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Abstract

Markov networks (MNs) can incorporate arbitrarily complex features in modeling
relational data. However, this flexibility comes at a sharp price of training an expo-
nentially complex model. To address this challenge, we propose a novel relational
learning approach, which consists of a restricted class of relational MNs (RMNs)
called relation tree-based RMN (treeRMN), and an efficient Hidden Variable De-
tection algorithm called Contrastive Variable Induction (CVI). On one hand, the
restricted treeRMN only considers simple (e.g., unary and pairwise) features in re-
lational data and thus achieves computational efficiency; and on the other hand, the
CVI algorithm efficiently detects hidden variables which can capture long range
dependencies. Therefore, the resultant approach is highly efficient yet does not
sacrifice its expressive power. Empirical results on four real datasets show that the
proposed relational learning method can achieve similar prediction quality as the
state-of-the-art approaches, but is significantly more efficient in training; and the
induced hidden variables are semantically meaningful and crucial to improve the
training speed and prediction qualities of treeRMNs.

1 Introduction
Statistical relational learning has attracted ever-growing interest in the last decade, because of widely
available relational data, which can be as complex as citation graphs, the World Wide Web, or rela-
tional databases. Relational Markov Networks (RMNs) are excellent tools to capture the statistical
dependency among entities in a relational dataset, as has been shown in many tasks such as col-
lective classification [22] and information extraction [18][2]. Unlike Bayesian networks, RMNs
avoid the difficulty of defining a coherent generative model, thereby allowing tremendous flexibility
in representing complex patterns [21]. For example, Markov Logic Networks [10] can be auto-
matically instantiated as a RMN, given just a set of predicates representing attributes and relations
among entities. The algorithm can be applied to tasks in different domains without any change.
Relational Bayesian networks [22], in contrary, would require expert knowledge to design proper
model structures and parameterizations whenever the schema of the domain under consideration is
changed. However, this flexibility of RMN comes at a high price in training very complex models.
For example, work by Kok and Domingos [10][11][12] has shown that a prominent problem of re-
lational undirected models is how to handle the exponentially many features, each of which is an
conjunction of several neighboring variables (or “ground atoms” in terms of first order logic). Much
computation is spent on proposing and evaluating candidate features.

The main goal of this paper is to show that instead of learning a very expressive relational model,
which can be extremely expensive, an alternative approach that explores Hidden Variable Detection
(HVD) to compensate a family of restricted relational models (e.g., treeRMNs) can yield a very
efficient yet competent relational learning framework. First, to achieve efficient inference, we intro-
duce a restricted class of RMNs called relation tree-based RMNs (treeRMNs), which only considers
unary (single variable assignment) and pairwise (conjunction of two variable assignments) features.
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Since the Markov blanket of a variable is concisely defined by a relation tree on the schema, we
can easily control the complexities of treeRMN models. Second, to compensate for the restricted
expressive power of treeRMNs, we further introduce a hidden variable induction algorithm called
Contrastive Variable Induction (CVI), which can effectively detect latent variables capturing long
range dependencies. It has been shown in relational Bayesian networks [24] that hidden variables
can help propagating information across network structures, thus reducing the burden of extensive
structural learning. In this work, we explore the usefulness of hidden variables in learning RMNs.
Our experiments on four real datasets show that the proposed relational learning framework can
achieve similar prediction quality to the state-of-the-art RMN models, but is significantly more ef-
ficient in training. Furthermore, the induced hidden variables are semantically meaningful and are
crucial to improving training speed of treeRMN.

In the remainder of this paper, we first briefly review related work and training undirected graphical
models with mean field contrastive divergence. Then we present the treeRMN model and the CVI
algorithm for variable induction. Finally, we present experimental results and conclude this paper.

2 Related Work
There has been a series of work by Kok and Domingos [10][11][12] developing Markov Logic
Networks (MLNs) and showing their flexibility in different applications. The treeRMN model we
introduced in this work is intended to be a simpler model than MLNs, which can be trained more
efficiently, yet still be able to capture complex dependencies. Most of the existing RMN models
construct Markov networks by applying templates to entity relation graphs [21][8]. The treeRMN
model that we are going to introduce uses a type of template called a relation tree, which is very
general and applicable to a wide range of applications. This relation tree template resembles the
path-based feature generation approach for relational classifiers developed by Huang et al. [7].

Recently, much work has been done to induce hidden variables for generative Bayesian networks
[5][4][16][9][20][14]. However, previous studies [6][19] have pointed out that the generality of
Bayesian Networks is limited by their need for prior knowledge on the ordering of nodes. On the
other hand, very little progress has been made in the direction of non-parametric hidden variable
models based on discriminative Markov networks (MNs). One recent attempt is the Multiple Re-
lational Clustering (MRC) [11] algorithm, which performs top-down clustering of predicates and
symbols. However, it is computationally expensive because of its need for parameter estimation
when evaluating candidate structures. The CVI algorithm introduced in this work is most similar to
the “ideal parent” algorithm [16] for Gaussian Bayesian networks. The “ideal parent” evaluates can-
didate hidden variables based on the estimated gain of log-likelihood they can bring to the Bayesian
network. Similarly, the CVI algorithm evaluates candidate hidden variables based on the estimated
gain of an regularized RMN log-likelihood, thus avoids the costly step of parameter estimation.

3 Preliminaries
Before describing our model, let’s briefly review undirected graphical models (a.k.a, Markov net-
works). Since our goal is to develop an efficient RMN model, we use the simple but very efficient
mean field contrastive divergence [23] method. Our empirical results show that even the simplest
naive mean field can yield very promising results. Extension to using more accurate (but also more
expensive) inference methods, such as loopy BP [15] or structured mean fields can be done similarly.

Here we consider the general case that Markov networks have observed variables O, labeled vari-
ables Y, and hidden variables H. Let X = (Y,H) be the joint of hidden and labeled variables. The
conditional distribution of X given observations O is p(x|o; θ) = exp(θ⊤f(x,o))/Z(θ), where f
is a vector of feature functions fk; θ is a vector of weights; Z(θ) =

∑
x exp(θ

⊤f(x,o)) is a nor-
malization factor; and fk(x,o) counts the number of times the k-th feature fires in (x,o). Here we
assume that the range of each variable is discrete and finite. Many commonly used graphical mod-
els have tied parameters, which allow a small number of parameters to govern a large number of
features. For example, in a linear chain CRF, each parameter is associated with a feature template:
e.g. “the current node having label yt = 1 and the immediate next neighbor having label yt+1 = 1”.
After applying each template to all the nodes in a graph, we get a graphical model with a large
number of features (i.e., instantiations of feature templates). In general, a model’s order of Markov
dependence is determined by the maximal number of neighboring steps considered by any one of
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its feature templates. In the context of relational learning, the templates can be defined similarly,
except having richer representations–with multiple types of entities and neighboring relations.

Given a set of training samples D = {(ym,om)}Mm=1, the parameter estimation of MN can be
formulated as maximizing the following regularized log-likelihood

L(θ) =

M∑
m=1

lm(θ)− λ∥θ∥1 −
1

2
β∥θ∥22, (1)

where λ and β are non-negative regularization constants for the ℓ1 and ℓ2-norm respectively. Be-
cause of its singularity at the origin, the ℓ1-norm can yield a sparse estimate, which is a desired
property for hidden variable discovery, as we shall see. The differentiable ℓ2-norm is useful when
there are strongly correlated features. The composite ℓ1/ℓ2-norm is known as ElasticNet [27], which
has been shown to have nice properties. The log-likelihood for a single sample is

l(θ) = log p(y|o; θ) = log
∑
h

p(h,y|o; θ), (2)

and its gradient is ∇θl(θ) = ⟨f⟩py
− ⟨f⟩p, where ⟨·⟩p is the expectation under the distribution p. To

simplify notation, we use p to denote the distribution p(h,y|o; θ) and py to denote p(h|y,o; θ).
For simple (e.g. tree-structured) MNs, message passing algorithms can be used to infer the marginal
probabilities as required in the gradients exactly. For general MNs, however, we need approxi-
mate strategies like variational or Monte Carlo methods. Here we use simple mean field variational
method [23]. By analogy with statistical physics, the free energy of any distribution q is defined as

F (q) = ⟨−θ⊤f⟩q −H(q). (3)

Therefore, F (p) = − logZ(θ), F (py) = − log
∑

h exp(θ⊤f(y,h,o)), and l(θ) = F (p)− F (py).
Let q0 be the mean field approximation of p(h,y|o; θ) with y clamped to their true values, and qt
be the approximation of p(h,y|o; θ) obtained by applying t steps of mean field updates to q0 with
y free. Then F (q0) ≥ F (qt) ≥ F (q∞) ≥ F (p). As in [23], we set t = 1, and use

lCD1(θ) , F (q1)− F (q0) (4)

to approximate l(θ), and its gradient is ∇θl
CD1(θ) = ⟨f⟩q0 − ⟨f⟩q1 . The new objective function

LCD1(θ) uses lCD1(θ) to replace l(θ). One advantage of CD is that it avoids q being trapped in a
possible multimodal distribution of p(h,y|o; θ) [25][3]. With the above approximation, we can use
orthant-wise L-BFGS [1] to estimate the parameters θ.

4 Relation Tree-Based RMNs
In the following, we formally define the treeRMN model with relation tree templates, which is very
general and applicable to a wide range of applications.

A schema S (Figure 1 left) is a pair (T,R). T = {Ti} is a set of entity types which include
both basic entity types (e.g., Person, Class) and composite entity types (e.g., ⟨Person, Person⟩,
⟨Person,Class⟩). Each entity type is associated with a set of attributes A(T ) = {T.Ai}: e.g.,
A(Person) = {Person.gender}. R = {R} is a set of binary relations. We use dom(R) to denote
the domain type of R and range(R) to denote its range. For each argument of a composite entity
type, we define two relations, one with outward direction (e.g. PP1 means from a Person-Person
pair to its first argument) and another with inward direction (e.g. PP1−1). Here we use −1 to denote
the inverse of a relation. We further introduce a Twin relation, which connects a composite entity
type to itself. Its semantics will be clear later. In principle, we can define other types of relations
such as those corresponding to functions in second order logic (e.g. Person

FatherOf−−−−−−−→ Person).

An entity relation graph G = IE(S) (Figure 1 right), is the instantiation of schema S on a set of
basic entities E = {ei}. We define the instantiation of a basic entity type T as IE(T ) = {e :
e.T = T}, and similarly for a composite type IE(T = ⟨T1, ..., Tk⟩) = {⟨e1, ..., ek⟩ : ei.T = Ti}.
In the given example, IE(Person) = {p1, p2} is the set of persons; IE(Class) = {c1} is the
set of classes; IE(⟨Person, Person⟩) = {⟨p1, p2⟩, ⟨p2, p1⟩} is the set of person-person pairs; and
IE(⟨Person,Class⟩) = {⟨p1, c1⟩, ⟨p2, c1⟩} is the set of person-class pairs. Each entity e has a set
of variables {e.Xi} that correspond to the set of attributes of its entity type A(e.T ). For a composite
entity that consists of two entities of the same type, we’d like to capture its correlation with its twin–
the composite entity made of the same basic entities but in reversed order. Therefore, we add the
Twin relation between all pairs of twin entities: e.g., from ⟨p1, p2⟩ to ⟨p2, p1⟩, and vice versa.
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Figure 1: (Left) is a schema, where round and rectangular boxes represent basic and composite
entity types respectively. (Right) is a corresponding entity relation graph with three basic entities:
p1, p2, c1. For clarity we only show one direction of the relations and omit their labels.

PP1

<Person>

<Class>

<Person, Person>

<Person ,Class>
PP2

PC2
<Person>

<Person, Person>

<Person>

PP2
-1

PP1
-1

PC1
-1

<Person , Person>

<Person , Person> PP2

<Person>Twin

<Person, Person>

<Person ,Class>

<Person, Person>

PP2
-1

PP1
-1

PC1
-1

PP1

<Person>

<Person , Person>

<Person ,Class>

<Person, Person>

PP2
-1

PP1
-1

PC1
-1

Figure 2: Two-level relation trees for the Person type (left) and the ⟨Person, Person⟩ type (right).

Given a schema, we can conveniently express how one entity can reach another entity by the con-
cept of a relation path. A relation path P is a sequence of relations R1 . . . Rℓ for which the do-
mains and ranges of adjacent relations are compatible–i.e., range(Ri) = dom(Ri+1). We define
dom(R1 . . . Rℓ) ≡ dom(R1) and range(R1 . . . Rℓ) ≡ range(Rℓ), and when we wish to em-
phasize the types associated with each step in a path, we will write the path P = R1 . . . Rℓ as
T0

R1−−→ . . .
Rℓ−−→ Tℓ, where T0 = dom(R1) = dom(P ), T1 = range(R1) = dom(R2) and

so on. Note that, because some of the relations reflect one-to-one mappings, there are groups of

paths that are equivalent–e.g., the path Person is actually equivalent to the path Person
PC1−1

−−−−→
⟨Person,Class⟩ PC1−−−→ Person. To avoid creating these uninteresting paths, we add a constraint
to outward composite relations (e.g. PP1,PC1) that they cannot be immediately preceded by their
inverse. We also constrain that the Twin relation should not be combined with any other relations.

Now, the Markov blanket of an entity e ∈ T can be concisely defined by the set of all relation paths
with domain T and of length ≤ ℓ (as shown in Figure 2). We call this set the relation tree of type
T , and denote it as Tree(T, ℓ) = {P}. We define a unary template as T.Ai = a, where Ai is an
attribute of type T , and a ∈ range(Ai). This template can be applied to any entity e of type T
in the entity relation graph. We define a pairwise template as T.Ai = a

∧
P.Bj = b, where Ai

is an attribute of type T , a ∈ range(Ai), P.Bj is an attribute of type range(P ), dom(P ) = T ,
and b ∈ range(Bj). This template can be applied to any entity pair (e1, e2), where e1.T = T and
e2 ∈ e1.P . Here we define e.P as the set of entities reach able from entity e ∈ T through the
relation path P . For example, the following template

pp.coauthor = 1
∧

pp
PP1−−−→ p

PP1−1

−−−−−→ pp.advise = 1

can be applied to any person-person pair, and it fires whenever co-author=1 for this person pair, and
the first person (identified as pp

PP1−−−→ p ) also have advise=1 with another person. Here we use
p as a shorthand for the type Person, and pp a shorthand for ⟨Person, Person⟩. In our current
implementation, we systematically enumerate all possible unary and pairwise templates.

Given the above concepts, we define a treeRMN model M = (G, f , θ) as the tuple of an entity rela-
tion graph G, a set of feature functions f , and their weights θ. Each feature function fk counts the
number of times the k-th template fires in G. Generally, the complexity of inference is exponential
in the depth of the relation trees, because both the number of templates and their sizes of Markov
blankets grow exponentially w.r.t. the depth ℓ. TreeRMN provides us a very convenient way to con-
trol the complexity by the single parameter ℓ. Since treeRMN only considers pairwise and unary
features, it is less expressive than Markov Logic Networks [10], which can define higher order
features by conjunction of predicates; and treeRMN is also less expressive than relational Bayesian
networks [9][20][14], which have factor functions with three arguments. However, the limited ex-
pressive power of treeRMN can be effectively compensated for by detecting hidden variables, which
is another key component of our relational learning approach, as explained in the next section.
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Algorithm 1 Contrastive Variable Induction

initialize a treeRMN M = (G, f , θ)
while true do

estimate parameters θ by L-BFGS
(f ′, θ′) = induceHiddenVariables(M)
if no hidden variable is induced then

break
end if

end while
return M

Algorithm 2 Bottom Up Clustering of Entities

initialize clustering Γ = {Ii = {i}}
while true do

for any pair of clusters I1,I2 ∈ Γ do
inc(I1, I2) = ∆I1∪I2 −∆I1 −∆I2

end for
if the largest increment ≤ 0 then

break
end if
merge the pair with the largest increment

end while
return Γ

5 Contrastive Variable Induction (CVI)
As we have explained in the previous section, in order to compensate for the limited expressive
power of a shallow treeRMN and capture long-range dependencies in complex relational data, we
propose to introduce hidden variables. These variables are detected effectively with the Contrastive
Variable Induction (CVI) algorithm as explained below.

The basic procedure (Algorithm 1) starts with a treeRMN model on observed variables, which can
be manually designed or automatically learned [13]; then it iteratively introduces new HVs to the
model and estimate its parameters. The key to making this simple procedure highly efficient is a
fast algorithm to evaluate and select good candidate HVs. We give closed-form expressions of the
likelihood gain and the weights of newly added features under contrastive divergence approximation
[23] (other type of inference can be done similarly). Therefore, the CVI process can be very efficient,
only adding small overhead to the training of a regular treeRMN.

Consider introducing a new HV H to the entity type T . In order for H to influence the model, it
needs to be connected to the existing model. This is done by defining additional feature templates:
we can denote a HV candidate by a tuple ({q(i)(H)}, fH , θH), where {q(i)(H)} is the set of distri-
butions of the hidden variable H on all entities of type T , fH is a set of pairwise feature templates
that connect H to the existing model, and θH is a vector of feature weights. Here we assume that
any feature f ∈ fH is in the pairwise form fH=1

∧
A=a, where a is the assignment to one of the

existing variables A in the relation tree of type T . Ideally, we would like to identify the candidate
HV, which gives the maximal gain in the regularized objective function LCD1(θ).

For easy evaluation of H , we set its mean field variational parameters µH to either 0 or 1 on the
entities of type T . This yields a lower bound to the gain of LCD1(θ). Therefore, a candidate HV
can be represented as (I, fH , θH), where I is the set of indices to the entities with µH = 1. Using
second order Taylor expansion, we can show that for a particular feature f ∈ fH the maximal gain

∆I,f =
1

2

⌊−eI [f ]⌋2λ
δI [f ] + β

(5)

is achieved at
θf =

⌊−eI [f ]⌋λ
δI [f ] + β

, (6)

where ⌊⌋ is a truncation operator: ⌊a⌋b = a−b, if a > b; a+b, if a < −b; 0, otherwise. Error eI [f ] =
⟨f⟩q1,I − ⟨f⟩q0,I is the difference of f ’s expectations, and δI [f ] = V ar∗q1,I [f ] − V ar∗q0,I [f ] is the
differences of f ’s variances1. Here we use q, I to denote the distribution q of the existing variables
augmented by the distribution of H parameterized by the index set I . q0 and q1 are the wake
and sleep distributions estimated by 1-step mean-field CD. The estimations in Eq. (5) and (6) are
simple, yet have nice intuitive explanations about the effects of the ℓ1 and ℓ2 regularizer as used in
Eq. (1): a large ℓ2-norm (i.e. large β) smoothly shrinks both the (estimated) likelihood gain and the
feature weights; while the non-differentiable ℓ1-norm not only shrink the estimated gain and feature
weights, but also drive features to have zero gains, therefore, can automatically select the features.

If we assume that the gains of individual features are independent, then the estimated gain for H is

1V arq,I [f ] is intractable when we have tied parameters. Therefore, we approximate it by assuming
that the occurrences of f are independent to each other: i.e. V ar∗q,I [f ] =

∑
V ∈V V arq,I [f(V )] =∑

V ∈V ⟨f(V )⟩q,I (1− ⟨f(V )⟩q,I), where V is any specific subset of variables that f can be applied to.
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∆I ≈
∑
f∈fI

∆I,f ,

where fI = {f : ∆I,f > 0} is the set of features that are expected to improve the objective function.
However, finding the index set I that maximizes ∆I is still non-trivial—an NP-hard combinatory
optimization problem, which is often tackled by top-down or bottom-up procedures in the clustering
literature. Algorithm 2 uses a simple bottom up clustering algorithm to build a hierarchy of clusters.
It starts with each sample as an individual cluster, and then repeatedly merges the two clusters that
lead to the best increment of gain. The merging is stopped if the best increment ≤ 0.

After clustering, we introduce a single categorical variable that treats each cluster with positive gain
as a category, and the remaining useless clusters are merged into a separate category. Introducing
this categorical variable is equivalent to introducing a set of binary variables–one for each cluster
with positive gain. From the above derivation, we can see that the essential part of the CVI algorithm
is to compute the expectations and variances of RMN features, both of which can be done by any
inference procedures, including the mean field as we have used. Therefore, in principle, the CVI
algorithm can be extended to use other inference methods like belief propagation or exact inference.

Remark 1 after the induction step, the introduced HVs are treated as observations: i.e. their vari-
ational parameters are fixed to their initial 0 or 1 values. In the future, we’d like to treat the HVs as
free variables. This can potentially correct the errors made by the greedy clustering procedure. The
cardinalities of HVs may be adapted by operators like deleting, merging, or splitting of categories.

Remark 2 currently, we only induce HVs to basic entity types. Extension to composite types can
show interesting tenary relations such as “Abnormality can be PartOf Animals”. However, this
requires clustering over a much larger number of entities, which cannot be done by our simple
implementation of bottom up clustering.

6 Experiment
In this section, we present both qualitative and quantitative results of treeRMN model. We demon-
strate that CVI can discover semantically meaningful hidden variables, which can significantly im-
prove the speed and quality of treeRMN models.

6.1 Datasets Basic Composite
#E #A #E #A

Animal 50 80 0 0
Nation 14 111 196 56
UML 135 0 18,225 49

Kinship 104 0 10,816 1*

Table 1: Number of entities
(#E) and attributes (#A) for
four datasets. ∗The kinship
data has only one attribute
which has 26 possible values.

Table 1 shows the statistics of the four datasets used in our ex-
periments. These datasets are commonly used by previous work
in relational learning [9][11][20][14]. The Animal dataset con-
tains a set of animals and their attributes. It consists exclusively
of unary predicates of the form A(a) where A is an attribute and
a is an animal (e.g., Swims(Dolphin)). This is a simple proposi-
tional dataset with no relational structure, but is useful as a base case
for comparison. The Nation dataset contains attributes of nations
and relations among them. The binary predicates are of the form
R(n1, n2), where n1, n2 are nations and R is a relation between
them (e.g., ExportsTo, GivesEconomicAidTo). The unary predicates
are of the form A(n), where n is a nation and A is a attribute (e.g.,
Communist(China)). The UML dataset is a biomedical ontology called Unified Medical Lan-
guage System. It consists of binary predicates of the form R(c1, c2), where c1 and c2 are biomedical
concepts and R is a relation between them (e.g.,Treats(Antibiotic,Disease)). The Kinship dataset
contains kinship relationships among members of the Alyawarra tribe from Central Australia. Pred-
icates are of the form R(p1, p2), where R is a kinship term and p1, p2 are persons. Except for the
animal data, the number of composite entities is the square of the number of basic entities.

6.2 Characterization of treeRMN and CVI
In this section, we analyze the properties of the discovered hidden variables and demonstrate the
behavior of the CVI algorithm. For the simple non-relational Animal data, if we start with a full
model with all pairwise features, CVI will decide not to introduce any hidden variables. If we run
CVI starting from a model with only unary features, however, CVI decides to introduce one hidden
variable H0 with 8 categories. Table 2 shows the associated entities and features for the first four
categories. We can see that they nicely identify marine mammals, predators, rodents, and primates.
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Entities Positive Features Negative Features
C0 KillerWhale Seal Dolphin BlueWhale

Walrus HumpbackWhale
Flippers Ocean Water Swims
Fish Hairless Coastal Arctic ...

Quadrapedal Ground Furry
Strainteeth Walks ...

C1 GrizzlyBear Tiger GermanShepherd
Leopard Wolf Weasel Raccoon Fox
Bobcat Lion

Stalker Fierce Meat Meatteeth
Claws Hunter Nocturnal Paws
Smart Pads ...

Timid Vegetation Weak
Grazer Toughskin Hooves
Domestic ...

C2 Hamster Skunk Mole Rabbit Rat Rac-
coon Mouse

Hibernate Buckteeth Weak
Small Fields Nestspot Paws ...

Strong Muscle Big Tough-
skin ...

C3 SpiderMonkey Gorilla Chimpanzee Tree Jungle Bipedal Hands
Vegetation Forest ...

Plains Fields Patches ...

Table 2: The associated entities and features (sorted by decreasing magnitude of feature weights)
for the first four categories of the induced hidden variable a.H0 on the Animal data. The features
are in the form a.H0 = Ci

∧
a.A = 1, where A is any of the variables in the last two columns.

Entities Positive Features

C0 AcquiredAbnormality AnatomicalAb-
normality CongenitalAbnormality

c CC2−1

−−−−−→cc.Causes c CC1−1

−−−−−→cc.PartOf
c CC2−1

−−−−−→cc.Complicates c CC2−1

−−−−−→cc.CooccursWith ...

C1 Alga Plant c CC1−1

−−−−−→cc.InteractsWith c CC1−1

−−−−−→cc.LocationOf ...

C2 Amphibian Animal Bird Invertebrate
Fish Mammal Reptile Vertebrate

c CC1−1

−−−−−→cc.InteractsWith c CC2−1

−−−−−→cc.PropertyOf

c CC2−1

−−−−−→cc.InteractsWith c CC2−1

−−−−−→cc.PartOf ...

Table 3: The associated entities and features (sorted by decreasing magnitude of feature weights)
for the first three categories of the induced hidden variable c.H0 on the UML data. The features are
in the form c.H0 = Ci

∧
A = 1, where A is any of the variables in the last column.
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Figure 3: change of the con-
ditional log likelihood during
training for the UML data.

For the three relational datasets, we use UML as an example. The
induction process of Nation and Kinship datasets are similar, and
we omit their details due to space limitation. For the UML task,
CVI induces two multinomial hidden variables H0 and H1. As we
can see from Figure 3, the inclusion of each hidden variable sig-
nificantly improves the conditional log likelihood of the model.
The first hidden variable C.H0 has 43 categories, and Table 3
shows the top three of them. We can see that these categories
represent the hidden concepts Abnormalities, Animals and Plants
respectively. Abnormalities can be caused or treated by other con-
cepts, and it can also be a part of other concepts. Plants can be
the location of some other concepts; and some other concepts can
be part of or the property of Animals. These grouping of concepts
are similar to those reported by Kok and Domingos [11].

6.3 Overall Performance
Now we present quantitative evaluation of the treeRMN model, and compare it with other relational
learning methods including MLN structure learning (MLS) [10], Infinite Relational Models (IRM)
[9] and Multiple Relational Clustering (MRC) [11]. Following the methodology of [11], we situate
our experiment in prediction tasks. We perform 10 fold cross validation by randomly splitting all
the variables into 10 sets. At each run, we treat one fold as hidden during training, and then evaluate
the prediction of these variables conditioned on the observed variables during testing. The overall
performance is measured by training time, average Conditional Log-Likelihood (CLL), and Area
Under the precision-recall Curve (AUC) [11]. All implementation is done with Java 6.0.

Table 4 compares the overall performance of treeRMN (RMN), treeRMN with hidden variable dis-
covery (RMNCV I ), and other relational models (MSL, IRM and MRC) as reported in [11]. We
use subscripts (0, 1, 2) to indicate the order of Markov dependency (depth of relation trees), and
dimθ for the number of parameters. First, we can see that, without HVs, the treeRMNs with higher
Markov orders generally perform better in terms of CLL and AUC. However, due to the complex-
ity of high-order treeRMNs, this comes with large increases in training time. In some cases (e.g.,
Kinship data), a high order treeRMN can perform worse than a low order treeRMN probably due to
the difficulty of inference with a large number of features. Second, training a treeRMN with CVI
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Animal, λ=0.01, β=1 Nation, λ=0.01, β=1
CLL AUC dimθ Time CLL AUC dimθ Time

RMN0 -0.34±0.03 0.88±0.02 3,655 5s RMN0 -0.40±0.01 0.63±0.04 7,812 15s
RMN1 -0.33±0.02 0.72±0.04 21,840 70s
RMN2 -0.38±0.03 0.71±0.04 40,489 446s

RMNCV I⋆
0 -0.33±0.02 0.89±0.02 4,349 9s RMNCV I

1 -0.31±0.02 0.83±0.04 22,191 104s
MSL -0.54±0.04 0.68±0.04 †24h MSL -0.33±0.04 0.77±0.04 †24h
MRC -0.43±0.04 0.80±0.04 †10h MRC -0.31±0.02 0.75±0.03 †10h
IRM -0.43±0.06 0.79±0.08 †10h IRM -0.32±0.02 0.75±0.03 †10h

UML, λ=0.01, β=10 Kinship, λ=0.01, β=10
CLL AUC dimθ Time CLL AUC dimθ Time

RMN0 -0.056±0.005 0.70±0.02 1,081 0.3h RMN0
§-2.95±0.01 0.08±0.00 25 6s

RMN1 -0.044±0.002 0.68±0.04 2,162 1.0h RMN1
§-1.36±0.05 0.66±0.03 350 107s

RMN2 -0.028±0.003 0.71±0.02 6,440 14.5h RMN2
§-2.34±0.01 0.33±0.00 1,625 2.1h

RMNCV I⋆
1 -0.005±0.001 0.94±0.01 6,946 453s RMNCV I

1
§-1.04±0.03 0.81±0.01 900 402s

MSL -0.025±0.002 0.47±0.06 †24h MSL -0.066±0.006 0.59±0.08 †24h
MRC -0.004±0.000 0.97±0.00 †10h MRC -0.048±0.002 0.84±0.01 †10h
IRM -0.011±0.001 0.79±0.01 †10h IRM -0.063±0.002 0.68±0.01 †10h

Table 4: Overall performance. Bold identifies the best performance, and ± marks the standard
deviations. Experiments are conducted with Intel Xeon 2.33GHz CPU (E5410). ⋆These results were
started with a treeRMN that only has unary features. §The CLL of kinship data is not comparable to
previous approaches, because we treat each of its labels as one variable with 26 categories instead
of 26 binary variables. †The results of existing methods were run on different machines (Intel Xeon
2.8GHz CPU), and their 10-fold data splits are independent to those used for the RMN models.
They were allowed to run up to 10-24 hours, and here we assumes that these methods cannot achieve
similar accuracy when the amount of training time is significantly reduced.

is only 2∼4 times slower than training a treeRMN of the same order of Markov dependency. On
all three relational datasets, treeRMNs with CVI can significantly improve CLL and AUC. For the
simple Animal dataset, the improvement is less significant because there is no long range depen-
dency to be captured in this data. Although the CVI models have similar number features as the
second order treeRMNs, their inferences are much faster due to their much smaller Markov blan-
kets. Finally, on all datasets, the treeRMNs with CVI can achieve similar prediction quality as the
existing methods (i.e., MSL, IRM and MRC), but is about two orders of magnitude more efficient
in training. Specifically, it achieves significant improvements on the Animal and Nation data, but
moderately worse results on the UML and Kinship data. Since both UML and Kinship data have
no attributes in basic entity types, composite entities become more important to model. Therefore,
we suspect that the MRC model achieves better performance because it can perform clustering on
two-argument predicates which corresponds to composite entities.

7 Conclusions and Future Work

We have presented a novel approach for efficient relational learning, which consists of a restricted
class of Relational Markov Networks (RMN) called relation tree-based RMN (treeRMN) and an
efficient hidden variable induction algorithm called Contrastive Variable Induction (CVI). By using
simple treeRMNs, we achieve computational efficiency, and CVI can effectively detect hidden vari-
ables, which compensates for the limited expressive power of treeRMNs. Experiments on four real
datasets show that the proposed relational learning approach can achieve state-of-the-art prediction
accuracy and is much faster than existing relational Markov network models.

We can improve the presented approach in several aspects. First, to further speedup the treeRMN
model we can apply efficient Markov network feature selection methods [17][26] instead of sys-
tematically enumerating all possible feature templates. Second, as we have explained at the end
of section 5, we’d like to apply HVD on composite entity types. Third, we’d also like to treat the
introduced hidden variables as free variables and to make their cardinalities adaptive. Finally, we
would like to explore high order features which involves more than two variable assignments.
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