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Abstract

To understand the relationship between genomic variationsamong population and
complex diseases, it is essential to detect eQTLs which are associated with phe-
notypic effects. However, detecting eQTLs remains a challenge due to complex
underlying mechanisms and the very large number of genetic loci involved com-
pared to the number of samples. Thus, to address the problem,it is desirable to
take advantage of the structure of the data and prior information about genomic
locations such as conservation scores and transcription factor binding sites.
In this paper, we propose a novel regularized regression approach for detecting
eQTLs which takes into account related traits simultaneously while incorporating
many regulatory features. We first present a Bayesian network for a multi-task
learning problem that includes priors on SNPs, making it possible to estimate the
significance of each covariate adaptively. Then we find the maximum a posteriori
(MAP) estimation of regression coefficients and estimate weights of covariates
jointly. This optimization procedure is efficient since it can be achieved by us-
ing a projected gradient descent and a coordinate descent procedure iteratively.
Experimental results on simulated and real yeast datasets confirm that our model
outperforms previous methods for finding eQTLs.

1 Introduction

One of the fundamental problems in computational biology isto understand associations between
genomic variations and phenotypic effects. The most commongenetic variations are single nu-
cleotide polymorphisms (SNPs), and many association studies have been conducted to find SNPs
that cause phenotypic variations such as diseases or gene-expression traits [1]. However, association
mapping of causal QTLs or eQTLs remains challenging as the variation of complex traits is a result
of contributions of many genomic variations. In this paper,we focus on two important problems to
detect eQTLs. First, we need to find methods to take advantageof the structure of data for finding
association SNPs from high dimensional eQTL datasets whenp ≫ N , wherep is the number of
SNPs andN is the sample size. Second, we need techniques to take advantage of prior biological
knowledge to improve the performance of detecting eQTLs.

To address the first problem, Lasso is a widely used techniquefor high-dimensional association
mapping problems, which can yield a sparse and easily interpretable solution via anℓ1 regularization
[2]. However, despite the success of Lasso, it is limited to considering each trait separately. If we
have multiple related traits it would be beneficial to estimate eQTLs jointly since we can share
information among related traits. For the second problem, Fig. 1 shows some prior knowledge on
SNPs in a genome including transcription factor binding sites (TFBS), 5’ UTR and exon, which play
important roles for the regulation of genes. For example, TFBS controls the transcription of DNA
sequences to mRNAs. Intuitively, if SNPs are located on these regions, they are more likely to be
true eQTLs compared to those on regions without such annotations since they are related to genes or
gene regulations. Thus, it would be desirable to penalize regression coefficients less corresponding
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Figure 1: Examples of prior knowledge on SNPs including transcription factor binding sites, 5’ UTR and
exon. Arrows represent SNPs and we indicate three genomic annotations on the chromosome. Here association
SNPs are denoted by red arrows (best viewed in color), showing that SNPs on regions with regulatory features
are more likely to be associated with traits.

to SNPs having significant annotations such as TFBS in a regularized regression model. Again, the
widely used Lasso is limited to treating all SNPs equally.

This paper presents a novel regularized regression approach, calledadaptive multi-task Lasso, to
effectively incorporate both the relatedness among multiple gene-expression traits and useful prior
knowledge for challenging eQTL detection. Although some methods have been developed for either
adaptive or multi-task learning, to the best of our knowledge, adaptive multi-task Lasso is the first
method that can consider prior information on SNPs and multi-task learning simultaneously in one
single framework. For example, Lirnet uses prior knowledgeon SNPs such as conservation scores,
non-synonymous coding and UTR regions for a better search ofassociation mappings [3]. However,
Lirnet considers the average effects of SNPs on gene modulesby assuming that association SNPs are
shared in a module. This approach is different from multi-task learning where association SNPs are
found for each trait while considering group effects over multiple traits. To find genetic markers that
affect correlated traits jointly, the graph-guided fused Lasso [4] was proposed to consider networks
over multiple traits within an association analysis. However, graph-guided fused Lasso does not
incorporate prior knowledge of genomic locations.

Unlike other methods, we define the adaptive multi-task Lasso as finding a MAP estimate of a
Bayesian network, which provides an elegant Bayesian interpretation of our approach; the resultant
optimization problem is efficiently solved with an alternating minimization procedure. Finally, we
present empirical results on both simulated and real yeast eQTL datasets, which demonstrates the
advantages of adaptive multi-task Lasso over many other competitors.

2 Problem Definition: Adaptive Multi-task Lasso

Let Xij ∈ {0, 1, 2} denote the number of minor alleles at thej-th SNP of i-th individual for
i = 1, . . . , N and j = 1, . . . , p. We haveK related gene traits andY k

i represents the gene
expression level ofk-th gene ofi-th individual for k = 1, . . . ,K. In our setting, we assume
that theK traits are related to each other and we explore the relatedness in a multi-task learning
framework. To achieve the relatedness among tasks via grouping effects [5], we can use any
clustering algorithms such as spectral clustering or hierarchical clustering. In association mapping
problems, these clusters can be viewed as clusters of genes which consist of regulatory networks or
pathways [4]. We treat the problem of detecting eQTLs as a linear regression problem. The general
setting includes one design matrixX and multiple tasks (genes) fork = 1, . . . ,K,

Y k = Xβk + ǫ (1)

whereǫ is a standard Gaussian noise. We further assume thatXij ’s are standardized such that
∑

iXij/N = 0 and
∑

i X
2
ij/N = 1, and consider a model without an intercept.

Now, the open question is how we can devise an appropriate objective function overβ that could ef-
fectively consider the desirable group effects over multiple traits and incorporate useful prior knowl-
edge, as we have stated. To explain the motivation of our workand provide a useful baseline that
grounds the proposed approach, we first briefly review the standard Lasso and multi-task Lasso.

2.1 Lasso and Multi-task Lasso

Lasso [2] is a technique for estimating the regression coefficientsβ and has been widely used
for association mapping problems. Mathematically, it solves theℓ1-regularized least square problem,

β̂ = argmin
β

1

2
‖Y −Xβ‖22 + λ

p
∑

j=1

δj |βj | (2)
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whereλ determines the degree of regularization of nonzeroβj . The scaling parametersδj ∈ [0, 1]
are usually fixed (e.g., unit ones) or set by cross-validation, which can be very difficult whenp is
large. Due to the singularity at the origin, theℓ1 regularization (Lasso penalty) can yield a stable and
sparse solution, which is desirable for association mapping problems because in most cases we have
p ≫ N and there exists only a small number of eQTLs. It is worth mentioning that Lasso estimates
are posterior mode estimates under a multivariate independent Laplace prior forβ [2].

As we can see from problem (2), the standard Lasso does not distinguish the inputs and regression
coefficients from different tasks. In order to capture some desirable properties (e.g., shared
structures or sparse patterns) among multiple related tasks, the multi-task Lasso was proposed [5],
which solves the problem,

min
β

1

2

K
∑

k=1

‖Y k −Xβk‖22 + λ

p
∑

j=1

δj‖βj‖2 (3)

where‖βj‖2 =
√

∑

k(β
k
j )

2
is the ℓ2-norm. This model encourages group-wise sparsity across

related tasks via theℓ1/ℓ2 regularization. Again, the solution of Eq. (3) can be interpreted as a MAP
estimate under appropriate priors withfixedscaling parameters.

Multi-task Lasso has been applied (with some extensions) toperform association analysis [4]. How-
ever, as we have stated, the limitation of current approaches is that they do not incorporate the useful
prior knowledge. The proposed adaptive multi-task Lasso, as to be presented, is an extension of the
multi-task Lasso to perform jointgroup-wiseandwithin-groupfeature selection and incorporate the
useful prior knowledge for effective association analysis.

2.2 Adaptive Multi-task Lasso

Now, we formally introduce the adaptive multi-task Lasso. For clarity, we first define thesparse
multi-task Lassowith fixed scaling parameters, which will be a sub-problem ofthe adaptive
multi-task Lasso, as we shall see. Specifically, sparse multi-task Lasso solves the problem,

min
β

1

2

K
∑

k=1

‖Y k −Xβk‖22 + λ1

p
∑

j=1

θj

K
∑

k=1

|βk
j |+ λ2

p
∑

j=1

ρj‖βj‖2 (4)

whereθ andρ are the scaling parameters for theℓ1 andℓ1/ℓ2-norm, respectively. The regularization
parametersλ1 andλ2 can be determined by cross or holdout validation. Obviously, this model sub-
sumes the standard Lasso and multi-task Lasso, and it has three advantages over previous models.
First, unlike the multi-task Lasso, which contains theℓl/ℓ2-norm only to achieve group-wise spar-
sity, theℓ1-norm in Eq. (4) can achieve sparsity among SNPswithin a group. This property is useful
whenK tasks are not perfectly related and we need additional sparsity in each block of‖βj‖2. In
section 4, we demonstrate the usefulness of the blended regularization. The hierarchical penaliza-
tion [6] can achieve asmoothshrinkage effect for variables within a group, but it cannotachieve
within-group sparsity. Second, unlike Lasso we induce group sparsity across multiple related traits.
Finally, as to be extended, unlike Lasso and multi-task Lasso which treatβj equally or with a fixed
scaling parameter, we can adaptively penalize eachβj according to prior knowledge on covariates
in such a way that SNPs having desirable features are less penalized (see Fig. 1 for details of prior
knowledge on SNPs).

To incorporate the prior knowledge as we have stated, we propose to automatically learn the scaling
parameters(θ, ρ) from data. To that end, we defineθ andρ as mixtures of features onj-th SNP, i.e.

θj =
∑

t

ωtf
j
t and ρj =

∑

t

νtf
j
t , (5)

wheref j
t is t-th feature forj-th SNP. For examplef j

t can be a conservation score ofj-th SNP or one
if the SNP is located on TFBS, zero otherwise. To avoid scaling issues, we assume each feature is
standardized, i.e.,

∑

j f
j
t = 1, ∀t. Since we are interested in the relative contributions fromdifferent

features, we further add the constraints that
∑

t ωt = 1 and
∑

t νt = 1. These constraints can be
interpreted as a regularization on the feature weightsω ≥ 0 andν ≥ 0.

Although using the definitions (5) in problem (4) and jointlyestimatingβ and feature weights(ω, ν)
can give a solution of adaptive multi-task learning, the resultant method would be lack of an el-
egant Bayesian interpretation, which is a desirable property that can make the framework more
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Figure 2: Graphical model representation of
adaptive multi-task Lasso.

flexible and easily extensible. Recall that the Lasso
estimates can be interpreted as MAP estimates under
Laplace priors. Similarly, to achieve a framework
that enjoys an elegant Bayesian interpretation, we
define a Bayesian network and treat the adaptive
multi-task learning problem as finding its MAP
estimate. Specifically, we build a Bayesian network
as shown in Fig. 2 in order to compute the MAP
estimate ofβ under adaptive scaling parameters,
{θ, ρ}. We define the conditional probability ofβ
given scaling parameters as,

P (β|θ, ρ) =
1

Z(θ, ρ)

p
∏

j=1

K
∏

k=1

exp (−θj |β
k
j |)×

p
∏

j=1

exp (−ρj‖βj‖2)

whereZ(θ, ρ) is a normalization factor, andP (Y |X, β) ∼ N(Xβ,Σ), whereΣ is the identity
matrix. Although in principle we can treatθ andρ as random variables and define a fully Bayesian
approach, for simplicity, we defineθ andρ as deterministic functions ofω andν as in Eq. (5).
Extension to a fully Bayesian approach is our future work.

Now we define theadaptive multi-task Lassoas finding the MAP estimation ofβ and simultane-
ously estimating the feature weights(ω, ν), which is equivalent to solving the optimization problem,

min
β,ω,ν

1

2

K
∑

k=1

‖Y k −Xβk‖22 + λ1

p
∑

j=1

θj

K
∑

k=1

|βk
j |+ λ2

p
∑

j=1

ρj‖βj‖2 + logZ(θ, ρ), (6)

whereω andν are related toθ andρ through Eq. (5) and subject to the constraints as defined above.

Remark 1 Although we can interpret problem (4) as a MAP estimate ofβ under appropriate priors when
scaling parameters(θ, ρ) are fixed, it does not enjoy an elegant Bayesian interpretation if we perform joint
estimation ofβ and the scaling parameters(ω, ν) because it ignores normalization factors of the appropriate
priors. Lee et al. [3] used this approach where a regularizedregression model is optimized over scaling
parameters andβ jointly. Therefore, their method does not have an elegant Bayesian interpretation. Moreover,
as we have stated, Lee et al. [3] did not consider grouping effects over multiple traits.

Remark 2 Our method also differs from the adaptive Lasso [7] , transfer learning with meta-priors [8] and
the Bayesian Lasso [9]. First, although both adaptive Lassoand our method use adaptive parameters for
penalizing regression coefficients, we learn adaptive parameters from prior knowledge on covariates in a multi-
task setting while adaptive Lasso uses ordinary least square solutions for adaptive parameters in a single task
setting. Second, the method of transfer learning with meta-priors [8] is similar to our method in a sense that
both use prior knowledge with multiple related tasks. However, we couple related tasks viaℓ1/ℓ2 penalty while
they couple tasks via transferring hyper-parameters amongthem. Thus we have group sparsity across tasks
as well as sparsity in each group but they cannot induce groupsparsity across different tasks. Finally, the
Bayesian Lasso [9] does not have the grouping effects in multiple traits and the priors used usually do not
consider domain knowledge.

3 Optimization: an Alternating Minimization Approach

Now, we solve the adaptive multi-task Lasso problem (6). First, since the normalization factorZ is
hard to compute, we use its upper bound, as given by,

Z ≤

p
∏

j=1

∫

RK

exp (−‖ρj‖2)dρ
∏

j

(

2

θj

)K

=

p
∏

j=1

π
K−1

2 Γ(K+1

2
)2K

(ρjK)K

∏

j

(

2

θj

)K

. (7)

This integral result is due to normalization constant ofK dimensional multivariate Laplace distri-
bution [10, 11]. Using this upper bound, the learning problem is to minimize an upper bound of the
objective function in problem (6), which will be denoted byL(β, ω, ν) henceforth. AlthoughL is
not joint convex overβ, ω andν, it is convex overβ given{ω, ν} and convex over{ω, ν} givenβ.

We use an alternating optimization procedure which (1) minimizes the upper boundL of problem (6)
over{ω, ν} by fixing β; and (2) minimizesL overβ by fixing {ω, ν} iteratively until convergence
[12]. Both sub-problems are convex and can be solved efficiently via a projected gradient descent
method and a coordinate descent method, respectively.
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For the first step of optimizingL overω andν, the sub-problem is to solve

min
ω∈Pω,ν∈Pν

∑

j

∑

k

(

− log θj + θj |β
k
j |
)

+
∑

j

(−K log ρj + ρj‖βj‖2) ,

wherePω , {ω :
∑

t ωt = 1, ωt ≥ 0, ∀t} is a simplex overω, likewise forPν . θ andρ are
functions ofω andν as defined in Eq. (5). This constrained problem is convex and can be solved by
using a gradient descent algorithm combined with a projection onto a simplex sub-space, which can
be efficiently done [13]. Sinceω andν are not coupled, we can learn each of them separately.

For the second sub-problem that optimizesL overβ given fixed feature weights(ω, ν), it is exactly
the optimization problem (4). We can solve it using a coordinate descent procedure, which has been
used to optimize the sparse group Lasso [14]. Our problem is different from the sparse group Lasso
in the sense that the sparse group Lasso includes group penalty over multiple covariates for a single
trait, while adaptive multi-task Lasso considers group effects over multiple traits. Here we solve
problem (4) using a modified version of the algorithm proposed for the sparse group Lasso.

As summarized in Algorithm 1, the general optimization procedure is as follows: for eachj, we
check the group sparsity condition thatβj = 0. If it is true, no update is needed forβj . Otherwise,
we check whetherβk

j = 0 for eachk. If it is true thatβk
j = 0, no update is needed forβk

j ; otherwise,
we optimize problem (4) overβk

j with all other coefficients fixed. This one-dimensional optimiza-
tion problem can be efficiently solved by using a standard optimization method. This procedure is
continued until a convergence condition is met.

More specifically, we first obtain the optimal conditions forproblem (4) by computing the subgra-
dient of its objective function with respect toβk

j and set it to zero:

−XT
j (Y k −Xβk) + λ2ρjg

k
j + λ1θjh

k
j = 0, (8)

whereg andh are sub-gradients of theℓ1/ℓ2-norm and theℓ1-norm, respectively. Note thatgkj =
βk
j

‖βj‖2
if βj 6= 0, otherwise‖gj‖2 ≤ 1; andhk

j = sign(βk
j ) if βk

j 6= 0, otherwisehk
j ∈ [−1, 1].

Then, we check the group sparsity thatβj = 0. To do that, we setβj = 0 in Eq. (8), and we have,

XT
j Y k−XT

j

∑

r 6=j

Xrβ
k
r = λ2ρjg

k
j+λ1θjh

k
j , and ||gj ||

2
2 =

1

λ2
2ρ

2
j

K
∑

k=1

(XT
j Y k −XT

j

∑

r 6=j

Xrβ
k
r − λ1θjh

k
j )

2.

According to subgradient conditions, we need to have agj that satisfies theless thaninequality
‖gj‖

2
2 < 1; otherwise,βj will be non-zero. Sincegj is a function ofhj, it suffices to check whether

the minimal squareℓ2-norm ofgj is less than 1. Therefore, we solve the minimization problemof
‖gj‖

2
2 w.r.t hj, which gives the optimalhj as,

hk
j =







ckj
λ1θj

if |
ckj

λ1θj
| ≤ 1

sign(
ckj

λ1θj
) otherwise

(9)

whereckj =XT
j Y

k−XT
j

∑

r 6=jXrβ
k
r . If the minimal‖gj‖22 is less than 1, thenβj is zero and no

update is needed; otherwise, we continue to the next step of checking whetherβk
j=0, ∀k, as follows.

Again, we start by assumingβk
j is zero. By settingβk

j = 0 in Eq. (8), we have,

XT
j Y k −XT

j

∑

r 6=j

Xrβ
k
r = λ1θjh

k
j , and hk

j =
1

λ1θj
(XT

j Y k −XT
j

∑

r 6=j

Xrβ
k
r ).

According to the definition of the subgradienthk
j , it needs to satisfy the condition that|hk

j | < 1;
otherwise,βk

j will be non-zero. This checking step can be easily done. After the check, if we have
βk
j 6= 0, the problem (4) becomes an one-dimensional optimization problem with respect toβk

j , and
the solution can be obtained using existing optimization algorithms (e.g. optimize function in the
R). We used majorize-minimize algorithm with gradient descent [15].

With the above two steps, we iteratively optimize(ω, ν) by fixingβ and optimizeβ by fixing feature
weights until convergence. Note that the parametersλ1 andλ2 in Eq. (4), which determine sparsity
levels, are determined by cross or hold-out validation.
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Input : X ∈ R
N×p;Y ∈ R

N×K ; θ ∈ R
p; ρ ∈ R

p; andβinit ∈ R
p×K

Output: β ∈ R
p×K

β ← βinit ;
Iterate this procedure until convergence;
for j ← 1 to p do

m← 1

λ2

2
ρ2
j

∑K
k=1

(ckj − λ1θjh
k
j )

2 whereckj andhk
j are computed as in Eq. (9);

if m < 1 then βk
j = 0, for all k = 1, . . .K;

else fork ← 1 to K do
q ← 1

λ1θj
|XT

j (Y k −Xβk) + XT
j Xjβ

k
j |;

if q < 1 then βk
j = 0;

elseSolve the following one-dimensional optimization problem:
βk
j ← argmin

βk
j

1

2
‖Y k −Xβk‖2

2
+ λ1θj|β

k
j | + λ2ρj‖βj‖2;

end
end

Algorithm 1: Optimization algorithm for Equation (4) with fixed scaling parameters.

4 Simulation Study

To confirm the behavior of our model, we run the adaptive multi-task Lasso and other methods on
our simulated dataset (p=100, K=10). We first randomly select 100 SNPs from 114 yeast genotypes
from the yeast eQTL dataset [16]. Following the simulation study in Kim et al. [4], we assume that
some SNPs affect biological networks including multiple traits, and true causal SNPs are selected
by the following procedure. Three sets of randomly selectedfour SNPs are associated with three
trait clusters(1 − 3), (4 − 6), (7 − 10), respectively. One SNP is associated with two clusters
(1 − 3) and(4 − 6), and one causal SNP is for all traits(1 − 10). For all association SNPs we
set identical association strength from0.3 to 1. Traits are generated byY k = Xβk + ǫ, for all
k = 1, . . . , 10 whereǫ follows the standard normal distribution. We make 10 features (f1 − f10),
of which six are continuous and four are discrete. For the first three continuous features (f1 − f3),
the feature value is drawn froms(N(2, 1)) if a SNP is associated with any traits; otherwise from
s(N(1, 1)), wheres(x) = 1

1+exp(x) is the sigmoid function. For the other three continuous features
(f4−f6), the value is drawn froms(N(2, 0.5)) if a SNP is associated with any traits; otherwise from
s(N(1, 0.5)). Finally, for the discrete features(f7 − f10), the value is set tos(2) with probability
0.8 if a SNP is associated with any traits; otherwise tos(1). We standardize all the features.
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Figure 3: Results of theβ matrix estimated by different methods. For visualization,we present normalized
absolute values of regression coefficients and darker colors imply stronger association with traits. For each
matrix, X-axis represents traits (1-10) and Y-axis represents SNPs (1-100). Trueβ is shown in the left.

Fig. 3 shows the estimatedβ matrix by various methods including AML (adaptive multi-task Lasso),
SML (sparse multi-task Lasso which is AML without adaptive weights), A+ℓ1/ℓ2 (AML without
Lasso penalty), Single SNP [17], Lasso andℓ1/ℓ∞ (multi-task learning withℓ1/ℓ∞ norm). In this
figure, X-axis represents traits (1-10) and Y-axis represents SNPs (1-100). Note that regression
parameters (e.g.λ1 andλ2 for AML) were determined by holdout validation, and we set association
strength to 0.3. We also used hierarchical clustering with cutoff criterion 0.8 prior to run AML,
SML, A+ℓ1/ℓ2 andℓ1/ℓ∞, and Single SNP and Lasso were analyzed for each trait separately.

We investigate the effect of Lasso penalty in our model by comparing the results of AML and
A+ℓ1/ℓ2. While AML is slightly more efficient than A+ℓ1/ℓ2 in finding association SNPs, both
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work very well for this task. It is not surprising since hierarchical clustering reproduced true trait
clusters and trueβ could be detected without considering single SNP level sparsity in each group.
To further validate the effectiveness of Lasso penalty, we run AML and A+ℓ1/ℓ2 without a priori
clustering step. Interestingly, AML could pick correct SNP-traits associations due to Lasso penalty,
however, A+ℓ1/ℓ2 failed to do so (see Fig. 5c,d for the comparison of performance). While Lasso
penalty did not show significant contribution for this task when we generated a priori clusters, it is
good to include it when the quality of a clustering is not guaranteed. Comparing the results of AML
and SML in Fig. 3, we could observe that adaptive weights improve the performance significantly.
Adaptive weights help not only reduce false positives but also increase true positives.
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Figure 4:Learned feature weights ofω.

Fig. 4 shows the learned feature weights ofω (ν is al-
most identical toω and not shown here). The results are
based on 100 simulations for each association strength
0.3, 0.5, 0.8 and 1, and half of error bar represents one
standard deviation from the mean. We could observe that
discrete featuresf7−f10 have highest weights while low-
est weights are assigned tof1 − f3. These weights are
reasonable becausef1−f3 are drawn from Gaussian with
large standard deviation (STD: 1) compared to that of fea-
turesf4 − f6 (STD: 0.5). Also, discrete features are the
most important since they discriminate true association
SNPs with a high probability 0.8.

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1 − Specificity

S
en

si
tiv

ity

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1 − Specificity

S
en

si
tiv

ity

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1 − Specificity

S
en

si
tiv

ity

 

 

0 0.5 1
0

0.2

0.4

0.6

0.8

1

1 − Specificity

S
en

si
tiv

ity
 

 

AML
SML
A+l

1
/l

2

l
1
/l∞

Lasso
Single SNP

ba c d

Figure 5:ROC curves of various methods as association strength varies (a) 0.3, (b) 0.5 on clustered data, (c)
0.3, and (d) 0.5 on input dataset. (a,b) Results on clustereddata, where correct groups of gene traits are found
using hierarchical clustering (cutoff = 0.8). (c,d) Results on input dataset without using clustering algorithm.

We compare the sensitivity and specificity of our model with other methods. In Fig. 5, we generated
ROC curves for association strength of 0.3 and 0.5. Fig. 5a,bshow the results with a priori hierar-
chical clustering and Fig. 5c,d is with no such preprocessing steps. Using hierarchical clustering we
could correctly find three clusters of gene traits at cutoff0.8. In Fig. 5, when association strength
is small (i.e., 0.3), AML and A+ℓ1/ℓ2 significantly outperformed other methods. As association
strength increased, the performance of multi-task learning methods improved quickly while meth-
ods based on a single trait such as Lasso and Single SNP showedgradual increase of performance.

We computed test errors on 100 simulated dataset using 30 samples for test and 84 samples for
training. On average, AML achieved the best test error rate of 0.9427, and the order of other methods
in terms of test errors is: A +ℓ1/ℓ2 (0.9506), SML (1.0436),ℓ1/ℓ∞ (1.0578) and Lasso (1.1080).

5 Yeast eQTL dataset

We analyze the yeast eQTL dataset [16] that contains expression levels of 5,637 genes and 2,956
SNPs. The genotype data include genetic variants of 114 yeast strains that are progenies of the
standard laboratory strain (BY) and a wild strain (RM). We used 141 modules given by Lee et al.
[3] as groups of gene traits, and extracted unique 1,260 SNPsfrom 2,956 SNPs for our analysis. For
prior biological knowledge on SNPs used for adaptive multi-task Lasso, we downloaded 12 features
from Saccharomyces Genome Database (http://www.yeastgenome.org) including 11 discrete and 1
continuous feature (conservation score). For a discrete feature, we set its value asf j

t = s(2) if the
feature is found on thej-th SNP,f j

t = s(1) otherwise. For conservation score, we setf j
t = s(score).

All the features are then standardized.
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Figure 6:Learned weights ofω on the yeast
eQTL dataset.

Fig. 6 representsω learned from the yeast eQTL dataset
(ν is almost identical toω). The features are ncRNA (f1),
noncoding exon (f2), snRNA (f3), tRNA (f4), intron (f5),
binding site (f6), 5’ UTR intron (f7), LTR retrotranspo-
son (f8), ARS (f9), snoRNA (f10), transposable element
gene (f11) and conservation score (f12). Five discrete fea-
tures turn out to be important including ncRNA, snRNA,
binding site, 5’ UTR intron and snoRNA as well as one
continuous feature, i.e., conservation score. These re-
sults agree with biological insights. For example, ncRNA,
snRNA and snoRNA are potentially important for gene
regulation since they are functional RNA molecules hav-
ing a variety of roles such as transcriptional regulation [18]. Also, conservation score would be
significant since mutation in conserved region is more likely to result in phenotypic effects.
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Figure 7:Plot of 121 SNPs on chromosome 1 and 2 vs the number of genes affected by the SNPs from the
yeast eQTL analysis (blue bar). Five significant prior knowledge on SNPs are overlapped with the plot. For
the four discrete priors (ncRNA, snRNA, binding site, 5’ UTRintron) we set the value to 1 if annotated, 0
otherwise. Binding sites and regions with no associated traits are denoted by long green and short blue arrows.

Fig. 7 shows the number of associated genes for SNPs on chromosome 1 and 2, superimposed on 5
significant features. We see that association mapping results were affected by both priors and data.
For example, genomic region indicated by blue arrow shows weak association with traits, where
conservation score is low and no other annotations exist. Also we can see that three SNPs located on
binding sites affect a larger number of gene traits (see green arrows). As an example of biological
analysis, we investigate these three association SNPs. Thethree SNPs are located on telomeres
(chr1:483, chr1:229090, chr2:9425 (chromosome:coordinate)), and these genomic locations are in
cis to Abf1p (autonomously replicating sequence binding factor-1) binding sites. In biology, it is
known that Abf1p acts as a global transcriptional regulatorin yeast [19]. Thus, the genomic regions
in telomeres would be good candidates for novel putative eQTL hotspots that regulate the expression
levels of many genes. They were not reported as eQTL hotspotsin Yvert et al. [20].

6 Conclusions

In this paper, we proposed a novel regularized regression model, referred to as adaptive multi-task
Lasso, which takes into account multiple traits simultaneously while weights of different covariates
are learned adaptively from prior knowledge and data. Our simulation results support that our model
outperforms other methods viaℓ1 and ℓ1/ℓ2 penalty over multiple related genes, and especially
adaptively learned regularization significantly improvedthe performance. In our experiments on the
yeast eQTL dataset, we could identify putative three eQTL hotspots with biological supports where
SNPs are associated with a large number of genes.

Acknowledgments

This work was done under a support from NIH 1 R01 GM087694-01,NIH 1RC2HL101487-01
(ARRA), AFOSR FA9550010247, ONR N0001140910758, NSF Career DBI-0546594, NSF IIS-
0713379 and Alfred P. Sloan Fellowship awarded to E.X.

8



References

[1] R. Sladek, G. Rocheleau, J. Rung, C. Dina, L. Shen, D. Serre, P. Boutin, D. Vincent, A. Belisle,
S. Hadjadj, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes.
Nature, 445(7130):881–885, 2007.

[2] R. Tibshirani. Regression shrinkage and selection via the Lasso.Journal of the Royal Statistical
Society. Series B (Methodological), 58(1):267–288, 1996.

[3] S.I. Lee, A.M. Dudley, D. Drubin, P.A. Silver, N.J. Krogan, D. Pe’er, and D. Koller. Learning
a prior on regulatory potential from eQTL data.PLoS Genetics, 5(1):e1000358, 2009.

[4] S. Kim and E. P. Xing. Statistical estimation of correlated genome associations to a quantitative
trait network.PLoS Genetics, 5(8):e1000587, 2009.

[5] G. Obozinski, B. Taskar, and M. Jordan. Multi-task feature selection. InTechnical Report,
Department of Statistics, University of California, Berkeley, 2006.

[6] M. Szafranski, Y. Grandvalet, and P. Morizet-Mahoudeaux. Hierarchical penalization.Ad-
vances in Neural Information Processing Systems, 20:1457–1464, 2007.

[7] H. Zou. The adaptive Lasso and its oracle properties.Journal of the American Statistical
Association, 101(476):1418–1429, 2006.

[8] S.I. Lee, V. Chatalbashev, D. Vickrey, and D. Koller. Learning a meta-level prior for feature
relevance from multiple related tasks. InProceedings of the 24th International Conference on
Machine Learning, pages 489–496, 2007.

[9] T. Park and G. Casella. The bayesian Lasso.Journal of the American Statistical Association,
103(482):681–686, 2008.

[10] B. M. Marlin, M. Schmidt, and K. P. Murphy. Group sparse priors for covariance estimation. In
Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, pages 383–392,
2009.
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