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ABSTRACT
Probabilistic topic models have shown remarkable success in
many application domains. However, a probabilistic condi-
tional topic model can be extremely inefficient when con-
sidering a rich set of features because it needs to define
a normalized distribution, which usually involves a hard-
to-compute partition function. This paper presents condi-
tional topical coding (CTC), a novel formulation of condi-
tional topic models which is non-probabilistic. CTC relaxes
the normalization constraints as in probabilistic models and
learns non-negative document codes and word codes. CTC
does not need to define a normalized distribution and can
efficiently incorporate a rich set of features for improved
topic discovery and prediction tasks. Moreover, CTC can di-
rectly control the sparsity of inferred representations by us-
ing appropriate regularization. We develop an efficient and
easy-to-implement coordinate descent learning algorithm, of
which each coding substep has a closed-form solution. Fi-
nally, we demonstrate the advantages of CTC on online re-
view analysis datasets. Our results show that conditional
topical coding can achieve state-of-the-art prediction per-
formance and is much more efficient in training (one order
of magnitude faster) and testing (two orders of magnitude
faster) than probabilistic conditional topic models.
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1. INTRODUCTION
Probabilistic topic models, such as latent Dirichlet allo-

cation (LDA) [4] and probabilistic latent semantic indexing
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(pLSI) [12], have been widely used for inferring a low di-
mensional representation that captures the latent semantics
of text documents or images. Such low dimensional repre-
sentations can be used for classifying, clustering, or struc-
turally browsing large corpora. However, most existing topic
models only consider document-word appearance (e.g., bag-
of-word counts) and they are essentially not “feature-based”
models. As discussed in [41], using the word information it-
self could be insufficient in resolving the word’s meaning am-
biguity. For example, in a hotel review, the word “friendly”
can be used to describe a positive aspect, while it can also be
used to describe a negative aspect when used with a deny-
ing word (e.g., “not”), such as in the sentence “the front desk
was not very friendly”. Another example is that documents
are usually associated with meta-data (e.g., authors, dates
and publication venues), which could serve as a rich informa-
tion source for inferring semantically meaningful topical pat-
terns [26]. Therefore, exploring a rich set of input features
(e.g., non-local contextual or summary features in an article
or image) can be expected to yield better models in terms of
their discovered latent topics [41, 26, 29] and performance
on prediction tasks (e.g., regression [41]). One can also find
convincing arguments of instead preferring a feature-based
model from the celebrated work on conditional random fields
(CRF) [21] and their various applications on information
extraction [30], gene prediction [8] and etc. However, it is
non-trivial to incorporate rich features in probabilistic topic
models. One reason is that a fully generative topic model
specifies a joint distribution of all the introduced variables,
which prevents flexible incorporation of nontrivial features in
the data, because directly modeling such features as random
variables would result in a prohibitively large state space
that makes inference and learning very difficult, if at all
possible. Recent progress has been made on developing con-
ditional topic models [41], which can in principle incorporate
arbitrary features to discover meaningful topical representa-
tions. However, due to its probabilistic nature, such a con-
ditional topic model involves a normalization factor when
defining the topic-assignment distribution given input fea-
tures (please see Section 2), which can make inference and
learning extremely hard in latent variable models. Various
approximation techniques has been developed [41, 37, 19],
but they are usually very inefficient.

Another limitation of probabilistic topic models is that
they lack a mechanism to directly control the sparsity of the
inferred posterior representations. Although using a sparse
prior can indirectly influence the posterior sparsity, an ar-
guably better way is to directly impose posterior regular-



ization (e.g., using moment constraints [11] or entropic pri-
ors [31]). However, due to the smoothness of the entropic
regularizer, such methods often do not yield truly sparse pos-
terior representations in practice. A technical reason for the
difficulty in achieving sparsity in probabilistic topic models
(e.g., LDA) is that the mixing proportions or topics take the
form as a normalized distribution. Thus it is unhelpful to
directly use a sparsity inducing ℓ1-regularizer as in lasso [35,
25] and sparse coding [28].
In this paper, we present conditional topical coding (CTC),

a novel non-probabilistic formulation of conditional topic
models. CTC is not subject to the strict normalization con-
straints as in probabilistic topic models and we show that it
can efficiently incorporate a rich set of features for improved
topic discovery and better prediction performance. More-
over, the non-probabilistic formulation can enforce a direct
control on the sparsity of the inferred representations by us-
ing appropriate regularizers which have been widely studied
in sparse coding [28] and lasso [35, 25] methods. In addition,
the non-probabilistic CTC can be seamlessly integrated with
a convex prediction loss measure (e.g., ϵ-insensitive loss [33]
for learning a large-margin regression model) in order to
incorporate the widely available supervised side informa-
tion, such as review rating scores, for discovering predic-
tive representations. We develop an efficient and easy-to-
implement coordinate descent learning algorithm, of which
each coding substep has a closed-form solution, and the fea-
ture weights and dictionary learning can be efficiently done
with high-performance techniques. Finally, we extensively
evaluate CTC on online review analysis data. Our results
show that CTC can achieve state-of-the-art prediction per-
formance and is much more efficient in training (one order
of magnitude) and testing (two orders of magnitude faster)
than probabilistic conditional topic models.
Related work: CTC represents a new extension of sparse

coding (SPC) [28], which provides an elegant framework to
achieve sparsity on the usually unnormalized code vectors or
dictionary by using the theoretically sound ℓ1-norm or other
composite regularizers [20, 17, 16, 2]. Although much work
has been done on learning a structured dictionary [17, 2], ex-
isting SPC methods typically discover flat representations,
such as single-layer sparse codes of small image patches or
word terms [17, 2]. In order to achieve a representation
of an entire image or document, a post-processing such as
average or max pooling [39] is needed. This two-step pro-
cedure can be rather sub-optimal because it lacks a channel
to provide direct correlations between individual component
representations [15], or to leverage the possibly available
high-level weak supervision (e.g., document categories) to
discover predictive representations [40] or learn a supervised
dictionary [24].
The rest of the paper is structured as follows. Section

2 reviews probabilistic conditional topic models. Section 3
presents conditional topical coding together with a learning
algorithm. Section 5 presents empirical studies and Section
6 concludes with future directions discussed.

2. PROBABILISTIC CONDITIONAL TOPIC
MODELS

We briefly review the probabilistic conditional topic model
(CdTM) [41] without Markov dependency among different
topic assignments and motivate the development of CTC.

Figure 1 (a) illustrates the graphical structure of CdTM,
where we have ignored the prior of θ for clarity. Let N be the
number of terms in a vocabulary V = {1, · · · , N} and let β
be a topical matrix, of which each row βk is a unigram distri-
bution over the terms in V , that is, βk ∈ PN , where PN is a
(N−1)-simplex. In CdTM and standard LDA, a document is
represented as a sequence of words w=(w1, · · · , wM ), where
M is document length and wm is the word that appears in
position m of the document. Each position m is associated
with a topic assignment variable Zm, and the topics of all the
words in a document are sampled from the same document-
specific distribution, which is the mixing proportion θ in
standard LDA. In CdTM, in order to incorporate rich fea-
tures, which are denoted by A (an instance denoted by a,
e.g., POS tags or contextual features), the topic-assignment
distribution is defined as a softmax function

p(zm|θ,a) = 1

B(θ)
exp(θ⊤f(zm,a)), (1)

where f is a vector of feature functions and θ is the vec-
tor of weights, which follows a prior distribution (e.g., nor-
mal prior). The normalization factor (or partition function)
B(θ) =

∑
z exp(θ

⊤f(z, a)) is a sum-exp function, whose log-
arithm is also known as a log-sum-exp function [19].

Although the conditional model (1) can effectively con-
sider rich features, the inference and learning of the result-
ing conditional topic model is usually hard because of the
sum-exp function B(θ) especially when θ is a latent variable
as in CdTM. Much research has been conducted to obtain
a good approximate inference method, such as [37, 41, 19],
but these methods are usually very inefficient.

Below, we present a novel non-probabilistic formulation of
conditional topic models, which can efficiently incorporate a
rich set of features to achieve improved topic representations
and prediction performance. Another potential advantage
of the non-probabilistic formulation is that it can explic-
itly control the sparsity of the learned representations. In
contrast, a probabilistic topic model in general can be very
inflexible to explicitly control the sparsity of inferred latent
representations, as we have discussed in Section 1.

3. CONDITIONAL TOPICAL CODING
For clarity, we first consider the simplified CTC model

without using features, which will be called sparse topical
coding (STC) [42]. Slightly different from LDA and CdTM,
we represent a document as a vector w = (w1, · · · , w|I|)

⊤,
where I is the index set of words that appear and each
wn (n ∈ I) represents the number of times that word n ap-
pears in this document. Like other topic models, we present
STC as a technique to project the input w into a seman-
tic latent space that is spanned by a set of automatically
learned bases (a basis set is also called a dictionary [17])
and achieve a high-level representation of the entire docu-
ment. To remove the strict normalization constraints, we
formulate STC as regularized loss minimization [35, 25, 28].
However, purely for the ease of understanding, we start with
describing a probabilistic generative procedure.

3.1 A Probabilistic Generative Process
Let β denote a dictionary with K bases. As in LDA, we

assume that each row βk is a topic, i.e., a unigram distribu-
tion over the terms in V . We will use β.n to denote the nth
column of β. Graphically, STC is a hierarchical latent vari-
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Figure 1: Graphical representations for (a) probabilistic conditional topic models [41]; (b) sparse topical
coding; and (c) conditional topical coding with supervised information Y . We omit the priors on θ and β.

able model, as shown in Figure 1 (b), where θ ∈ RK is the
latent representation of an entire document and sn ∈ RK is
a latent representation of the individual word n. We call sn
word code and θ document code. Then, a document can be
described as arising from the following process

1. sample the document code θ from a prior p(θ).

2. for each observed word n ∈ I

(a) sample the word code sn from a conditional dis-
tribution p(sn|θ)

(b) sample the observed word count wn from a dis-
tribution with the mean being s⊤n β.n.

Since we have relaxed the codes θ and s to be real-valued
vectors, we need to define a new distribution for generating
word counts. Here, we adopt the ideas of sparse coding [28].
Specifically, we treat sn as a coefficient vector and use the
linear combination s⊤n β.n to reconstruct the observed word
count wn, under some loss measure as explained below; and
the document code θ is obtained via an aggregation (e.g.,
truncated average) of the individual codes of all its terms.
To specify a STC model, the choices of p(θ) and p(s|θ) re-
flect our bias on the discovered latent representations and
how θ and s are connected. We will discuss them in the
next section. For the last step of generating observed data,
we adopt the broad class of exponential family distributions
to make STC applicable to rich forms of data. Formally,
we use the linear combination s⊤n β.n as the mean parame-
ter of an exponential family distribution that generates the
observation wn. In other words, we define p(wn|sn, β) as an
exponential family distribution that satisfies

Ep(wn|sn,β)[T (wn)] = s⊤n β.n, (2)

where T (wn) are sufficient statistics1 of wn. We choose to
use the linear combination as mean parameter instead of
natural parameter [23] because: 1) it is natural to constrain
the feasible domain of codes for good interpretation, as de-
tailed below. As shown in [22], imposing appropriate (e.g.,
non-negativity for modeling word counts) constraints could
result in sparser and more interpretable patterns; and 2)
many distributions (e.g., Poisson and Gaussian) are com-
monly expressed with mean parameters. [6] uses a similar
method as ours to define exponential family distributions.

3.2 STC for Sparse MAP Estimation
The generating process defines a joint distribution of codes

and word counts p(θ, s,w|β)=p(θ)
∏

n∈Ip(sn|θ)p(wn|sn, β).
By imposing a prior on β, we define STC as finding the MAP

1In general, sn will be a matrix if T is a vector.

estimate on a given training set {wd}, that is, STC solves

max
Θ

∑
d,n∈Id

(log p(wdn|sdn, β)+log p(sdn|θd))+
∑
d

log p(θd)+log p(β)

s.t. : θd ≥ 0, ∀d; sdn ≥ 0, ∀d, n ∈ Id; βk ∈ PN , ∀k,

where we have used Θ to denote the parameters ({θd}, {sd}, β).
Although we can have many choices, we concentrate on the
following instantiation of STC for modeling word counts:

1. We define the Poisson distribution2, i.e., p(wn|sn, β) =
Poisson(wn; s

⊤
nβ.n), where Poisson(x; ν)= νxe−ν

x!
.

2. We choose the Laplace prior p(θ)∝ exp(−λ∥θ∥1), and
we define p(sn|θ) as a composite distribution p(sn|θ) ∝
exp(− γ

2
∥sn−θ∥22−ρ∥sn∥1), which is supergaussian [14].

The ℓ1-norm will bias toward finding sparse codes.

3. We use a uniform prior of β.

The hyper-parameters (λ, γ, ρ) are non-negative and they
can be selected via cross-validation or integrated out by in-
troducing hyper-priors [7, 10]. Under such an instantiation,
sparse topical coding solves the equivalent problem

min
Θ

∑
d,n∈Id

ℓ(wdn,s
⊤
dnβ.n)+λ

∑
d

∥θd∥1+
∑

d,n∈Id

(
γ

2
∥sdn−θd∥22+ρ∥sdn∥1)

s.t. : θd ≥ 0, ∀d; sdn ≥ 0, ∀d, n ∈ Id; βk ∈ PN , ∀k, (3)

where ℓ(wn, s
⊤
n β.n)=− logPoisson(wn; s

⊤
n β.n) is a loss func-

tion. Minimizing the log-Poisson loss is actually equivalent
to minimizing an unnormalized KL-divergence between ob-
served word counts wn and their reconstructions s⊤n β.n [34].
Since word counts are non-negative, a negative θ or s will
lose interpretability. Therefore, we constrain θ and s to be
non-negative as in [13]. A non-negative code can be inter-
preted as representing the relative importance of topics.

3.3 Conditional Topical Coding
Now, we formally present CTC, which is a novel non-

probabilistic formulation of conditional topic models and is
very efficient in training and inference, as we shall see. A
conditional topical coding (CTC) is graphically illustrated
in Figure 1 (c). To be consistent with the above generating
process, we define the conditional probability

p(sn|θ,U,a) ∝ exp
(
−γ
2
(∥sn−θ∥22+∥sn−Uf(a)∥22)−ρ∥sn∥1

)
,

where f(a) is a L-dimensional vector of real-valued feature
functions; U is a K×L weight matrix; and a is again a set of

2It is usually numerically safer to introduce a small offset
b ∈ R+ and define p(wn|sn, β) = Poisson(wn; s

⊤
n β.n + b) to

avoid taking the logarithm of zero. In all our experiments,
we fix b at a very small positive value.



global or local features. We have omitted the normalization
factor. Again, p(sn|θ,U,a) is supergaussian [14]. We define
CTC as solving the constrained problem

min
Θ,U

∑
d,n∈Id

ℓ(wdn, s
⊤
dnβ.n) + λ

∑
d

∥θd∥1 +
∑

d,n∈Id

(γ
2
∥sdn − θd∥22

+
γ

2
∥sdn −Uf(ad)∥22 + ρ∥sdn∥1

)
s.t. : θd ≥ 0, ∀d; sdn ≥ 0, ∀d, n ∈ Id; βk ∈ PN , ∀k, (4)

which is related to but not exactly the MAP estimation be-
cause we have ignored the normalization factor of p(sn|θ,U,a).
Note that if we include the normalization factor, the non-
probabilistic CTC can still be efficient (e.g., using gradient
descent techniques) because we do not need to deal with the
expectation of a log-sum-exp function, which is usually hard
to compute in latent variable models [19, 41].
Supervised side information: we have presented con-

ditional topical coding as an unsupervised technique that
discovers latent representations. However, with the increas-
ing availability of free on-line information, various forms of
side-information such as rating scores for hotel reviews on
TripAdvisor3 and object categories for images in the La-
belMe dataset4 can potentially offer “free” supervision. This
has led to a need for new models and training schemes that
can make effective use of such information to achieve bet-
ter results, such as more discriminative representations of
documents and more accurate image classifiers. In order to
incorporate such side information, we consider the general
case where supervised information Y is provided in training
data D = {(wd, yd)}Dd=1, and we define the supervised CTC
as solving the following problem for learning a prediction
model η and a conditional topic discovery model (Θ,U)

min
Θ,U,η

h(Θ,U) + CRD({θd}, η) +
1

2
∥η∥22

s.t. : θd ≥ 0, ∀d; sdn ≥ 0, ∀d, n ∈ Id; βk ∈ PN , ∀k,(5)

where h(Θ,U) is the objective function of problem (4) and
RD is an error measure of the prediction model η on the
training data D. Since CTC is non-probabilistic, we can
seamlessly incorporate any convex loss that does not neces-
sarily arise from a probabilistic model and thus can avoid
dealing with normalization factors. Here, we consider the
linear regression model (i.e., the prediction y∗ = η⊤θ) and
use the ϵ-insensitive loss [33] as used in support vector re-
gression (SVR) for large-margin learning, that is, RD =
1
D

∑
d max(0, |η⊤θd − yd| − ϵ), where ϵ is a small positive

precision parameter. For classification, we can use the SVM
hinge loss [42], which again avoids dealing with a normaliza-
tion factor that can make inference and learning hard in a
probabilistic topic model (please see [37, 40] for discussions).

3.4 Optimization with Coordinate Descent
Now, we briefly present how to solve the most general

problem (5), which subsumes problem (3) and problem (4).
Let f(Θ,U, η) be its objective. When using log-loss un-
der the exponential family of distributions, f(Θ,U, η) is bi-
convex, i.e., convex over either ({θd}, {sd}) or (β,U, η) when
fixing the other one. Moreover, the feasible set is a convex
set. A natural algorithm to solve this bi-convex problem is

3http://www.tripadvisor.com/
4http://labelme.csail.mit.edu/

Algorithm 1 for learning supervised CTC

1: Input: corpus D = {(wd,ad, yd)}Dd=1, regularization
constants (λ, γ, ρ, C) and precision parameter ϵ.

2: Output: codes {θd}Dd=1 and {sd}Dd=1, dictionary β, fea-
ture weights U and prediction model η

3: repeat
4: hierarchical topical coding using Alg. 2.
5: dictionary learning by solving problem (8)
6: learning prediction model η using SVMLight
7: learning feature weights U using gradient descent
8: until convergence

coordinate descent, as typically used in sparse coding meth-
ods [23, 2]. Our result relies on the following proposition

Proposition 1. Let ψ(x) be a convex function on R. If
x0 is a solution of the unconstrained problem P0 : minx ψ(x),
then x⋆ = max(0, x0) is an optimal solution of the con-
strained problem P1 : minx≥0 ψ(x).
Proof: [Sketch] If x0≥0, then by definition, x⋆ is a solution
of P1; otherwise (i.e., x0 < 0 and x⋆ = 0), let’s assume x⋆

is not a solution of P1. Let x1 be any one solution of P1

and define α= x1
x1−x0

. Then, we have x1> 0, 0<α< 1 and

0=αx0 +(1−α)x1. By definition, we have ψ(x0)≤ψ(0) and
ψ(x1)<ψ(0). Therefore, we can get αψ(x0)+(1−α)ψ(x1)<
ψ(0)=ψ(αx0 +(1−α)x1). This contradicts the convexity of
ψ(x).

Then, the procedure alternatively performs hierarchical top-
ical coding, dictionary learning, prediction model learning
and feature weights learning until convergence, as outlined
in Algorithm 1 and detailed below.

Hierarchical topical coding: this step solves for the
optimal codes {θd} and {sd} when (β,U, η) are fixed. Since
documents are not coupled, we can perform this step for each
document separately by solving the ℓ1-regularized problem

min
θ,s

∑
n∈I

ℓ(wn, s
⊤
n β.n)+λ∥θ∥1+

∑
n∈I

γ

2
(∥sn−θ∥22

+∥sn−Uf(a)∥22) + ρ∥sn∥1))
s.t. : θ ≥ 0; sn ≥ 0, ∀n ∈ I.

While previous work used either local quadratic approxi-
mation [23] or a specialized Poisson likelihood estimation
method [34], we solve this problem with coordinate descent
(outlined in Alg. 2), which has a closed-form at each substep.
Moreover, our method have a simple structure, which is sim-
ilar to the variational EM method for probabilistic LDA, as
we shall see. Specifically, we alternatively solve:

Optimize over s: when θ is fixed, sn are not coupled. For
each sn, we solve the convex problem

min
sn≥0

ℓ(wn, s
⊤
n β.n) +

γ

2
(∥sn − θ∥22 + ∥sn−Uf(a)∥22) + ρ

∑
k

snk

where we have explicitly written the ℓ1-norm of sn under
the non-negativity constraint. Let g(sn) be the objective
function. By Proposition 1, the solution of component k is

snk = max(0, νk), (6)

where νk is the solution of minimizing g(sn) over snk without
the constraint. By setting the gradient ∇snkg(sn) equal to
zero, it is easy to derive that νk is the solution of the equation

γβknν
2
k + (γµ+ βknτ)νk + µτ − wnβkn = 0,



Algorithm 2 for hierarchical topical coding

1: Input: corpus D, regularization constants (λ, γ, ρ), dic-
tionary β, feature weights U and prediction model η.

2: Output: codes {θd}Dd=1 and {sd}Dd=1

3: repeat
4: for d = 1 to D do
5: for each word n ∈ Id do
6: Update word code sdn using Eq. (6).
7: end for
8: Update document code θd using Eq. (7).
9: end for
10: until convergence

where µ =
∑

j ̸=k snjβjn and τ = βkn + ρ− γ(θk +Ukf(a)).

Therefore, if βkn = 0, the solution is νk = (θk +Ukf(a))−
ρ
γ
. Otherwise (i.e., βkn > 0), we need to solve a quadratic

equation, which again always has real solutions because the
discriminant ∇ , (γµ + βknτ)

2 − 4(γβkn)(µτ − wnβkn) =
(γµ − βknτ)

2 + 4γwnβ
2
kn is guaranteed to be positive. We

choose νk to be the larger one of the two possible solutions.
Optimize over θ: when s is fixed, this step solves

min
θ≥0

λ∥θ∥1 +
γ

2

∑
n∈I

∥sn − θ∥22 +
C

D
max(0, |η⊤θ − y| − ϵ).

We alternatively solve for each θk. By Proposition 1, we first
solve an unconstrained one dimensional problem and then
use the max operator to get the optimum solution. It is easy
to show that one of the subgradient of this objective (with
the ℓ1-norm explicitly written as

∑
k θk) is λ+γ

∑
n∈I(θk −

snk) +
C
D
I(|η⊤θ − y| > ϵ)Sign(η⊤θ − y)ηk. By setting the

subgradient equal to zero, we have one solution

∀k, θk = max(0, s̄k − λ

γ|I| ), (7)

where s̄k=
1
|I|
∑

n∈Isnk− C
D|I|I(|η

⊤θ−y| > ϵ)Sign(η⊤θ−y)ηk
and I(·) is an indicator function.
Dictionary learning: after we have inferred the latent

codes {θd} and {sd}, we update the dictionary β by solving

min
β

∑
d,n∈Id

ℓ(wn, s
⊤
dnβ.n), s.t. : βk ∈ PN , ∀k, (8)

which can be efficiently done with projected gradient de-
scent. After each step of gradient descent, a projection to
the simplex PN is performed with a linear algorithm [9].
Learning prediction model η: when the document

codes are given, we solve a standard support vector regres-
sion (SVR) problem [33], which can be efficiently done with
a high-performance package, e.g., SVMLight5.
Learning feature weights U: in practice, we need a

regularization term to avoid over-fitting. Here, we constrain
the ℓ2-norm of each row to be less than a constant (e.g.,
16 used in our experiments). Then, we solve for U using
projected gradient descent.
From the update rule (7), we can see the regularization ef-

fects introduced by considering supervised side information.
Specifically, if the current prediction y∗ = η⊤θ differs much
from the truth y (e.g., ℓ1-distance is larger than ϵ), then the
last term of s̄k will be non-zero. Moreover, if the prediction
y∗ is larger than y, the last term will be of the same sign

5http://svmlight.joachims.org/

as ηk, which means the new θ will tend to be biased toward
yielding a smaller new prediction. We have similar bias ef-
fects when the current prediction y∗ is smaller than y. Thus
we can expect to discover predictive document codes θ by
considering supervised information, which usually leads to
improved prediction performance as we shall see.

3.5 Comparison with Probabilistic CdTM
Table 1 summarizes the difference between CTC and prob-

abilistic CdTM [41]. Briefly, CdTM doesn’t explicitly define
word and document code. An equivalence to word code can
be defined as the empirical word-topic assignment distribu-
tion p̃(z(n) = k)∝

∑
m I(wm = n)p(zmk =1|w), where z(n)

is the topic of word n, which needs to be inferred using varia-
tional methods [41]. Then, an equivalence to document code
is the average aggregation of empirical word-topic assign-
ment distributions. Second, CdTM or a probabilistic topic
model in general lacks an explicit sparcification procedure
on the inferred representations as discussed in Section 1.

4. EXPERIMENTS
In this section, we present empirical studies on online re-

view data. We report quantitative evaluation on rating score
prediction and time efficiency, as well as qualitative analy-
sis of the discovered representations. Our results demon-
strate that the non-probabilistic CTC can achieve state-of-
the-art prediction performance and is much more efficient
than probabilistic topic models. All our datasets and code
are available at http://www.cs.cmu.edu/∼junzhu/ctc.htm.
As we have stated, STC and CTC could explicitly control
the sparsity of latent representations using appropriate reg-
ularization. But a systematical analysis of the sparsity is
beyond the scope of this paper. Please see the companion
paper [42] for details.

4.1 Data and Features
In order to evaluate the effects of features, we use on-

line review data, in which the documents are hotel reviews
downloaded from the TripAdvisor website in 2009. Each
review is associated with a global rating score and five as-
pect rating scores for Value, Rooms, Location, Cleanliness,
and Service. This dataset is interesting for many data min-
ing tasks, for example, extracting the textual mentions of
each aspect [36, 18], using the guidance of side information
to discover semantic information [5], or discovering latent
rating aspects [38]. In these experiments, we focus on pre-
dicting the global rating score, which ranks from 1 to 5, and
revealing some underlying structures.

Besides the small dataset [41], which contains 1000 re-
views for each rating category or 5000 reviews in total, we
also build a new dataset for evaluating the scalability of
CTC, which contains 97,948 reviews in total (about 20 times
larger than the small one). To avoid too short and too long
reviews, we only keep those reviews whose character length
is between 1000 and 6000. For each review, we use NLPro-
cessor6 to do part-of-speech (POS) tagging and noun phrase
(NP) chunking, and we extract the following features:

. POS-Tag: We distinguish four types of POS tags, that is, Ad-
jective, Noun, Adverb, and Verb. Each type includes all its
subcategories, e.g., Adjective includes “JJ” (Adjective), “JJR”
(comparative Adjective), and “JJS” (superlative Adjective).

. WordNet: WordNet7 is a large lexical database of English.

6http://www.infogistics.com/textanalysis.html
7http://wordnet.princeton.edu/



Table 1: Comparison between CTC and probabilistic conditional topic model (CdTM) [41]

CTC CdTM

formulation non-probabilistic probabilistic

document code θ ∈ RK
+ no explicit definition, need to be inferred

word code s ∈ RK
+ no explicit definition, need to be inferred

dictionary ∀k : βk ∈ PN ∀k : βk ∈ PN

estimation regularized loss minimization (empirical) Bayesian inference
algorithm coordinate descent mean field dealing with expectation of log-sum-exp function [41, 19]
sparsity direct control by using regularizers indirect control by using sparse priors

We navigate it with some seeds of positive (e.g., good, excellent,
etc) and negative (e.g., bad, painful, etc) words, and identify
whether a word is positive or negative based on the synonym
and antonym relationship. Words without strong relationship
with the seeds are treated as neutral. For a positive or negative
word, we also identify whether a denying word (e.g., not, no,
etc.) appears before it within a word distance of 4.

. NP-Chunking: We define pairwise feature functions of condi-
tional topical random fields (CTRF) [41] for those words that
are in the same noun or verb phrase, or the conjunction “and”
or “or” appears between them.

By removing a standard list of stopping words and those
terms whose count frequency is less than 5, we build a dic-
tionary with 12000 terms.

4.2 Results on the Small Dataset
We first carefully investigate the properties of CTC on the

small dataset, on which a number of benchmark methods
have been evaluated in [41]. For saving space, we compare
the supervised CTC with other supervised topic models, in-
cluding supervised CTRF [41] and CdTM [41], MedLDA [40],
supervised LDA (sLDA) [3], and supervised STC (i.e., su-
pervised CTC with none features), which usually outperform
their unsupervised counterpart models as shown in various
previous work [3, 37, 40, 41]. We follow the same setting as
in [41] with a uniform train/test partition of the data. For
hyperparameters, we set ρ=5e−4, ϵ=1e−3 and λ= γ; and
search for C and λ via cross-validation on training data.

4.2.1 Prediction Performance
Similar as in [3, 41], we take logarithm to make the re-

sponse variables approximately normal and treat the prob-
lem of predicting review rating scores as a regression prob-
lem. Figure 2 shows the predictive R2 scores [3] for dif-
ferent models. We can see that conditional topical cod-
ing (CTC) achieves state-of-the-art prediction performance,
which is comparable with the best performance of the condi-
tional CTRF and a bit better than that of CdTM, which is a
simplified CTRF without modeling the Markov dependency
among topic assignments of neighboring words. As we shall
see, the probabilistic CTRF and CdTM are much slower in
training and testing than CTC. The reasons for this out-
standing performance potentially come from three aspects.
First, using the features (e.g., CTC and CdTM) can signif-
icantly improve the performance compared to the models
that do not use features (e.g., STC and MedLDA). Second,
the non-probabilistic formulation (e.g., STC) of topic mod-
els can potentially discover representations that have a bet-
ter predictive power than the probabilistic formulation (e.g.,
MedLDA and sLDA). We will provide some insights about
the properties of the discovered representations. Finally, the
large-margin principle could potentially improve the per-
formance, e.g., the large-margin based MedLDA achieves
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Figure 2: Predictive R2 values for different models.

slightly better results than sLDA which uses maximum like-
lihood estimation to learn the predictive model.

4.2.2 Time Efficiency and Convergence
Figure 3 (a,b) shows the averaging time and standard de-

viation over five randomly initialized runs. All the models
are implemented in C++ language without special optimiza-
tion. For probabilistic models (e.g., MedLDA and sLDA),
we use variational methods [3, 40] to do inference, which
has a similar structure as the coordinate descent algorithm
as we have discussed. We implement these methods using
the same data structure, and run the experiments on a stan-
dard desktop with 2G RAM and a 2.66 GHz processor.

We can see that in testing, the conditional CTC is about
100 times more efficient than the probabilistic conditional
topic models CdTM and CTRF. In training, CTC is about
10 times more efficient than CTRF. The reason for the smaller
improvement in training is that most of the training time is
spent on learning large-margin SVR, whose complexity is
largely dependent on the number of training samples. For
the same reason, we observe that the training time of top-
ical coding models (i.e., STC and CTC) does not change
much when the topic number increases, while the training
time of probabilistic models (e.g., CTRF) usually scales lin-
early with the topic number. This suggests that the topical
coding methods have a better scalability when the number
of topics is large. If we compare the models without us-
ing features, we can see that the non-probabilistic STC is
about 10 times more efficient than probabilistic topic mod-
els (e.g., sLDA and MedLDA) in testing and training (when
the number of topics is large, e.g., 25). The reason for the
improvements is that STC (or CTC in general) is not sub-
ject to the strict constraint as made in sLDA or MedLDA
that θ is a normalized mixing proportion vector. Thus, STC
has one additional dimension of freedom, which usually leads
to faster convergence. Moreover, probabilistic models (e.g.,
sLDA) need many calls to the digamma function, which can
cost additional computational resources [1].

Figure 3 (c) shows the convergence curves of training CTC
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Figure 3: (a) training and (b) test time for different models on the small dataset; and (c) convergence curves
of CTC with different numbers of topics.
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Figure 4: Average document codes discovered by (a) 3-topic CTC; (b) 5-topic CTC; (c) 10-topic CTC; (d)
3-topic STC; (e) 5-topic STC; and (f) 10-topic STC respectively. The up-right corner of each plot shows the
average prediction for the documents in different rating categories together with the square distance from
the true average.

Table 2: Top words in different topics by 10-topic CTC and 10-topic STC.
CTC STC

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10
told left n’t back resort service restaurant hotel great n’t night staff good great make pool room problem desk told
asked find food room place clean room room good nice back day nice trip dinner beach hotel floor door asked
looked booked people water rooms floor hotel beach room staff stay place time large car hotel n’t reviews left called
manager reception small made night walk breakfast area hotel good people breakfast area ocean week room beds hotels front manager
work arrived bar hotel bed room family free n’t front bed rooms view friendly recommend n’t open person arrived put
bad called stayed make days hotel main pool friendly day bathroom stayed service lovely town bar internet noise husband inn
inn wanted found stay dinner lot price large beautiful view made days clean beautiful bedroom resort expect rate looked call
star pay rooms kids things pool times restaurants lovely trip morning find walk pools park restaurant late needed bad checked
sleep put room check car hot children big plenty bit found lot water plenty island food offer hard gave leave
half money guests shower coffee desk day day pools pool guests experience free lots year kids deal cost charge give

phone staying hotel minutes week evening pool town lots time shower food bit visit property coffee fine arrival wedding decided
returned thought stay hotels parking night bedroom couple comfortable room minutes tv location comfortable end main housekeeping room room sleep
toilet paid door towels recommend time ocean balcony enjoyed hotel check feel family drive home evening standard due guest phone
finally call experience morning bathroom long table time sea perfect reception stay parking enjoyed wife small fridge number card toilet
card leave holiday husband room full area drinks quiet beach booked eat hot unit road side hear business website returned
dirty checked felt thing side reviews year location excellent island towels drink restaurants excellent extra times helpful order problems point
key give person hour open day end pretty huge street things years price quiet local children disappointed english cleaned finally

cleaned decided expect eat beach park property staff wonderful area holiday book big huge kitchen lobby king travel review dirty
walked gave drink needed tv home internet chairs unit breakfast nights choice balcony enjoy worth full check-in working rest key
care wait arrival late lobby part time buffet fresh shuttle wanted bath street wonderful part couple issue euros wall walked
smell charge due return feel bathroom early road loved special thing served chairs loved lunch drinks ready hotel booking smell
poor offered served years hours rate nights local happy helpful long menu suite fresh places table decent window change care

booking point order guest desk hard extra suite wine fantastic pay time buffet dining meal pretty past entire noticed owner
euros cold review book hotel fact close worth views river money making close photos sea early job weekend cleaning poor

window business rest read stay front night airport grounds cabo hours group small located house building tables head lady move
double room reservation offer air bed building lunch ate tip work stop tub views walking airport pleasant light sign management
change website buy spent noise enjoy wife places tour san hour buy taxi grounds quality area reason previous paying waiting
move working past wedding walking beds kitchen drive easy adults staying taking club ate high top elevator worked didnt sheets

previous run absolutely door morning set visit meal fun sand thought white vacation hilton spa bus opened mind charged man
management doors case bath cost place top high perfect resorts rooms simply living beach return size eating show loud moved
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Figure 5: Predictive R2 scores for different mod-
els with 10 topical bases on the large dataset with
different numbers of training data.

with different numbers of topics. We can see that the coor-
dinate descent algorithm is quite stable and converges fast.

4.2.3 Characteristics of Code Representations
Now, we investigate the properties of the discovered rep-

resentations. Figure 4 shows the average document codes θ
discovered by the conditional CTC (plots a – c) and STC
(plots d – f) that doesn’t use features. The average docu-
ment code is computed by averaging θ overall all the docu-
ments in each of the 5 rating categories, which are denoted
by R1, R2, · · · and R5 from low to high rating values. We
use lines to show the overall trend. On the up-right corner
of each plot, we also show the average prediction y∗ for the
documents in each rating category, together with the square
distance (i.e., square error) from the true average rating.
Table 2 shows the top words of the learned dictionary (i.e.,
topics). Overall, we can see that both CTC and STC can dis-
cover very predictive code presentations (i.e., the average θ
are quite different from each other), as also demonstrated by
the outstanding prediction performance in Figure 2. How-
ever, using features can make CTC discover representations
that are of a stronger regular pattern. For example, the doc-
uments with a high rating score (e.g., R4) have larger values
on positive topics (e.g., T6 to T10) than the documents with
a low rating score (e.g., R2), and the increasing trend from
low rating to high rating is consistent. The reason for this
strong regularity is that the discovered topics by CTC show
strong positive, negative or neutral properties. For example,
the topic T1 is obviously a negative topic; topics T3 to T5
tend to be neutral; while topics T6 to T10 tend to be posi-
tive, although they are about different aspects in detail. In
contrast, STC which doesn’t use features tends to discover
topics (e.g., topic T7) that are mixtures of positive and neg-
ative words. On such topics, the corresponding average θ
values usually don’t show regular ordering, e.g., on topic T7
the value for R1 is smaller than that for R3, while the value
for R2 is larger than that for R4.

4.3 Results on the Large Dataset
We now show the scalability of CTC on the large dataset.

We compare with the conditional CTRFmodel and MedLDA
which usually achieve better results than the other models
(e.g., the standard LDA or sLDA). Also, we analyze the
effect of the size of training data.
Figure 5 shows the predictive R2 scores of different models

with the training set size being 500, 1000, 1500, 2000, and
2500. We build the training set from the large dataset of ho-
tel reviews by selecting 100, 200, 300, 400 and 500 reviews
from each rating category respectively. All the remaining
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Figure 6: Training and test time for CTC and CTRF
on the large dataset with different numbers of topi-
cal bases.

reviews are used as test set. In this experiment, we set K at
10, which is sufficiently large for the review data, as demon-
strated in Figure 2. For hyper-parameters, we fix ρ=5e−4,
ϵ = 1e−3 and set λ = γ. Then, we select C and λ using
the small dataset as validation set. We can see that the
conditional models (i.e., CTC and CTRF) generally achieve
better results than the unconditional model MedLDA, espe-
cially when the training set is small. For the two conditional
models, again CTC and CTRF achieve comparable predic-
tive R2 scores in all the five settings.

Finally, Figure 6 shows the training and test time on the
large dataset with 2500 training samples and different num-
bers (e.g., K = 3, 5, 10, 20, · · · , 90) of topical bases. Again,
we can see that for each K CTC is about 100 times more
efficient than CTRF in test and about 10 times more effi-
cient than CTRF in training. Since the complexity of CTC
in testing is linear in terms of the data size, we can ex-
pect that the efficient CTC can be scalable to very large
datasets, e.g., processing tens of millions of documents in
hours even when using a large number (e.g., 90) of topical
bases. Moreover, the simple structure of the coordinate de-
scent algorithm also makes it easy to be implemented in a
distributed environment [32]. We leave this very large-scale
implementation and evaluation as future work.

5. CONCLUSIONS AND FUTURE WORK
We have presented conditional topical coding (CTC), a

novel non-probabilistic formulation of conditional topic mod-
els which can incorporate a rich set of features. By relax-
ing the strict normalization constraints, CTC learns non-
negative code vectors and can avoid dealing with a hard-
to-compute partition function. We develop an efficient and
easy-to-implement coordinate descent learning algorithm. Our
empirical results on online review data demonstrate that the
non-probabilistic CTC can achieve state-of-the-art predic-
tion performance and is much more efficient than probabilis-
tic conditional topic models in both training and testing.

For future work, we plan to develop a parallel CTC and
STC for very large-scale applications [27, 32] by using the
simply structured coordinate descent algorithm. Also, we
are interested in learning structured dictionaries [17] and ex-
tending CTC to incorporate various types of features, such
as graph-based word similarity features [29] and document-
level meta-data [26]. Finally, CTC raises a challenge to es-
timate the hyperparameters such as ρ and λ. Although the
current restricted search works well in practice, it is worth
of a systematical investigation to automatically estimate the
hyperparameters, such as using the recent work [10, 7].
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