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Abstract

Existing max-margin matrix factorization
(M3F) methods either are computationally
inefficient or need a model selection proce-
dure to determine the number of latent fac-
tors. In this paper we present a probabilis-
tic M3F model that admits a highly efficient
Gibbs sampling algorithm through data aug-
mentation. We further extend our approach
to incorporate Bayesian nonparametrics and
build accordingly a truncation-free nonpara-
metric M?F model where the number of la-
tent factors is literally unbounded and in-
ferred from data. Empirical studies on two
large real-world data sets verify the efficacy
of our proposed methods.

1. Introduction

Matrix factorization has been a key technique in learn-
ing latent factor models for many applications such as
collaborative prediction (Srebro et al., 2005; Salakhut-
dinov & Mnih, 2008; Zhou et al., 2010). Given a
user-item preference matrix Y € RN*M_ which is
partially observed and usually sparse, matrix factor-
ization aims to find a low-rank matrix X € RV*M
that simultaneously approximates the observed entries
of Y under some loss measure (e.g., the commonly
used squared error) and reconstructs the missing en-
tries. Max-margin matrix factorization (M3F) (Sre-
bro et al., 2005) extends the model by adopting hinge
loss, which is applicable to binary, discrete ordinal, or
categorical data that are typical for a preference sys-
tem, and a sparsity-inducing norm regularizer. For
the binary case where Y;; € {1} and one predicts by
i}ij = sign(Xj;), the optimization problem of MS3F is
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defined as

min {|X|. +Cljzdh(1@inj)7 1)
where || X« is the nuclear norm of X, 7 is the indices
of the observed entries and h(z) £ max(0,1—z) is the
hinge loss. Problem (1) can be equivalently formulat-
ed as a semi-definite program (SDP) and learned by
standard SDP solvers, but it is unfortunately very slow
and scales to only thousands of users and items.

An alternative M3F model based on a variational
formulation of the nuclear norm is then proposed
in (Rennie & Srebro, 2005) and it solves an equiva-
lent problem on the factorized form X = UV T instead:
win 5 (01 +IVIE) +C Y h(uUvT), @
ijEL
where U € RY*K and V € RM*K are interpreted
as the user coefficient matrix and the item factor ma-
trix respectively, and K is the number of latent fac-
tors. We use U; to denote the ith row of U, and V;
likewise. By replacing hinge loss with a smooth sur-
rogate, a gradient descent solver has been developed
and it scales to millions of users and items. However
the solver works with a truncated problem where K
is pre-specified. Alternatively, (Xu et al., 2012) sug-
gests a block-wise coordinate descent algorithm that
directly works with hinge loss by use of SVMs for each
row of U and V. This method achieves comparable ac-
curacy with the gradient descent solver yet is almost
as time-consuming. (Xu et al., 2012) also introduces a
nonparametric model for M?F which automatically re-
solves the unknown number of latent factors. However
both its dependency on a truncation level for practical
inference and the time-consuming SVM steps therein
call for further improvement.

In this paper, we present a novel interpretation of the
M?3F problem, that is to formalize the deterministic
regularized risk minimization (RRM) problem (2) as
an equivalent mazimum a posteriori (MAP) estima-
tion problem, and by use of the data augmentation
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techniques recently developed for SVMs (Polson & S-
cott, 2011), we are able to perform simple yet highly
efficient MCMC sampling and thus drastically increase
the efficiency of solving M3F problems. Furthermore,
to bypass the model selection issue of the factorized
M3F models (i.e. selecting the number of latent factors
K), we extend our probabilistic formulation to incor-
porate Bayesian nonparametrics and build thereupon a
nonparametric M®F model, which again enjoys a sim-
ple and efficient MCMC sampling algorithm. Com-
pared with the previous nonparametric M®F (Xu et al.,
2012), which resorts to variational approximation with
truncated mean-field assumptions, our sampling algo-
rithm is both assumption-free and truncation-free.

The paper is structured as follows. Section 2 formu-
lates M3F as a MAP estimation problem and presents
the MCMC sampling algorithm via data augmenta-
tion; Section 3 presents the nonparametric M3F exten-
sion; Section 4 presents empirical results on two preva-
lent collaborative filtering data sets and demonstrate
efficiency improvement. Finally, Section 5 concludes.

2. A Probabilistic Formulation of M3F

We start with a discussion on the generic formulation
of RRM as MAP estimation.

2.1. RRM as MAP, A New Look

Given a set of training data X = {X,}Y_;, many
machine learning problems, including M3F, can be
cast as solving a RRM problem generally written as

N

min Q(M)+C;R(M;Xn) (3)
where we denote the model (parameters) by M; Q(M)
is the regularizer which is critical to save the mod-
el from over-fitting; Zﬁle R(M; X,) is the empirical
loss; and C' is the balancing factor, or regularization
constant. Normally for supervised tasks where train-
ing labels are available, X,, = (X, y,) and

R(M, Xn) = L(ynv f(van)) (4)

where f(M;x) is termed the discriminant function,
which gives a prediction score s, and L(y, s) the loss
function.

Generally RRM is a deterministic optimization prob-
lem without any resort to a probabilistic background.
For example, in the case of M3F for binary data, we
have M = (U, V), X = {((3,5),Y:;)|ij € I}, and

1
QU,V) = 3 (1U% + IVIE)
s = f(U,V;(i,§) = U;V;", L(Yij, 8) = h(Yijs)

(5)

In contrast, MAP estimation is backed up by Bayesian
inference methodology and, given a prior distribution
po(M) and a likelihood term L(M|X) £ p(X|M)!,
solves for the optimal model by maximizing the
posterior distribution p(M|X) o po(M)L(M|X).
Quite often we adopt the i.i.d. assumption on the data
generation process so that the likelihood factorizes as
p(X|M) = ngl p(Xn|M) and hence, by denoting
L(M|X,) £ p(X,| M), the problem reads

N

max po(M) El LIM|Xy). (6)
To better disclose the correspondence between R-
RM (3) and MAP (6), we introduce two new concepts,
namely the delegate prior and the delegate likelihood
(abbreviated as dele-prior and dele-likelihood in
the sequel). Given a prior-likelihood pair (pg, L), a
dele-prior po(M) can be any non-negative function
defined solely on M while a dele-likelihood £(M|X;,)
can be any non-negative function defined jointly on
X, and M (although viewed as a function merely of
M just as is L), as long as the original “genuine”
prior-likelihood pair can be uniquely recovered as

o) = ST o) = Linan) T 6. (M),

where the mnormalizing factors are (,(M) =

[ L(M|X,)dX, and Co 2 [ po(M) TV, ¢u(M)dM.

Note that although L and £ appear only different by
a normalizing factor when viewed as a probability of
X,, they can be completely different when viewed as
a function of M. As for pg and pyg, since scaling py by
any positive constant carries no effect on the resulting
genuine prior pg, we can normalize pg if necessary.

For any qualified delegate prior-likelihood pair (pg, £)
and its uniquely induced genuine pair (pg, L), or the
other way round, for any genuine pair and all of
its compatible delegate pairs, the MAP problem (6)
remains intact since

N N
po(M) [T LM &) oc po(M) [T £(M|X).

n=1 n=1
The delegate prior-likelihood pair provides an alterna-
tive, presumably easier way to factorize the posterior
since the dele-likelihood does not necessarily comply
with the normalization constraint for X,,. Now we
may easily convert the RRM problem (3) into MAP
estimation by setting the delegate pair as

po(M) = e MM LM|X,) = e TRMAD - (7)

!We consider generative models here for the ease of p-
resentation. For discriminative models, the likelihood be-
comes p({yn }| M, {xn}) but our discussion applies as well.
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and solving the following delegate form of MAP
N
) [T £mx). (8)

n=1
Directly solving problem (8) does not save us any ef-
fort. Yet as we shall demonstrate below, given a prop-
erly augmented representation, we may resort to ex-
isting probabilistic techniques, e.g., MCMC sampling
methods, to perform highly efficient approximate in-
ference that achieves comparable or even better per-
formances. Moreover, this probabilistic interpretation
naturally leads to a nonparametric Bayesian extension
of the model in consideration.

In/\f/il,X po(M

Before a full exposition of the new algorithms for
M3F and its nonparametric extension, we provide
more insights on this probabilistic interpretation.
Specifically, given a prior-likelihood pair (pg, L), we
can calculate the posterior distribution according
to Bayes’ theorem, or alternatively by solving a
functional optimization problem (Zhu et al., 2013b)

N
KL
min KL(g(M)llpo(M Z

qllog LM|X,)],  (9)
where P is a space of valid probability distribu-
tions; KL(g(M)|lpo(M)) is the KL-divergence; and
E,[log L(M|X,)] = [log L(M]|X,)g(M)dM. Note
that to distinguish from the posterior p(M|X) by
Bayes’ rule, we use ¢(M) to represent a posterior dis-
tribution derived from our generic inference procedure.

By use of any compatible delegate pair, we rewrite
problem (9) in an equivalent yet more general way as?

min  KL(g(M
q(M)eP

N
Mio(M)) = Eqllog £L(M] X)) (10)

by ignoring a constant term log(y. Now if we sub-
stitute the RRM-induced delegate pair (7) into (10)
and denote Q(g(M)) £ KL(q(M)||po(M)) where
po(M) & e ¥M)/Z is the normalized dele-prior
and R(q(M); X,) 2 Eq[R(M; X,)], we obtain the
following equivalence

Mz

argmin
M

QM) +C ) R(M; &)

3
Il
—

R(g(M); X,). (1)

M=

= argmax argmin Q(g(M)) + C
M qg(M)eP

Il
-

n

The significance of this alternative representation is
that it inspires an interesting observation. That is,
given a properly defined deterministic RRM problem
n (M, X), we can actually solve it in two successive
phases, the first one seeking an optimal distribution

2We assume a normalized po(M) here.

G(M) by solving an induced functional minimization
problem defined on (¢(M), X), and the second finding
thereupon an optimal point estimate by reading out
the most probable model according to G(M).

When viewed individually, the first phase itself natu-
rally suggests a probabilistic extension to the original
deterministic risk minimization problem (Q,R):

N
+ O3S E[RM; X)) (12)

n=1

KL
min_ KL(g(M)]lr(M)
where we can set m(M) = po(M) to retain the equiv-
alence (11), or specify m(M) to be any other proper
distribution that we believe serves a good regularizer.

2.2. A Probabilistic Formulation of M3F

We now apply the above generic discussions to the
specific case of M?F. For M3F with binary prefer-
ence scores, it suffices to substitute the definition of
(Q,R) (5) into the RRM-induced delegate pair (7).
Below we concentrate on the more common case of
M3F with ordinal ratings, where Y;; € {1,2,...,L}.

As in (Srebro et al., 2005), we introduce thresh-
olds 0y < 0, < --- < Or_1, where 8 = —o0, to
discretize R into L intervals. Hence the model is
updated as M = (U,V,0) where 8 = (61,...,0r_1)"
and the prediction rule is changed accordingly to
Y;; = max {r|UZ-VjT >0._1,7=1,.. .,L}. For hard-
margin, we would require 93/1.].,1 +/4 < UZ-V]-T < 9yl.j —/,
while in a soft-margin setting, we define the discrimi-
nant function and the loss function to be?

= f(U,V,8;(i,5)) =0 — (U:V; )11, (13)

Yij,s Z he(T;s1) (14)

t} ig; : z })C” and hy(z) £ max(0,{—z)
is the generalized hinge loss with margin parameter
. When ¢ > 1, the loss thus defined is an upper
bound to the sum of absolute differences between the
predicted ratings and the true ratings, a loss measure
closely related to Normalized Mean Absolute Error (N-
MAE) (Marlin & Zemel, 2004; Srebro et al., 2005).

where T7; £

Furthermore, we can learn a more flexible model to
capture users’ diverse rating criteria by replacing
user-common thresholds 6 with user-specific ones
0, =0;,..., Gi(L,l))T. And we may as well regular-
ize these thresholds @ = 6.y with

1 N
)= Z?QZH& - pl3 (15)
i=1

3There is a score for each of the L — 1 thresholds and
they collectively form the prediction score vector s.
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where p = (p1,...,pr—1)" and p; < --- < pp_; are
specified as a prior guidance towards an ascending se-
quence of large-margin thresholds. Then the overall
regularizer becomes Q(M) = Q(U, V) + Q(0). Note
that when ¢ — oo, the regularizer on 6 plays no part.

Regularizer and loss fully specified, we may again
follow the generic discussions above and obtain the
following probabilistic formulation®:

5o(U, V,0) = ¢ 502 IVIEHIVIE) =53 Ty 10: -3
N M
x [[NWil0,6* )N (6i]p,s°I) - [[N(V510,0%1)  (16)

im1 j=1

L(U,V,0](,5), Yig) = e~ Tr=t (TG00 =UViD) (17

2.3. Connections with Previous Methods

In the literature of PAC-Bayes learning theory, the
loss (or risk) term in problem (12) corresponds to
that of a Gibbs classifier (McAllester, 2003; Germain
et al., 2009), which is a stochastic classifier that
randomly chooses a classifier M according to g(M) to
classify a data sample x. An alternative formulation
of inferring a posterior distribution of classifiers that
has received much attention is the one induced from
an expected classifier, which can be generally written as

N

Jin KL(g(M)[|x(M)) + C Zl L(yn, Eq[f (M;xn)])(18)
Maximum entropy discrimination (MED) (Jaakkola
et al., 1999) represents one such example where the
loss function L is hinge loss. MED has been adopted
in various max-margin models, including max-margin
supervised topic models (Zhu et al., 2009) and the
probabilistic formulation of max-margin matrix fac-
torization (Xu et al., 2012). It’s obvious that the two
problems (12) and (18) only differ in their choice of
the loss term, with (18) choosing loss of expectation
while (12) expectation of loss. Actually we have

Bo[L(y, f(M;x))] = Ly, Eq[f (M;x)]) (19)

given that L(-, s) is a convex function, e.g., hinge loss,
squared loss, the loss function of M>F for ordinal rat-
ings (14), etc. Therefore our new formulation gives
a more relaxed model while at the same time is much
easier to solve (say, through Bayes’ theorem) compared
with problem (18), for which approximate variational
methods are very often required, along with additional
assumptions on the posterior distribution (Zhu et al.,
2009; Xu et al., 2012). Note that a Gibbs max-margin

4We introduce an additional parameter o for the vari-
ance of U and V. It is superfluous here but will be useful
later in the nonparametric M3F model with IBP prior.

topic model has been presented in (Zhu et al., 2013a)
with data augmentation; And our work differs by p-
resenting a different viewpoint as detailed above and
dealing with the challenging problem of matrix factor-
ization.

2.4. Data Augmentation for M3F

We now present a simple and efficient algorithm for
learning M3F within its probabilistic formulation. Our
algorithm builds on the statistical idea of data aug-
mentation (Tanner & Wong, 1987; van Dyk & Meng,
2001), whose general principle is to introduce auxiliary
variables so as to facilitate Bayesian inference on the
original variables of interest.

Specifically in our case, the form of the dele-likelihood
L (17) is very hard to manipulate due to the “max”
operator inherited from the hinge loss thereof. Fortu-
nately, it is discovered in (Polson & Scott, 2011) that
e—2max(w.0) enjoys the representation as a location-

scale mixture of Gaussians, namely

> 1 (u42)? >
672 max(u,0) _ — e T 2x d\ :/ u| — )\, A)dA
= ; (ul )

where ¢(u|-, -) is the normal density function. This en-
ables us to augment the original model M = (U, V, 8)
by introducing auxiliary variables X likewise.

Specifically, let A% % T%(éfT[;(éi,« ~U:V;")), D = Rfr’Tl,
Aij = (Allj, ey Aij7 ) and )\ij = ()\ijh ey )\ij(L—l)) .
Then for each delegate likelihood (17), we have
LM|X;5) = T1EZ] exp{—2max(A};,0)} and therefore,

LM|Xy5) = /D A(A5| = Aiz, diag(Aij))dAy; (20)

Eq. (20) suggests an augmented model M' = (M, A)
with posterior ¢(M') o po(M) [ [, ex LIM|Xiz, Aij)
where

LIM|Xij, Nij) £ ¢(Ai;] — Aij, diag(Xij). (21)

Note that L.‘,(M|Xij,)\ij) = Cij(M)p(Xij,AiﬂM) and
thus is not, by definition, a valid “dele-likelihood”
L(M’|X;;) for the augmented model M.

This augmented representation favors Gibbs sampling
in that the Gaussian form of ﬁ(M|Xij,Aij) appears
“conjugate” to the Gaussian delegate prior po(M) (16)
with respect to U;, V; and 6; individually, and further-
more, each auxiliary variable A, in its inverse can be
shown to follow an inverse Gaussian (Polson & Scott,
2011) for its conditional distribution, hence implying
simple conditional distributions. Below, we summa-
rize the conditional distributions and the derivation is
similar to that for SVMs (Polson & Scott, 2011).
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For auxiliary variables, A;;. are conditionally inde-
pendent of each other given (M, X) and we have

g\ M\ X) = ZG(|1A] 7 ), (22)
an inverse Gaussian distribution from which samples
can be efficiently drawn.

For item factors, V; are also conditionally independent
and ¢(V;IM'\ V) = N(b;, Bj) where

21 -
—I U; U;
+ Z ( — Xijr

ilijeT

o O Tt =0
b= B, ZZ( C T >Ui

ilijeL r=1

(23)

Similar results apply to user factors U; and are omitted
to save space.

Finally, thresholds 6;,. are again conditionally inde-
pendent and q(0;,.|M'\ 8) = N(a;, A;) where

- 1 Cc? 1
Al = — 4 2
A D D v
Jlij€ET
2 T (24)
pr . C’ TS+ ULV,
wmr AZ’V T - - ~x
a; ( +Z< + N
JlijeT

With the above conditional distributions, we can de-
velop a Gibbs sampling algorithm for the augmented
model ¢(M,A) by alternately drawing samples from
each of the conditional distributions with random ini-
tialization. By ignoring A we implicitly obtain the
target posterior g(M).

3. A Nonparametric M3F with IBP
Prior and Data Augmentation

Solving M3F for U and V (2) instead of directly for
X (1) has resulted in much more scalable method-
s (Rennie & Srebro, 2005; Xu et al., 2012). One re-
sulting problem nevertheless, is to explicitly handle the
latent factor dimension, i.e. the number of columns,
K, of the two matrices. A typical solution relies on
some general model selection procedure, e.g., cross-
validation, which enumerates and compares many can-
didate models with different values of K and thus can
be computationally expensive.

To solve this problem, (Xu et al., 2012) introduces a
probabilistic model for M3F that is induced from ez-
pected classifiers (18) and built accordingly a nonpara-
metric M?F model termed infinite probabilistic M3F
(iPM?F) which automatically resolves the unknown
number of latent factors. However their formulation
was rooted in the MED framework and consequent-
ly resorted to a complicated approximate variational

learning algorithm with mean-field assumptions. In
order for a practical solution, (Xu et al., 2012) fur-
ther set an upper bound, namely the truncation level,
to the number of latent factors. Both the mean-field
assumptions and the truncation level introduce extra
bias into the posterior inference. And what’s more, it
requires some domain knowledge to properly set the
truncation level: a higher level indicates more param-
eters and thus more time for solution while a lower
level puts model-complexity sufficiency at risk and is
prone to hamper the model’s “infinite” flexibility.

Below, we propose an alternative nonparametric
Bayesian M3F model (termed Gibbs iPM3F) by adopt-
ing the probabilistic formulation induced from Gibbs
classifiers (12) instead. Again, by use of data augmen-
tation, we design efficient Gibbs sampling algorithms
which is both assumption-free and truncation-free.

3.1. Gibbs iPM3F

Unlike the parametric Gibbs M3F which is induced
from a deterministic RRM problem, we directly build
our nonparametric model from a probabilistic set-
ting (12). Specifically, we reuse the empirical loss as
defined by Eq. (13) and (14) since they naturally fit
here. While for the dele-prior 7(M), it should not on-
ly be flexible enough to allow Bayesian inference on
factor matrices with an unbounded number of column-
s, but, what’s even more important, be favorable to
sparse matrices as well so that only a finite number of
features would be “active” for any finite data set.

The Indian buffet process (IBP) (Griffiths & Ghahra-
mani, 2005) appears to feed our need for this case.
Think of a binary matrix Z as recoding customers’
behavior of sampling dishes from an infinite long
buffet. Then IBP specifies a stochastic process that
generates binary matrices Z as follows:

1. The first customer samples the first Poisson(«)
number of dishes;

2. The ith customer first samples dishes that
have already been taken, according to their
popularity my/i where my is the number of
previous customers who have sampled that dish;
then he tries a Poisson(a/7) number of new dishes.

The process above induces a distribution for the
lof-equivalent class of binary matrices. We de-
note this distribution by IBP(«) and define Gibbs
iPM?F to be solving problem (12) where we replace
U by Z and specify the normalized dele-prior w(M) as

M
m(Z,V,0) = 1BP(Z|a) - [ [N(V;]0,0°1) H/\/e\p,g 1)

Jj=1 =1
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3.2. A Gibbs Sampling Algorithm

Since the dele-likelihood in Gibbs iPM3F remains the
same as Gibbs M?F, it is expected that exactly the
same data augmentation technique (20) can be applied
here. Moreover, since the dele-prior of V and @ are also
simply reused from Gibbs M?F, their conditional dis-
tributions would remain the same as in Eq. (23)&(24)
given that we replace U; with Z;.

For the binary latent feature matrix Z, we follow the
uncollapsed Gibbs sampling (Doshi-Velez et al., 2009)
where V' is not marginalized over but kept in the
conditions. Specifically, for existing features, we have
the conditional distribution

A Zin| M\ Zix) < T(Zir| Z_ny) [ ] LM, Xij)(25)
jlijez
where 7(Zix|Z_ix)) = Bernoulli(}_;,; Zjx/N) ac-
cording to the exchangeable IBP and L£(M|Xi;, Aij)
is just as defined in Eq. (21) with U replaced by Z.

While for new features Z} = 1;, we equivalently
sample k; € Z>o and adopt the partially collapsed
sampler where the new latent features V¥ ¢ RMxk:
are integrated out and thus obtain

d(ZVIM) = /q(Zf,V”\M')dV”

wm(z012) T [ #(Vi") LM, 22 Vi | Xig, Mij)dV;

jlijeT
. Yiik, 1/2 1,7 ==
o Poisson(k;|a/N) H %62“’”’% is
JlijeT
—1 L—1 2
where X = Ll + (X045 %)Mxk and
-1 AT
Wijk; = —<% oo T (1 + ﬁ))zijkilki-

Then conditioned on the newly sampled Z! (or k;),
we draw the corresponding new features V%

1
ki ik (26)

q(Vi¥|M', Z7) o w(ViV) LM, Z7 V77| Xy, Aij) €7

N(wijr;, Bigr,;), 1 €L (27)
XA\ N(0,0%0), 2T

4. Experiments and Discussions

We conduct experiments on the MovieLens 1M and
the EachMovie data sets, and compare our results
with M3F (Smooth Hinge, truncated) (Rennie & S-
rebro, 2005), bed M3F(“bed” for “block-wise coordi-
nate descent”, truncated) (Xu et al., 2012) and iPM3F
(truncated-mean-field, infinite) (Xu et al., 2012).

Data sets: The MovieLens data set contains
1,000,209 anonymous ratings (ranging from 1 to 5) of
3,952 movies made by 6,040 users, among which 3,706

movies are actually rated and every user has at least
20 ratings. The EachMovie data set contains 2,811,983
ratings of 1,628 movies made by 72,916 users, among
which 1,623 movies are actually rated and 36,656 users
has at least 20 ratings. As in (Marlin & Zemel, 2004;
Rennie & Srebro, 2005), we discarded users with few-
er than 20 ratings, leaving us with 2,579,985 ratings.
There are 6 possible rating values, {0,0.2,...,1} and
we mapped them to {1,2,...,6}.

Protocol: As in (Marlin & Zemel, 2004; Rennie &
Srebro, 2005; Xu et al., 2012), we adopt the all-but-
one protocol to construct training sets and test set-
s. And we consider both weak and strong generaliza-
tion, where weak indicates all users contribute to the
learning of the latent factors while strong transfers the
learned movie latent factors from one group of user-
s to another. As in previous methods, we randomly
partition the users into 5,000 and 1,040 for weak and
strong in MovieLens, and 30,000 and 6,565 in Each-
Movie. We repeat the random partition thrice, test
our model against each of them and report the aver-
aged Normalized Mean Absolute Error (NMAE).

Implementation details®: We perform cross-
validation to choose the best regularization constant C'
from the same 11 candidate values that are log-evenly
distributed between 0.13/% and 0.1% as in (Xu et al.,
2012). According to (Rennie & Srebro, 2005), factor
numbers higher than 50 yield similar performances and
hence they choose K = 100 as a compromise between
model capacity and computational complexity. There-
fore we also set the truncation level K to be 100 for
iPM3F and all the parametric M3F methods. Other
hyper-parameters are set as follows: o = 3, ¢ = 1,
£=9,¢=15¢ p1,...,pr—1 are set to be symmetric
with respect to 0, with a step-size of 3¢.

Point estimate: We sought point estimate because
our model formulation adopts a risk term that is in-
duced from stochastic Gibbs classifiers. More specif-
ically, we compared both the single samples M (™)
drawn from each Gibbs sampling iteration and the
Rao-Blackwellizedly averaged samples

_ 1 & )
M) = ~ > MmO, (28)
=1

Fig. 1 illustrates the difference between these two es-
timates, where dashed curves represent single samples
while solid curves represent averaged samples. It seem-
s taking average of the samples not only stabilizes the
results but also continuously reduces test error as well
as the original objective value.

5The data sets and the implementation are available at
https://github.com/chokkyvista/iPM3F
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Table 1. Test error of different models on the MovieLens and EachMovie data sets.

MovieLens EachMovie
Algorithm weak strong weak \ strong
M?3F (Rennie & Srebro, 2005) | .4156 & .0037 .4203 +.0138 | .4397 .0006 .4341 + .0025
bed MPF (Xu et al., 2012) 4176 £.0016 4227+ .0072 | .4348 +£.0023  .4301 £ .0034
Gibbs M?F 4037 £.0005 .4040 &+ .0055 | .4134 £+ .0017 .4142 + .0059
iPM?F (Xu et al., 2012) 14031 £.0030  .4135+.0109 | .4211 +£.0019 .4224 + .0051
Gibbs iPM3F 44080 £.0013  .4201 + .0053 | .4220 4+ .0003  .4331 &£ .0057

= * —par #1, single
= * —par #2, single
- ® —par #3, single
par #1, averaged
par #2, averaged
par #3, averaged

0.6

objective value (regularized risk)

0.46
o M&ﬁiqﬁﬁwm

~ %~ par #1, single
- * - par #2, single
- * - par #3, single 052
par #1, averaged
par #2, averaged
par #3, averaged

~ %~ par #1, single
= * - par #2, single
- * - par #3, single
par #1, averaged
par #2, averaged
par #3, averaged

NMAE

~o 10 20 30 40 50 0 10
# of iterations

(a)

0
# of iterations

(b)

0
# of iterations

()

Figure 1. (a) Regularized risk, NMAE of (b) Gibbs M?F and (c) Gibbs iPM?F on the EachMovie data set.

Test error: We report NMAE error of the averaged
samples for Gibbs M3F and Gibbs iPM3F. As shown
in Table 1, Gibbs M3F significantly outperforms previ-
ous parametric M3F models, for both weak and strong
generalization tasks. We believe this largely attributes
to our additionally introduced regularizer for 6 (15);
For the nonparametric models, although Gibbs iPM3F
only obtains comparable, or even marginally worse test
performance compared with iPM3F, we consider it to
be the cost of exchanging accuracy for efficiency since
our alternative relaxed loss term (19) favors the devel-
opment of much more efficient learning algorithms.

Training time: In Table 2, the training time of M3F
is directly cited from (Rennie & Srebro, 2005) and it
was measured on a “single 3.06GHz Pentium 4 CPU”
while all other 4 methods were measured by MATLAB
with single computational thread on a 4-core 3.00GHz
Intel i5 CPU. In both cases, our proposed methods
achieved drastic efficiency gain. Note that M3F works
with a derivable Smooth Hinge while our methods di-
rectly work with the hinge loss without solving time-
consuming SVMs. Also note that for the nonparamet-
ric Gibbs iPM?3F, its number of active factors K is
constantly changing during the sampling process, and
so is the running time for each iteration, as shown in
Fig. 2(b). We discuss the asymptotic computational
complexity of our methods in the appendix.

Table 2. Training time of different models.

Algorithm |MovieLens|EachMovie|Iters
M3F 5h 15h 100
bed M3F 4h 10h 50
Gibbs M3F 0.11h 0.35h 50
iPM®F 4.6h 5.5h 50
Gibbs iPM3F|  0.68h 0.70h 50

RRM-MAP duality: Although Gibbs iPM3F is
directly defined from problem (12) without explicit
reference to any underlying RRM as Gibbs M3F, we
may still find the corresponding RRM by choosing the
regularizer as Q' (M) = —log (M) and thus obtain

N

(M) = 5,31Vl — logIBP(ZJa) + 55 3 101~ ol
We can see more clearly in this form that the variance
parameters o and ¢ each has their own right in weigh-
ing the regularizer and cannot be offset by the regu-
larization constant C'. The benefit of acquiring this
induced RRM is that it allows us to calculate the ob-
jective value and use it as a criterion of convergence.
We found that for Gibbs iPM3F, the induced regu-
larized risk (calculated from single samples) does not
necessarily decrease during the sampling process yet
we still observed a stable trend of NMAE going down.
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Figure 2. (a) Number of latent factors of Gibbs iPM*F on MovieLens. (b) Time per iteration as a function of K.

Convergence: It might be true that the Markov
chain itself has not properly converged when we stop
the iteration based on objective values and validation
error, especially for the IBP-involved nonparametric
model. Yet from our experience and experiments, the
Gibbs sampler works quite well and the curves do dis-
play a clear trend of convergence in Fig. 1. We hope to
come up with further detailed analysis in future work.

Latent dimension: Fig. 2(a) shows the running
number of latent factors inferred from data by Gibbs
iPM3F with the three randomly constructed training
sets as indicated by different colors and this clearly il-
lustrates the flexibility of nonparametric models. The
“optimal” latent dimension appears to be around 450
for MovieLens and 200 for EachMovie. We empha-
size however, given any specific hyper-parameters, the
corresponding Gibbs M3F model always has its own
optimal solution that comes with a latent dimension
and a test error; And by “optimal” latent dimension
we actually mean the one with the best test error.

Poisson truncation level: When sampling new la-
tent factors k; in Gibbs iPM3F, we specify a Poisson
truncation level x as did (Doshi-Velez et al., 2009) so
that k; greater than k get directly rejected. This would
not be a problem since we find that the cost of sam-
pling new latent factors Z;, can be reduced to linear
to k and thus we may set x to be sufficiently large
without worrying about its impact on efficiency. We
defer details into the appendix. In our current imple-
mentation, we choose k = 10.

Factor alignment: Averaging samples from Gibbs
iPM?F is a little bit tricker than from Gibbs M?3F, s-

ince we are constantly facing newly generated factors
as well as nullified factors that get crossed out and
missing from subsequent samples. We compared two
different methods for this. The first one ignores such
factor alignment and sum two samples directly as is,
padding zero wherever necessary. While the second
one respects such correspondence between factors and
makes sure they are always properly aligned before av-
eraging. Our experiments indicate no telling difference
between these two methods.

5. Conclusions

We have presented a novel probabilistic interpretation
of max-margin matrix factorization, which naturally
leads to a simple and fast algorithm by exploring the
ideas of data augmentation. Moreover, we generalized
the ideas to present a new nonparametric Bayesian
max-margin matrix factorization model, which again
has a simple and efficient sampling algorithm without
making any restricting assumptions on the posterior
distributions or setting a truncation level to the num-
ber of latent factors as in existing variational methods.
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