enu-
merating all configurations of the variable to predict would be very
expensive. This difficulty motivates energy-based models which
allow us to express the log-likelihood of a given configuration by
an arbitrary energy function, such as the RBM.

In this context, we wish to combine the ability of RBM to repre-
sent a complicated distribution for each time step, together with a
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temporal model in sequence. We consider both long-term memory
and short-term memory in our design of guide and learning mod-
ules, by integrating LSTM with normal recurrent models, RTRBM
in our case. Adding LSTM units to RTRBM is not trivial, consid-
ering RTRBM’s hidden units and visible units are intertwined in
inference and learning. The simplest way to circumvent this diffi-
culty is to use bypass connections from LSTM units to the hidden
units besides the existing recurrent connections of hidden units, as
in LSTM-RTRBM (Fig. 3).

The recurrent hidden units (h(R)s in Fig. 3) serves as the short-
term memory and the LSTM units (h(L)s) serves as the long-term
memory. To sample vT , we can simply use the following:

P (vt, ht|ht−1) = exp((vt)>bv + (vt)>Wht+ (4)

(ht)>(bh +WRh
t−1
R +WLh

t−1
L ))/Z(ht−1)

By this means, there are two channels for temporal information
flow, the direct connection (WR) between the conditional RBM
at each time step, and the connection (WLR) from the recurrent
LSTM units of previous time steps. The main computation com-
plexity comes from the repeated sampling procedure of RBM learn-
ing and replacing some hidden units in RBM with LSTM units ac-
tually boosts learning speed. The inference and sampling proce-
dure is roughly the same as in RTRBM while the Backpropagation
Through Time (BPTT) procedure is a bit complex. Due to space
limit, we defer the details to supplementary materials.

4. BASELINE EXPERIMENTS
Before presenting the music modelling experiments, we first

compare the performance of our model with RTRBM on the human
motion capture data experiment, a classic baseline experiment for
evaluating sequence models. The human motion capture dataset1

represents human motion by sequences of joint angles, transla-
tions, and rotations of the base of spine. This dataset is recorded
on real persons and has more repeated patterns than normal music
sequences, such as the half circular motion of arm and the alter-
native moving and static status of feet. Since the data consists of
49 real values per time step, we use the Gaussian RBM variant
(see supplementary materials for details) for this task. The mean
squared prediction error per dimension per time step is 0.32 for
the RTRBM with 200 logistic hidden units and reduced to 0.13
by LSTM-RTRBM with 100 logistic hidden units and 100 LSTM
units, and to 0.09 with twice as many units. It can be seen that
with the inclusion of long-term information in LSTM-RTRBM, the
prediction is significantly more accurate and stable.

5. MODELLING SEQUENCES OF
POLYPHONIC MUSIC

In this section, we show results with the main application of in-
terest: probabilistic modelling of sequences of polyphonic music.
We conduct experiments on two music datasets of different styles:
MuseData, an electronic library of orchestral and piano classical
music from CCARH 42 and JSB chorales, the entire corpus of 382
four-part harmonized chorales by J. S. Bach with the split of [1].

Each dataset contains at least 7 hours of polyphonic music and
the total duration is approximately 29 hours. The polyphony (num-
ber of simultaneous notes) varies from 0 to 15 and the average
polyphony is 4.2. We use a completely general piano-roll represen-
tation with an input of 88 binary visible units that span the whole

1people.csail.mit.edu/ehsu/work/sig05stf
2www.musedata.org

Table 1: Log-likelihood (LL) and expected frame-level accu-
racy (ACC%) for various musical models in the generation
task. The double line separates frame-level models (above) and
models with a temporal component (below).

MODEL MUSEDATA JSB CHORALES
LL ACC% LL ACC%

RANDOM -61.00 3.74 -61.00 4.42
GMM -12.20 7.37 -11.90 15.84
NADE -10.06 7.65 -7.19 17.88
RBM -9.56 8.19 -7.43 4.47
PREVIOUS -12.90 25.93 -19.00 18.36
+ GAUSSIAN
GMM+HMM -11.17 13.93 -11.89 19.24
MLP -7.94 25.68 -8.70 30.41
RNN -8.13 23.25 -8.71 28.46
RNN(HF) -7.19 30.49 -8.58 29.41
LSTM -6.88 30.15 -7.92 30.07
RNN-NADE -6.74 24.91 -5.83 32.11
RTRBM -6.35 30.85 -6.35 30.17
RNN-RBM -6.01 34.02 -6.27 33.12
RNN-NADE(HF) -5.60 32.60 -5.56 32.50
LSTM-RTRBM -5.54 33.89 -4.72 35.22

range of piano from A0 to C8 and temporally aligned on an inte-
ger fraction of the beat (quarter note). Consequently, pieces with
different time signatures will not have their measures start at the
same interval. Although it is not strictly necessary, learning is fa-
cilitated if the sequences are transposed in a common tonality (e.g.
C major/minor) as preprocessing.

In addition to the models previously described, the results (taken
from [3]) of the following commonly used methods are also listed
for comprehensive comparison:

• The simplest baseline model is the Gaussian density model
(PREVIOUS + GAUSSIAN) with the previous frame as
mean value u = v(t−1) and learned covariance Σ.

• The neural autoregressive distribution estimator (NADE) [9]
is a model inspired by the RBM, which decomposes the joint
distribution of observations into tractable conditional distri-
butions, and modelling each conditional using a non-linear
function similar to a conditional of an RBM. Thus it is a
tractable model and can be further optimized with its exact
gradient.

• Other common methods include Gaussian mixture models
(GMM), hidden Markov models (HMM) using GMM indices
as their state, and multilayer perceptron (MLP) with the last
n time steps as input.

We adopt the classic momentum training regime, with learning
rate 0.01 and momentum 0.9. The learning starts with CD10 (10
steps of Contrastive Divergence) for the first 1000 weight updates,
which then switches to CD25. We use 88 hidden units and 88
LSTM units, the same number as the input and the output dimen-
sion, which is trained faster than using hundreds of hidden units in
the RTRBM, for the main computation takes place in the CD steps
(not needed if changed to LSTM units) . The partition function of
conditional RBM at each time step is calculated with 100 run of an-
nealed importance sampling [14] on GPU. The Log-likelihood and
expected frame-level accuracy [2] are presented in Table 1. There
are some key observations:

• It generally improves the performance of the model, to pre-
dict the parameters of the distribution of the data, i.e., the hid-
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Figure 4: Slice of sample music generated by LSTM-RTRBM.

den units of RBM, rather than the raw data itself. However,
LSTM or RBM alone only gives moderate performance; it
is the combination of both the best recurrent model and the
best static feature extraction model that gives the best perfor-
mance.

• The combined RNN-NADE model with Hessian-free (HF)
optimization [12] is a robust distribution estimator because
the RNN part and the NADE part are optimized jointly,
though frame-level NADEs are less powerful than RBMs.
The use of HF optimization significantly helps the density es-
timation and prediction performance, although considerably
increases the training time. On the other hand, the approxi-
mated gradient and iterative CD estimation process alienate
models with RBM from optimization methods like HF.

• LSTM performs better than standard RNN with strong op-
timization method like HF generally, and the inclusion of
LSTM units significantly improves the performance of the
model (LSTM-RTRBM compared with RTRBM), achieving
state-of-the-art result in these datasets. It can be conjectured
that NADE combined with LSTM might give better result
with the aid of HF optimization.

We also evaluate our models qualitatively by generating sam-
ple sequences (see Fig. 4 for a glimpse). The model has learned the
chords (such as sequential D major triads in Fig. 4), local and global
temporal coherence, melody lines and generate music that is har-
monic and coherent. With the same configuration, LSTM-RTRBM
could learn melody lines from both datasets while RTRBM gener-
ates inconsistent and unpleasant sample sequences. However, all
the recurrent temporal model forms a closed loop that have no new
incitations from outside, making the long piece of music dull. This
can be solved with the technique of side-slipping [4], by playing
out-of-key to produce a short sensation of surprise in a context
deemed too predictable.

6. CONCLUSIONS
We investigate the problem of modelling long-term dependen-

cies in high-dimensional polyphonic music sequences. We present
a new neural network model for the problem of creating accurate
yet flexible statistical models of polyphonic music, and conduct
extensive experiments to evaluate the proposed model. Our model
greatly improves the performance of polyphonic music modelling,
achieving the state-of-the-art results on various datasets. For fu-
ture work, we are interested in optimizing LSTM with hessian-free
techniques for better results, and integrating side-slipping mecha-
nism for more variable music generation.
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