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ABSTRACT
Recent work has shown the effectiveness of leveraging layout
and tag-tree structure for segmenting webpages and label-
ing HTML elements. However, how to effectively segment
and label the text contents inside HTML elements is still
an open problem. Since many text contents on a webpage
are often text fragments and not strictly grammatical, tra-
ditional natural language processing techniques, that typi-
cally expect grammatical sentences, are no longer directly
applicable. In this paper, we examine how to use layout
and tag-tree structure in a principled way to help under-
stand text contents on webpages. We propose to segment
and label the page structure and the text content of a web-
page in a joint discriminative probabilistic model. In this
model, semantic labels of page structure can be leveraged
to help text content understanding, and semantic labels of
the text phrases can be used in page structure understand-
ing tasks such as data record detection. Thus, integration
of both page structure and text content understanding leads
to an integrated solution of webpage understanding. Exper-
imental results on research homepage extraction show the
feasibility and promise of our approach.

Categories and Subject Descriptors
I.5.1 [Pattern Recognition]: Models - Statistical

General Terms
Algorithms, Experimentation
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1. INTRODUCTION
The World Wide Web is a vast and rapidly growing repos-

itory of information, and various kinds of valuable seman-
tic information are embedded in webpages. Some basic
understanding of the semantics of webpages could signifi-
cantly improve people’s browsing and searching experience.
For example, in our Windows Live Product Search project
(http://products.live.com), we automatically extract struc-
tured product information from the web using a template-
independent approach to segmenting webpages and labeling
HTML elements [29]. By presenting the HTML elements
according to their semantic meaning, users could save time
from sifting the information from thousands of webpages.

However, little work has been carried out on segmenting
and labeling the text contents inside the HTML elements of
a webpage. In this paper, we study how to use layout and
tag-tree structure in a principled way to help understand
text contents on webpages.

1.1 Motivating Example
We have been developing Libra (http://libra.msra.cn), an

object-level academic search engine, to help scientists and
students locate research materials. One of the biggest chal-
lenges we are facing in Libra is how to understand researchers’
homepages better. On a researcher’s homepage (see Fig. 1
for an example), two types of information are important.
The first one is the contact information of the researcher,
such as name, address, email, and phone, and the second
one is the academic information including the academic ti-
tle, affiliation, academic activities, and publications. If we
could identify all the related information from every re-
searcher’s homepage, Libra could become the most compre-
hensive database about researchers in the world.

However, building a webpage understanding model to iden-
tify this information from every researcher’s homepage is
non-trivial:

1. Webpages are highly heterogeneous. Rule-based web-
page understanding methods are no longer applicable.



Figure 1: The homepage of David Heckerman con-
tains his contact information (name, address, and
email) and academic information (title, affiliation,
papers and academic activities).

This is because the rules learned for one type of web-
pages could not be easily adapted to other types of
webpages. Thus, template-independent methods are
required in this type of webpage understanding tasks.

2. The attribute values of a researcher are presented in
multiple separated HTML elements. For example, the
attributes (title, author, publication conference and
year) of the first paper record in Fig. 1 are presented in
three HTML elements which are visually close to each
other in the webpage. Thus, understanding of page
structure is required to calculate the visual distance
between these HTML elements and group the related
information together.

3. The text content of a single HTML element could con-
tain information of multiple attributes. For example,
in Fig. 1 all the author names of a paper are presented
in a single HTML element, and several address-related
attributes (street, city, state, and zip code) are also
presented in a single HTML element. For convenience,
we use ”text fragment” to refer to the text content of a
single HTML element. Thus, to identify the attribute
values of a researcher, understanding (including seg-
menting and labeling) the text fragments is required.

Thus, an effective webpage understanding model should
be template-independent, and the segmentation and label-
ing of both page structure and text fragments are required.
Existing work on web mining and natural language process-
ing is ineffective due to the following two reasons.

Firstly, existing work on web mining mainly focus on page
layout and format analysis using rule-based pattern mining
approaches [1][8][26][27]. Little work has been done to effec-
tively process the text fragments except some wrapper-based
(or rule-based) approaches [14][17]. However, wrapper-based
approaches could not solve our problem because they are
template-dependent and could only work for webpages gen-
erated by the same template.

Secondly, existing work on natural language processing

cannot be directly applied to web text understanding. Be-
cause the text contents on webpages are often not as regular
as those in natural language documents and many of them
are less grammatical text fragments. One possible method of
using NLP techniques for web text understanding is to first
manually or automatically identify logically coherent data
blocks, and then concatenate the text fragments within each
block into one string via some pre-defined ordering method.
The concatenated strings are finally put into a text process-
ing method, such as CRYSTAL [22] or Semi-Markov Mod-
els [20], to identify target information. [22][9] are two at-
tempts in this direction. This type of pre-processing based
approaches has several disadvantages:

Ineffectiveness in Rule-based Webpage Segmenta-
tion: The segmentation of logically coherent data blocks is
non-trivial for rule-based approaches because of the diver-
sity of webpages. It is demonstrated in [29] that de-coupled
approaches to detecting data records without semantics of
the contents are highly ineffective.

Insufficient Grammar for NLP Systems: Even if the
logically coherent data blocks could be identified correctly,
the parsed text fragments within these blocks are still lack
of grammars. For example, the concatenation of an anchor
text with a phone or an email is apparently of no meaning in
NLP systems, which typically expect grammatical sentences.

Loss of Structure and Boundary in Concatena-
tion: The concatenation removes or softens the boundaries
of different text fragments. More importantly, it also re-
moves structure formats of the HTML elements such as
two-dimensional layout information and hierarchical orga-
nization. These structural patterns have been shown to be
very useful for page structure understanding [29][28].

Now, a natural question is why there is no existing work to
effectively incorporate the work from the web mining com-
munity and the natural language processing community. We
believe that the answer lies in the fact that most existing
page structure understanding methods are rule-based but
statistical models have been the theme of text processing
over the last decades [18]. For this reason, existing page
structure understanding methods cannot be easily merged
with statistical NLP methods in a principled manner.

Our recent work has shown that statistically regular de-
pendency patterns among the HTML elements of a webpage,
such as two-dimensional [29] and hierarchical [29] dependen-
cies, are ubiquitous. Thus, sophisticated probabilistic mod-
els, such as Hidden Markov Models or Conditional Random
Fields [15], can be developed to exploit these useful depen-
dencies for effective webpage structure understanding. How-
ever, in these approaches, we only assign semantic labels to
HTML elements, and do not segment and label the text
content within an HTML element.

In this paper, we study how to explore the structural
dependency patterns as shown in [29] to help understand
text fragments in a principled way. Instead of using simple
heuristic-based pre-processing, we propose a joint webpage
understanding model to do structure understanding and text
content understanding simultaneously. The joint model is
an integration of Hierarchical Conditional Random Fields
(HCRFs) [29] and Semi-Markov Conditional Random Fields
(Semi-CRFs) [20]. It can be seen as an undirected gener-
alization of the Switching Hidden Semi-Markov Model (S-
HSMM) [10]. Two differences exist between S-HSMM and
our model. First, our model is discriminative but S-HSMM



is generative. Generally, discriminative models can incor-
porate arbitrary features of the observations, but generative
models must make some strong independence assumption to
achieve inference tractability. Second, the S-HSMM used in
[19][10] is a two-layer hierarchical model. Thus, it is not suf-
ficient for webpage understanding as webpages are arbitrary
hierarchical trees.

As our model performs both page structure understand-
ing and text content understanding together, it can take raw
webpages as inputs and identifies the desired information if
exists. Thus, it is an integrated solution of webpage under-
standing. In contrast, [22][9] are de-coupled approaches.

Specifically, we make the following contributions:

1. We are the first to incorporate both structure and text
content understanding into one probabilistic model for
integrated webpage understanding. We show that struc-
tures can be explored to help understand text contents
in a principled manner.

2. We present an undirected graphical model which is
an integration of HCRFs and Semi-CRFs. The joint
model can be viewed as a discriminative generalization
of the Switching Hidden Semi-Markov Model [10].

3. An empirical study of our model on the task of home-
page information extraction is presented.

The rest of the paper is organized as follows. In the next
section, an overview of our approach is presented to help un-
derstand how the new approach works. Section 3 formally
describes the proposed model. Section 4 presents our empir-
ical studies and discussions. Section 5 discusses related work
and section 6 brings this paper to a conclusion. Finally, we
give our acknowledgements in section 7.

2. OVERVIEW OF OUR APPROACH
For webpage understanding, choosing a good representa-

tion of webpages is important. Tag-trees, which are nat-
ural representations of the tag structures, are commonly
used in the literature. However, tag-trees tend to reveal
presentation structure rather than content structure. We
need a webpage representation which can effectively keep
related contents together while separating semantically dif-
ferent blocks. As shown in [29], vision-trees are the best
representation available for webpage understanding. Vision-
trees are built using a vision-based page segmentation ap-
proach, which makes use of page layout features such as
font, color, and size to keep HTML elements with related
contents together. We use the vision tree of a webpage as
its representation format. Each node on a vision-tree repre-
sents a data region (or a block) in the webpage. The root
block represents the whole page. The leaf blocks are the
HTML elements of the webpage. Each inner block is the ag-
gregation of all its child blocks. The individual tokens inside
the text leaf nodes (i.e. text fragments) are atomic units for
text content understanding.

Based on the vision-tree, we propose a joint model by in-
tegrating HCRFs [29] and Semi-CRFs [20] to explore struc-
tural regularities to help understand text fragments. Fig. 2
shows the model structure. At coarse levels (i.e. the blocks
of the vision-tree) it is a full HCRF model for page struc-
ture understanding as in [29], and at the finest level (i.e.
the text contents of the leaf nodes) a Semi-CRF model is

Figure 2: Graph of the joint model. The upper part
is an HCRF model for structure understanding, and
the models in triangles descending from leaf nodes
are Semi-CRF models for text understanding.

introduced for segmenting and labeling the text fragment of
each HTML element. To be integrated with the upper hier-
archical model, the label assignments of leaf nodes must be
incorporated into the segmentation1 of a text fragment in
the Semi-CRF models, that is, for Semi-CRF models a label
assignment is a combination of both the segmentation of text
fragments and the label assignments of the variables at leaf
nodes. We will refer to these Semi-CRF models as extended
Semi-CRF models in our joint approach. We assume that
the Semi-CRF models at different leaf blocks share the same
set of feature functions and weights. We show that although
the model is an integration of two different types of mod-
els, the maximum likelihood estimation can be carried out
separately. Thus, existing algorithms are sufficient for the
training. The most likely label assignments of the variables
in HCRF and the most likely segmentation and labeling of
text fragments can be found jointly. However, exact joint
algorithms can be too expensive for large-scale webpage un-
derstanding. Alternatively, we adopt an efficient de-coupled
approximate method by first doing structure understanding
and then doing text understanding with the extended Semi-
CRF models. In structure understanding the effectiveness
of leveraging semantic labels in both directions has been
demonstrated in [29]. Here, we focus on studying the effec-
tiveness of leveraging semantic labels of HTML elements in
text understanding.

An Illustration Example: In Fig. 1, the publication
information is grouped into small data regions or paper
records. Take the first paper record as an example. All the
author names are presented in the first HTML element, and
the title of the paper is in the second element. The publica-
tion year and conference are presented in the third element.
Traditional approaches [22][9] first detect the paper record,
and then process the concatenated text string of all the text
elements within the paper record. The shortcomings of these
methods have been discussed previously. In contrast, our
approach takes an integrated procedure to identify paper
records, assign semantic labels to HTML elements, and fur-
ther segment text contents into purified attributes. In our
model, extended Semi-CRF models are aware of the seman-
tic labels of the text elements when doing segmentation and
labeling. This will help identify the boundary of each at-
tribute. For example, if the first element ”D. Heckerman,
C. Kadie, and J. Listgarten.” is labeled as containing only
author names by the HCRF, then the extended Semi-CRF
can leverage this semantic information and easily identify
the boundary of each author name. The semantic labels of
HTML elements can be accurately assigned with the help of

1see section 3.1.2 for the formal definition.



structure understanding as shown in [29]. Thus, structure
understanding can help text content understanding.

Note that we choose Semi-CRFs for text understanding,
although other models like Hidden Markov Models are pos-
sible. This is because, Semi-Markov models have been ex-
amined in [5][20] and demonstrated to be among the most
promising methods for text segmentation and labeling, espe-
cially for their great power in incorporating segment-based
features. Furthermore, discriminative models generally have
great flexibility in encoding arbitrary useful features for in-
formation extraction compared to generative models.

3. A JOINT WEBPAGE UNDERSTANDING
MODEL

In this section, we first introduce some basic concepts
of Conditional Random Fields [15] and their extensions -
HCRFs [29] and Semi-CRFs [20]. Then, we present a joint
model for integrated webpage understanding. We show that
the parameter estimation of the joint model can be per-
formed independently. We present an exact algorithm and
its efficient approximation to find the maximum a posterior
assignment of all the variables in the joint model.

3.1 Preliminaries
In general, Conditional Random Fields (CRFs) are Markov

Random Fields that are globally conditioned on observa-
tions. Let G = (V,E) be an undirected model over a set
of random variables Y and X. X are variables over the
observations to be labeled and Y are variables over the cor-
responding labels. Y can have non-trivial structures, such
as linear-chain [15] and 2D grid [28]. The conditional distri-
bution of a label assignment y (an instance of Y ) given the
observations x (an instance of X) has the form

p(y|x) =
1

Z(x)

Y
c∈C

ψc(y|c, x), (1)

where C is the set of cliques in G; y|c are the components
of y associated with the clique c; ψc is a potential function
defined on y|c and takes non-negative real values; Z(x) =P

y

Q
c∈C ψc(y|c, x) is the normalization factor or partition

function. The potential functions are expressed in terms of
feature functions fk(y|c, x) and their weights λk

ψc(y|c, x) = exp
n X

k

λkfk(y|c, x)
o
.

Given a set of training samples D = {(yi, xi)}N
i=0, param-

eter estimation is to choose the feature functions’ weights to
maximize the likelihood of the set of training samples. For
linear-chain CRFs [15], this task can be efficiently done with
dynamic programming algorithms.

3.1.1 Hierarchical Conditional Random Fields
An HCRF model (HCRFs) [29] is a CRF model but with

the variables indexed by the vertices of a hierarchical graph.
The probability distribution has the same form as in equa-
tion (1). Compared with the traditional linear-chain model,
an HCRF model has a different set of cliques, and thus has a
different set of feature functions. For HCRFs, triangles are
the maximum cliques, and feature functions defined on these
cliques encode the dependencies among parent variables and
their children. Thus, it can capture the dependencies be-
tween the variables at adjacent levels of the graph in Fig.

2. Via the inter-level dependencies and the dependencies of
the variables at the same level, HCRFs provide a way to in-
corporate long distance dependencies for accurate structure
understanding. Another advantage of this model is that by
using the standard junction tree algorithm, it is very effi-
cient to do parameter estimation and to find the maximum
a posterior label assignment. In fact, the algorithm is linear
in terms of the number of elements.

3.1.2 Semi-Markov Conditional Random Fields
A Semi-CRF model (Semi-CRFs) [20] is another extension

of the linear-chain CRFs for sequence data segmentation and
labeling. Here, we use the same notations as in [20]. In this
model, x is a token sequence and |x| is the sequence’s length
(i.e. number of tokens). The vector s = 〈s1, s2, . . . , sn〉 is a
segmentation of x, and each entry is a segment which is a
triple si = 〈ti, µi, yi〉 with ti as a start position, µi as an end
position, and yi as the label of this segment. Thus, a seg-
ment si means that the label yi is assigned to all the observa-
tions between the start position ti and the end position µi in
the observation sequence x. It is reasonable to assume that
segments have positive lengths and adjacent segments touch,
that is, 0 ≤ ti ≤ µi ≤ |x| and ti+1 = µi + 1. Let gk be a
feature function, and it depends on the current segment, the
whole observation, and the label of previous segment, that
is, gk(i, x, s) = gk(yi−1, yi, ti, µi, x). Let g = 〈g1, g2, . . . , gK〉
be a vector of feature functions and W = 〈w1, w2, . . . , wK〉
be the corresponding weight vector. As a Conditional Ran-
dom Field model, the probability distribution p(s|x) is also
of the form as in equation (1) but with the traditional label
assignment y replaced by a segmentation s and the cliques
are replaced by segments:

p(s|x) =
1

Z(x)

Y
i=1:|s|

ψi(i, x, s), (2)

where ψi(i, x, s) = eW·g(i,x,s), and Z(x) =
P

s

Q|s|
i=1 ψi(i, x, s).

For Semi-CRFs, parameter estimation and finding the
maximum a posterior segmentation can be efficiently carried
out via a dynamic programming algorithm. The computa-
tional complexity is a constant factor more than that of the
traditional linear-chain model when the maximum length of
the segments is assumed to be fixed. Recent work in [21]
shows that the computational complexity could be further
reduced by defining succinct potentials.

3.2 A Joint Model
Now, we present the integrated webpage understanding

model. The model’s graph is shown in Fig. 2. The up-
per part is a full hierarchical model with M + 1 nodes, and
at each leaf node on the vision-tree a Semi-CRF model is
introduced for text segmentation and labeling. For the hi-
erarchical model, we use rectangles to denote inner nodes
and use ellipses to denote leaf nodes. Each node on the
graph is associated with a random variable Yi, and all the
variables Y = {Yi}M

i=0 are organized in a hierarchy. A la-
bel assignment of these variables y = {yi}M

i=0 is organized
in a hierarchy as Y . We partition the set into two subsets:
Y = {Yl,i}L

i=0 ∪ {Yp,j}M−L−1
j=0 , where Yl,i are variables at

leaf nodes; Yp,j are variables at inner nodes; and L + 1 is
the number of leaf nodes.

To be integrated with the upper hierarchical model, ex-
tensions must be made to Semi-CRF models. In the next
two sections, we first describe the extensions of Semi-CRF



models to incorporate structure understanding when doing
text segmentation and labeling, and then present a joint
model to integrate the two parts together.

3.2.1 Extended Semi-CRF Model
In order to be integrated with the upper hierarchical model,

the label assignments of the variables at leaf blocks (or leaf
variables for short) must be incorporated into the segmenta-
tion of text fragments in the lower Semi-CRF models, that
is, for Semi-CRF models a label assignment is a combina-
tion of both the segmentation of text fragments and the
label assignments of the leaf variables. In this way, the up-
per hierarchical model and the lower Semi-CRF models are
integrated via the leaf variables. This is the key difference
from the standard Semi-CRF model [20]. We will refer to
these Semi-CRF models as extended Semi-CRFs in our joint
approach. Here, we assume that the extended Semi-CRFs
at different leaf blocks are conditionally independent given
the leaf variables at which they are located. We also assume
that the Sem-CRF models at different leaf blocks share the
same set of feature functions and parameters.

Now, we take one leaf block as an example to formally
define the extended model. For the leaf variable Yl,i, the
extended Semi-CRF model is defined as follows. The obser-
vation sequence xl,i is the text fragment at the leaf block.
Let si = 〈si,1, si,2, . . . , si,ni〉 denote a segmentation of xl,i.
Here, each segment is an extension of the segment of the
standard Semi-CRF model to incorporate the label assign-
ment of the leaf variable: si,j = 〈ti,j , µi,j , yi,j , yl,i〉, where
ti,j is a start position; µi,j is an end position; yi,j is the
label of this segment; and yl,i is the label of the leaf variable
Yl,i. We will call these leaf labels yl,i as supper labels as
opposed to the labels yi,j used within the extended Semi-
CRFs. Correspondingly, the feature functions for the ex-
tended Semi-CRFs are also dependent on the labels of leaf
variables. Let gk be a feature function. It maps a triple
(j, x, si) to a real value. Here, we assume that it depends
on the current segment, the whole observation, the label of
previous segment, and also the label of the leaf variable Yl,i.
So, gk(j, x, si) = gk(yi,j−1, yi,j , yl,i, ti,j , µi,j , x). Let g be
the vector of feature functions and W be the corresponding
weight vector as defined before. Then, the conditional prob-
ability of segmentation p(si|x) has the same form as in (2)
but with the original segmentation replaced by an extended
one and the feature functions are replaced correspondingly.

3.2.2 The Joint Distribution
Now, for the joint model we define S = 〈s0, s1, . . . , sL〉 to

be the segmentations of all the leaf blocks. Then, an assign-
ment of all the variables in the joint model is a pair 〈y,S〉
where y is the label assignment of the upper hierarchical
model and S is the segmentation assignment of the extended
Semi-CRFs. A valid assignment 〈y,S〉 must satisfies the con-
dition that the two assignments match at the leaf variables,
that is, the label assignments of the leaf variables from both
the upper hierarchical model and the lower extended Semi-
CRF models are the same: si · yl,i = y · yl,i, 0 ≤ i ≤ L. In
the following, we will use 〈y,S〉 to denote a valid assignment
without further explanation.

Then, the joint probability distribution of our model has
the following factorization form

p(〈y,S〉|x) = p(y|x)p(S|x, y) = p(y|x)
Y

i=0:L

p(si|x, yl,i), (3)

where the first equation is for the chain rule, and the last
equation is for the conditional independency assumption
that given the label of a leaf variable, the segmentation as-
signment of that leaf variable is independent from the label
assignment of other variables. We shall see that this factor-
ized distribution will lead to an efficient separate parameter
estimation algorithm. The joint model can be viewed as
an undirected generalization of the Switching Hidden Semi-
Markov Model [10] since it can be viewed as the concatena-
tion of many Semi-CRF models and the leaf variables act as
switch variables.

In equation (3), each part can be computed efficiently.
For the hierarchical model, the conditional probability is
expressed by the feature functions as in [29]

p(y|x) =
1

Zh(x)
exp

˘ X
v,k

µkgk ( y|v, x) +
X
e,k

λkfk(y|e, x)

+
X
t,k

γkhk(y|t, x)
¯
,

where gk, fk, and hk are feature functions defined on three
types of cliques (i.e. vertex, edge, and triangle) respectively;
µk, λk, and γk are the corresponding weights; v ∈ V , e ∈ E,
and t is a triangle. Zh(x) is the normalization factor of the
hierarchical model.

For the extended Semi-CRF model, the conditional prob-
ability is

p(si|x, yl,i) =
1

Zi(x, yl,i)
exp

˘ X
j,k

ωkg
k(j, x, si)

¯
,

and the normalization factor is

Zi(x, yl,i) =
X

s′i:s
′
i·yl,i=yl,i

exp
˘ X

j,k

ωkg
k(j, x, s′i)

¯
.

3.3 Parameter Estimation
For the joint model, each training sample in D is a pair

(〈y,S〉i, xi) and the log-likelihood function is

L(Θ,W) =
X

i=0:N

log p(〈y,S〉i|xi,Θ,W),

where Θ = 〈µ1, µ2, . . . ;λ1, λ2, . . . ; γ1, γ2, . . . 〉 is the parame-
ter vector of the hierarchical model and W is the parameter
vector of the extended Semi-CRF models. Substitute the
distribution in (3) into the log-likelihood and we get

L(Θ,W) =
X

i=0:N

log p(yi|xi,Θ,W) +
X

i=0:N

log p(Si|xi, yi,Θ,W)

= Lh(Θ,W) +
X

i=0:N

X
j=0:Li

log p(si
j |xi, yi

l,j ,Θ,W)

= Lh(Θ) + Ls(W).

The last equation is due to the fact that parameters Θ and
W are independent. Thus, the maximization of L(Θ,W) is
equivalent to the maximization of Lh(Θ) and the maximiza-
tion of Ls(W). Now, we can perform the parameter esti-
mation for the HCRF model and the extended Semi-CRF
models separately. Here, we use the algorithm in [29] to train
the hierarchical model. For the extended Semi-CRF model,
similar dynamic programming algorithms as in [20] can be
used to learn the parameters, but with the segmentation
replaced by the extended one in order to incorporate sup-
per labels. To compute the normalization factor Zi(x, yl,i),



forward vectors can be recursively defined as

α(j, y, yl,i) =
X

d=1:M

X
y′

α(j − d, y′, yl,i)e
W·g(y′,y,yl,i,j−d,j,x)

with the base case α(0, y, yl,i) = 1. Here, M is the maximum
segment length [20]. The normalization factor is Zi(x, yl,i) =P

y α(|xl,i|, y, yl,i). Similarly, we define the recursion as

ηk(j, y, yl,i)

=
X

d=1:M

X
y′

βk(y′, y, yl,i, j − d, j, x)eW·g(y′,y,yl,i,j−d,j,x),

where

βk(y′, y, yl,i, j − d, j, x)

= ηk(j − d, y′, yl,i) + α(j − d, y′, yl,i)g
k(y′, y, yl,i, j − d, j, x).

Then, the expectation of feature function gk with respect
to the model distribution can be computed using the same
formula as in [20] but with the normalization factor and
ηk(j, y) replaced by Zi(x, yl,i) and ηk(j, y, yl,i) respectively.
To avoid over-fitting, the spherical Gaussian prior with mean
µ = 0 and variance matrix Σ = δ2I is used to penalize the
log-likelihood when training each part of the model.

3.4 Finding the Most Likely Assignment
For webpage understanding, the target is to find the best

assignment of the variables in the model, that is, the pair
〈y,S〉 that has the maximum posterior probability. We have
shown that parameter estimation can be performed inde-
pendently for two different parts without loss of accuracy.
But finding the maximum a posterior assignment is not the
case. This is because unlike training webpages, there are no
’true’ labels assigned to the leaf nodes of a testing webpage.
Thus, all the possible assignments to a leaf variable must be
computed.

Based on the junction tree algorithm [29], we can develop
a joint optimization algorithm to find the most likely assign-
ment. We can take the same procedure as in [29] to construct
a junction tree for the upper hierarchical model, and then
propagate messages on the constructed junction tree using
the two-phase schedule algorithm [13]. Before running the
schedule algorithm, the messages from the extended Semi-
CRF models must be integrated in order to incorporate the
effects of text content understanding into structure under-
standing. Here, the local messages at the leaf variable Yl,i

are the normalization factor Zi(x, yl,i) which can be recur-
sively computed using the forward algorithm as above. The
local messages are incorporated by multiplying them into
the initial potentials on the constructed junction tree. After
initialization, the two-phase schedule algorithm runs to find
the most likely label assignments of all the variables at inner
nodes. At the end of the schedule algorithm, the marginal
potentials of the leaf variables are incorporated into the ex-
tended Semi-CRF models to find the best label assignments
of the leaf variables and also the best segmentation of text
fragments. This can be done using Viterbi algorithm by
defining the recursion

V (j, y, yl,i) = max
d=1:M,y′

(V (j−d, y′, yl,i)+W·g(y′, y, yl,i, j−d, j, x))

with the base V (0, y, yl,i) = 0. Then, the most likely label
assignment of the leaf variable is the label y?

l,i that achieves
the highest value maxy,yl,i(V (|xl,i|, y, yl,i)+φ(yl,i)) and the

best segmentation is the path traced by maxy V (|xl,i|, y, y?
l,i),

where φ(yl,i) is the marginal potential of the variable at the
end of the two-phase algorithm.

However, the joint optimization algorithm can be too ex-
pensive for large-scale webpage understanding because for
each label assignment of a leaf variable the dynamic pro-
gramming algorithm must be run twice to collect messages
and to find the best segmentation of its content. An alterna-
tive efficient approximate method is to find the maximum
a posterior assignment of two parts separately. First, the
most likely assignment of the variables in the upper hierar-
chical model is found using the junction tree algorithm [29].
Then, leaf blocks together with supper labels are further
segmented using the extended Semi-CRF models. During
the segmentation and labeling of text fragments, the supper
labels of leaf blocks are fixed. Let y?

l,i be the most likely
label assignment of the leaf variable Yl,i at the end of the
first step, we compute the following recursion

V (j, y, y?
l,i) = max

d=1:M,y′
(V (j−d, y′, y?

l,i)+W·g(y′, y, y?
l,i, j−d, j, x))

with the base V (0, y, y?
l,i) = 0. Then, the best segmentation

is the path traced by maxy V (|xl,i|, y, y?
l,i).

In this approximate algorithm, although the segmenta-
tion of text contents is not considered when doing structure
understanding, the semantic labels assigned by the upper
hierarchical model are considered to help text understand-
ing. One advantage of this approximate algorithm is that
after the first step of structure understanding, most of the
text fragments are labeled as containing no interested infor-
mation. These non-informative fragments can be kept away
from further segmentation and labeling. This simple heuris-
tic could significantly reduce the time complexity because
most contents on webpages contain no interested informa-
tion but act as decorations, supplements or something else.

4. EXPERIMENTS
In this section, we report empirical results by applying our

proposed model to understand web text fragments and iden-
tify structured information from researchers’ homepages. We
compare our proposed model with a sequential approach
that combines the state-of-the-art algorithms in record de-
tection and text segmentation. The results show that our
model achieves significant improvements in the final under-
standing of text fragments through leveraging the semantic
labels of page structures. We also study the effects of NLP
features and database features if they are available.

4.1 Dataset
Although some datasets like the Job corpus [3] and the

Address and Paper corpora [2] have been evaluated in pre-
vious work, they are raw text documents and do not have
HTML structures. Thus, they are not suitable for our evalu-
ation since our focus is on both structures and text contents.
Also our work is different from [2][5], in which the inputs are
some pre-identified segments of a webpage such as address
records and paper records which are treated as string se-
quences in their experiments. In our method, we take raw
pages as inputs and automate both the identification of ad-
dress and paper records and the segmentation and labeling
of the text fragments.

As we have stated, extracting structured information from
researchers’ homepages needs both structure understanding



and text content segmentation and labeling. So, we eval-
uate our models on this task. We setup our dataset with
292 homepages of computer science researchers. We iden-
tify both academic and contact information of a researcher.
For contact information, we identify his/her Name, address
(including Street, City, State, and Zip code), Phone, and
Email. For academic information, we extract his/her aca-
demic Title (like professor, lecturer, and etc.), Affiliation,
and publications. For each paper, we identify Paper Title,
Author name, Publisher type (like conference, workshop,
journal, PhD thesis, and etc.), and publication Year.

The 292 homepages are randomly downloaded from the
computer science departments of about 10 American Uni-
versities including Stanford, MIT, CMU, and UC Berkeley,
and also some homepages are from research labs like Bell
labs, Microsoft Research, IBM Research, and etc. All the
pages are manually labeled and all the structured informa-
tion is segmented. Statistics of the dataset is shown in the
first row of Table 1. You may note that the number of
owner names is less than the number of homepages. This is
because there are four names presented in images, and one
page without any explicit name.

4.2 Methods and Evaluation Metrics
To our knowledge, there is no complete solution for web-

page understanding (both structure understanding and text
understanding). The heuristic-based pre-processing meth-
ods [9][22] are not appropriate baseline methods because
their rules are used for specific types of problems, and it
is difficult to develop an optimal set of rules in our exper-
iments. Here, we build our baseline method by first us-
ing the most recently developed webpage segmentation and
labeling method [29] to identify interested text fragments
and then applying Semi-CRF models [20] to segment text
fragments and identify structured information. When being
input into Semi-CRF models, text fragments are concate-
nated into strings as in [20]. Instead of concatenating all the
text fragments on a webpage into one single string, which is
apparently inefficient, we concatenate the fragments within
each paper record as one string. The text fragments re-
lated to Street, City, Region, Zip code, Email, and Phone are
concatenated together, and the other text fragments includ-
ing the owner’s Name, Title, Affiliation and non-informative
text fragments are concatenated together. We refer to this
method as sequential baseline method in the sequel.

As we defined in [29], there are two types of label spaces
for HCRFs: leaf label space and inner label space. The leaf
label space is used for labeling the leaf nodes of the vision-
tree. It consists of all the target attributes, and the combi-
nations: Name and Title; Title and Affiliation; Name, Title
and Affiliation; City and Region; Region and Zip code; City,
Region and Zip code; Paper Title and Author ; Author and
Publisher ; Paper Title and Publisher ; Publisher and Year ;
Paper Title, Author and Publisher. Note that here we in-
clude the combinations in leaf label space. This is because
the text fragments which are labeled by HCRFs can contain
multiple attributes. The inner label space is used for label-
ing the inner blocks of the vision-tree. It consists of Paper
Record, Paper List, Note block, and all the above combina-
tions. For the extended Semi-CRF models, there are also
two types of label spaces: supper label space and attribute
label space. The attribute label space consists of the names
of the attributes we are interested in. The supper label space

is the same as the leaf label space of the HCRF model. When
finding the maximum a posterior segmentation and labeling
using the extended Semi-CRF models, the upper bounds on
segment lengths are dependent on the supper labels. For
Title, Affiliation, Street, Paper Title, and Publisher, the up-
per bounds (ranging from 10 to 14) are larger than those
for Name, City, State, Zip code, Email, Phone, Author, and
Year (ranging from 2 to 4).

For each attribute, the standard Precision, Recall and F1
measure are evaluated.

4.3 Results and Discussions
In our experiment, the dataset is partitioned into two sub-

sets: 50 percent for training and 50 percent for evaluation.
For the training of the HCRF model and the extended Semi-
CRF model, spherical Gaussian priors are used with the
same standard variance 5.

The performance is shown in Table 1. We can see that
the integrated model significantly outperforms the sequen-
tial baseline method on all the attributes except Zip code,
City, Region, Phone, and Year. The performance on Zip code
is almost the same, and the baseline method can perform
well on City, Region, and Phone. This is because for these
attributes, text patterns are usually very distinctive, so the
baseline method can perform well even without considera-
tion of where they appear in a webpage. Also relatively clean
presentation of contact information in homepages makes it
easy to distinguish useful information from noise. For Year,
after the first step of identifying paper records, they can be
easily and accurately identified with the baseline method.

However, for other attributes no simple features can be
used to effectively identify them. For example, both Title
and Affiliation can have similar patterns (such as the first
letters of words are all capitalized, in bold font, and etc.)
as those of Name. For paper related attributes, Publisher
can appear like a Paper Title, and Author can appear in
front of or after Paper Title. This leads to more ambiguities
when identifying each of them. In these cases, structural
layout patterns are more helpful. In our proposed model,
the upper hierarchical model can effectively incorporate hi-
erarchical dependency patterns and also long distance de-
pendencies to understand the semantics of text fragments.
Then, the semantic labels assigned by upper HCRF model
are incorporated into the lower extended Semi-CRF mod-
els when doing segmentation and labeling of text fragments.
This procedure can help the final identification of our inter-
ested attributes. For example, if the HCRF tells that a text
fragment is a list of author names even though it doesn’t tell
where the boundaries between different author names are,
then it will be much easier for the lower Semi-CRF model
to identify the unknown boundaries.

From the results, we can also see that in researchers’
homepages, Names are much easier to be found compared
with Title and Affiliation. So the sequential baseline method
can perform well in identifying Name. The lower perfor-
mance on Email compared to that on City, Region, and
Zip code is due to the fact that researchers often make their
email addresses unreadable to automated programs. For Ti-
tle, Affiliation, Region, and Zip code, the baseline method
achieves higher recall and lower precision compared to the
integrated model. This is because there are usually some
false-positives on webpages which are wrongly detected by
the baseline method because of its lack of structural infor-



Table 1: Performance of our model with and without NP-chunking pre-processing, and the sequential baseline
model. Here, we use Aff, Reg, Zip, Pub to denote Affiliation, Region, Zip Code, and Publisher respectively.

Attributes Name Title Aff Street City Reg Zip Phone Email Paper Title Author Pub Year

Total Number 287 295 417 315 189 189 194 217 207 1457 4032 1382 1282

P 0.939 0.762 0.704 0.812 0.946 0.935 0.978 0.860 0.805 0.918 0.843 0.725 0.906

Integrated Model R 0.870 0.671 0.847 0.574 0.931 0.915 0.928 0.903 0.855 0.844 0.844 0.698 0.854

F1 0.903 0.714 0.769 0.673 0.938 0.925 0.952 0.881 0.829 0.879 0.843 0.711 0.879

P 0.879 0.429 0.386 0.344 0.774 0.730 0.954 0.805 0.668 0.611 0.829 0.786 0.933

Sequential Baseline R 0.817 0.722 0.993 0.602 0.926 0.931 0.969 0.857 0.778 0.479 0.509 0.457 0.746

F1 0.847 0.538 0.556 0.438 0.843 0.818 0.961 0.830 0.719 0.537 0.631 0.577 0.829

P 0.947 0.814 0.716 0.809 0.936 0.935 0.978 0.856 0.794 0.912 0.867 0.721 0.907

Non-NP Chunking R 0.873 0.637 0.842 0.574 0.926 0.915 0.928 0.903 0.855 0.833 0.677 0.685 0.850

F1 0.908 0.715 0.774 0.672 0.931 0.925 0.952 0.879 0.823 0.871 0.760 0.703 0.878

mation. But the integrated model can identify this noise
information. Of course, some true-positives are missed by
the integrated model. As we shall see in the next section,
another part of the improvements is from the incorporation
of noun phrase chunking.

Other reasons for the promising performance of our model
include the incorporation of long distance dependencies in
HCRFs [29] and also global features that are extracted from
the alignment of the paper records in the same page. The
alignment is based on the observation that each researcher
always presents his publications in one similar pattern, al-
though the patterns may be different for different researchers.

4.3.1 Incorporation of NP-Chunking
Much work has been done to investigate the usability of

shallow or deep linguistic structures for various application
tasks such as named entity extraction and language chunk-
ing [7]. In contrast to deep natural language processing,
shallow NLP techniques are more robust and more efficient.
This is very important for scalable webpage understanding.
Thus, in our experiment we incorporate the noun phrase
chunking (NP-Chunking) results of a fast chunk parsing
method [25]. All the text fragments on the homepages in
our dataset are parsed using the method [25]. To control
the bad effects of incorrect chunking, we only use the noun
phrases that are at the finest level of the parsing trees [25].
We treat the tokens within one noun phrase as an individ-
ual unit in Semi-CRF models during segmentation. Thus,
they appear together in one unit in the final results. Tokens
that are not in noun phrases are treated the same as in the
approach without NP-Chunking.

The performance of our method without NP-Chunking
is shown in the last row of Table 1. We can see that our
method can also perform better than the baseline method
even without NP-Chunking. For our model with or with-
out NP-Chunking, the performance of most of the attributes
does not change much. However, the F1 of the attribute Au-
thor decreases by more than 8 points when NP-Chunking is
not used. This is because the method [25] can always ac-
curately identify the boundaries between different author
names when they appear in the same elements, and each

author name is identified as a noun phrase. Thus, the addi-
tional constraints brought by noun phrases can help Semi-
CRFs separate different author names without introducing
notable errors.

4.3.2 Incorporation of External Dictionary Features
One advantage of Semi-CRFs is that they can effectively

incorporate segment-based features [20]. We use the exist-
ing database DBLP (http://dblp.uni-trier.de/xml/) to de-
fine these additional features. DBLP is a public and rela-
tively clean dataset. The total number of paper records is
0.72 million, and the number of author names is 0.48 mil-
lion. Here, we evaluate the performance on Paper Title and
Author. To extract database features, we adopt a strict
strategy of string matching. For Paper Title matching, the
number of matched tokens is no less than 3, and the matched
tokens are kept in sequence, and also there are no punctu-
ations appearing between the matched tokens. For Author
matching, the number of matched tokens is no less than 2
and no more than 4, and the first letters of all the matched
tokens are capitalized. By matching of two tokens we mean
the exact matching of their text characters. In our dataset,
about 40 percent of paper titles and about 80 percent of
authors are matched with those in the DBLP database.

To see the effect of database features, we setup differ-
ent subsets by randomly sampling the whole DBLP dataset
with different number of matched paper titles and authors.
Different settings are in Table 2. For the setting #0, zero
percent of both the matched paper titles and authors means
that we do not use any database features. For #16, all the
matched paper titles and authors are used. Fig. 3 shows the
performance of the three different methods on Paper Title
and Author with different settings as in Table 2. For other
attributes (Publisher and Year) the performance does not
change much. From the results, we can see that when in-
corporating database features, the overall performance can
be improved. For our method with NP-Chunking, about
3 points are achieved in F1 measure for the attribute Au-
thor, and almost no difference for Paper Title. However, for
the baseline method, the performance on both Paper Title
and Author is significantly improved. Also the improve-



Table 2: The matching ratios of Paper Title and Author in different sampled DBLP datasets.

# 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Paper Title (%) 0 10 10 10 10 20 20 20 20 30 30 30 30 40 40 40 40

Author (%) 0 20 40 60 80 20 40 60 80 20 40 60 80 20 40 60 80

Figure 3: Performance of three methods with different ratios of matching with DBLP dataset. The left chart
is the F1 measure of the attribute Paper Title, and the right one is the F1 measure of Author.

ments increase when the matching ratios increase. For our
method without NP-Chunking, the performance on Author
can be improved much. In summary, the results show that
our method can also achieve very promising results when no
database or only a small one is available, but the baseline
method is quite dependent on the availability of databases.

4.3.3 Time Complexity
For webpage understanding, efficiency is an important is-

sue. As we have stated, HCRFs admit an efficient inference
algorithm which is linear in terms of the number of HTML
elements. The inference of Semi-CRFs, which is quadratic
in terms of the maximum segment length, is more expensive.
But in practice the maximum lengths are usually not very
large. Furthermore, the maximum lengths in the de-coupled
algorithm are different for different supper labels. As in sec-
tion 4.2 for many attributes, the maximum lengths are quite
small. Thus, the inference algorithm is efficient. The aver-
age running time over all testing webpages is less than 2.6s,
and the average time over all paper records is less than 0.3s.
It means that about 33 thousands of webpages or 288 thou-
sands of paper records can be processed by one machine in
one day. Recent work in [21] shows that the computational
efficiency of Semi-CRFs could be further improved. We plan
to implement this method in the future.

5. RELATED WORK
Typical natural language processing methods expect fully

grammatical sentences. However, the attributes on web-
pages are often presented in text fragments which always
have some structures but are less in grammar. This makes
the application of NLP methods much challenging to mine
web data. Several attempts [22][12][9] have been made to
apply NLP methods on the web by incorporating struc-
ture information. [22] proposes the Webfoot to segment
webpages into logically coherent segments and then applied
NLP methods to extract information from non-grammatical
webpages. Similarly, [9] first builds an HTML Struct Tree

based on page layout information, and then encodes extrac-
tion rules based on this tree representation. However, the
heuristic-based methods have several disadvantages as dis-
cussed in the introduction. Another problem is that [9] only
identifies the text fragments that contain the target informa-
tion. Thus, it is not sufficient for webpage understanding.
[12] uses query strings to identify the locations of candidate
extractions and then composes extraction rules with both
content and structure information for different types of for-
mats, such as enumerations, lists, and tables. This method
can’t be used for other data that don’t have these formats.

[29][28] are statistical webpage structure understanding
methods. In [29][28] we show that inner-page layout does
have statistically regular patterns such as two-dimensional
dependencies within small data records and hierarchical de-
pendencies in the whole webpage. We also show that these
structural regularities can be explicitly explored in a statis-
tical model for structure understanding tasks such as record
detection and labeling of HTLM elements. However, these
methods are not sufficient for webpage understanding due
to their lack of capacity for text content understanding.

[3][11][23] are wrapper induction methods which depend
on the types of webpages. WHISK [23] extracts informa-
tion from structured, semi-structured and free text, we fo-
cus on incorporating both structures and text contents for
webpage understanding. Probabilistic graphical models can
take the advantage of mutual dependencies of different at-
tributes for multiple slot information extraction. SRV [11]
and RAPIER [3] extract only isolated slots. Thus, they lose
the mutual dependencies of multiple attributes, and post-
processing must be performed to re-assemble related infor-
mation into records.

A probabilistic method is proposed in [2] by extending
the HMM model. However, the inputs in their method are
address or bibliography records which are already collected
in a warehouse. But the inputs to our method are raw web-
pages. Furthermore, the webpages here have structures, but
the records in [2] are represented as string sequences. [5][20]



are also for sequence data segmentation and labeling.
Attempts to incorporate hierarchical Markov models and

Semi-Markov models have been made in [19][10]. Our model
can be viewed as a discriminative generalization of the Switch-
ing Hidden Semi-Markov Model, and the differences between
these models and ours have been discussed.

6. CONCLUSIONS
In this paper, we present an integrated model to incorpo-

rate both structure understanding and text content under-
standing for effective webpage understanding. To the best
of our knowledge, our model is the first integrated webpage
understanding model. The joint model is an integration of
Hierarchical Conditional Random Fields and Semi-Markov
Conditional Random Fields. At higher levels, a full hier-
archical model is used to effectively incorporate structural
dependency patterns for page structure understanding; and
at the finest level Semi-Markov models are introduced to ex-
plore the dependencies of target attributes for effective text
content understanding. Although the model is an integra-
tion of two different types of models, we show that it can be
efficiently learned by separately learning each model. The
feasibility and promise of our approach is demonstrated on
a real-world webpage understanding task.
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