
Appendix

In this section, we provide the proof of Proposition 1 as
well as more details on the algorithm comparison be-
tween sparse topical coding (STC) and the probabilis-
tic LDA [2], hyper-parameter selection/estimation, the
implementation of regularized LDA models as evalu-
ated in Section 4, the comparison with non-negative
matrix factorization [6] which uses similar Poisson dis-
tributions to model word counts, and finally the con-
vergence curves of the coordinate descent algorithms
for both STC and MedSTC.

A.1. Proof of Proposition 1

Proof: We consider two cases. First, if x0 ≥ 0,
then by definition, x0 is the solution of P0 and x? =
x0 = max(0, x0). Second, x0 < 0. Let’s assume
x? 6= max(0, x0) and define α = x?

x?−x0
. Then, we have

x? > 0, 0 < α < 1 and 0 = αx0 + (1 − α)x?. Again,
by definition, we have h(x0) < h(0) and h(x?) < h(0).
Using these inequalities, we get αh(x0)+(1−α)h(x?) <
h(0) = h(αx0 + (1− α)x?). This contradicts the con-
vexity of h(x). Therefore, we have x? = max(0, x0).

A.2. Algorithm Comparison

Figure 1 outlines the structure of the coordinate de-
scent procedure of STC and the variational EM algo-
rithm of LDA. We can see that they have very similar
structures.

A.3. Hyper-parameter Estimation

For LDA, the hyper-parameter (i.e., the Dirichlet prior
parameter α) can be automatically learned using a gra-
dient descent method. For STC, currently we use a
generic grid search based on cross-validation to select
the hyper-parameters (λ, γ, ρ). In our experiments, we
restrict our grid search by setting γ as a function of λ.

A.4. Regularized LDA using an
Entropic Regularizer

In this section, we briefly present the regularized LDA
using an entropic regularizer.

By assuming a Dirichlet prior over the topic mix-
ing proportion θ, LDA defines a joint distribution
p(θ, {zm}Mm=1,w|α, β) for a document, which is fac-
torized as

p(θ, {zm}Mm=1,w|α, β) = p(θ|α)

M∏
m=1

p(zm|θ)p(~wm|zm, β),

where both the topic assignment model p(zm|θ) and
the word generating model p(~wm|zm, β) are normal-
ized multinomial distributions and α are Dirichlet pa-
rameters.

Given a document w, the inference is to compute the
posterior distribution p(θ, {zm}|w, β) 1. However, the
inference is intractable in LDA. Therefore, approxi-
mate inference algorithms including variational and
MCMC [4] methods have been popularly used to per-
form the inference task. We concentrate on the varia-
tional techniques, which can naturally incorporate reg-
ularization, as detailed below.

The basic idea of variational methods is to introduce a
variational distribution q(θ, {zm}Mm=1|γ, φ) to approxi-
mate the posterior distribution p(θ, {zm}|w, β), where
γ and φ are variational parameters. We follow the
mean field method [2] and define

q(θ, {zm}|γ, φ) = q(θ|γ)

M∏
m=1

q(zm|φm),

where q(θ|γ) is a Drichlet distribution and q(zm|φm)
is multinomial. Then, the variational inference is to
find the optimal parameters (γ∗, φ∗) that solve the
Kullback-Leibler (KL) divergence minimization prob-
lem

min
γ,φ

KL(q(θ, {zm}Mm=1|γ, φ)‖p(θ, {zm}Mm=1|w, β). (1)

As shown in [2], a coordinate descent method solving
the problem (1) gives the following update equations

φmk ∝ exp

{
Eq[log(θk)|γ] + log βkwm

}
(2)

γk = αk +

M∑
m=1

φmk, (3)

where we have used wm to denote the term id appear-
ing at position m, that is, ~wmwm

= 1.

Then, the regularized LDA is to solve the regularized
KL-divergence minimization problem 2

min
γ,φ

KL(q(θ, {zm}Mm=1|γ, φ)‖p(θ, {zm}Mm=1|w, β)

+λH(q(θ, {zm}Mm=1|γ, φ)), (4)

1The collapsed methods [8] integrates out the
document-wise mixing proportion θ by exploring the con-
jugateness. We choose to directly infer the mixing propor-
tion, which is useful for many applications, such as docu-
ment classification. But in principle, we can also perform
the collapsed variational inference [8] with an entropic reg-
ularizer, which could potentially be more efficient than the
standard variational method [1].

2Note that the entropic regularizer is put on the varia-
tional distributions instead of the original model posterior
distribution. However, by minimizing the KL-divergence,
we can expect to project the original model distribution to
a space with desired properties (e.g., sparsity) and there-
fore introduce appropriate regularization to the original
model [3].



Coordinate Descent Alg. of STC

Input: corpus D = {wd}Dd=1, regularization constants (λ, γ, ρ),
topic number K.
Output: distributional topics β, sparse codes θ and s
repeat

/**** Hierarchical Sparse Coding ****/
for d = 1 to D do

for each word n ∈ Id do
Update word code sdn.

end for
Update document code θd.

end for
/**** Dictionary Learning ****/
Update the distributional topics β.

until convergence

Variational EM Alg. of LDA

Input: corpus D′ = {wd}Dd=1, Dirichlet prior parameter α, topic
number K.
Output: distributional topics β, approximate posterior distribu-
tions q(θ|w) and q(zm|w).
repeat

/**** E-Step ****/
for d = 1 to D do

for each position m = 1 to Md do
Update topic assignment distribution q(zm|wd).

end for
Update the distribution q(θ|wd).

end for
/**** M-Step ****/
Update the distributional topics β.

until convergence

Figure 1: Algorithm comparison of STC and probabilistic LDA, where the left part is the coordinate descent
algorithm of STC and the right part is the variational EM algorithm of LDA.
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Figure 2: (L) classification accuracy and (R) sparsity
ratio of word codes of the regularized LDA with re-
spect to the regularization constant λ, whose values are
0.001, 0.002, · · · , 0.01, 0.02, · · · , 0.1, 0.2, · · · , 0.9. We show
two LDA models with 40 topics and 70 topics.

where H(p(x)) = −
∫
x∈X p(x) log p(x) is the entropy

of a distribution p(x) and λ is a non-negative regu-
larization constant. Since a sparser distribution has a
smaller entropy than a denser distribution (e.g., uni-
form distribution which has the largest entropy), mini-
mizing an entropic regularizer will drive the variational
distributions to be sparse.

For problem (4), we can easily derive the update equa-
tions for γ and φ because of the differentiability of the
entropic regularizer. Specifically, we have the regular-
ized update equations as follows

φmk ∝ exp

{
Eq[log(θk)|γ] + log βkwm

1− λ

}
(5)

γk =
αk +

∑M
m=1 φmk − λ
1− λ . (6)

Therefore, to make the variational distribution valid,
we need to constrain that λ ∈ [0, 1). Figure 2 shows
the classification accuracy and sparsity ratio of the
regularized LDA on the 20 Newsgroup dataset when
the topic number is set at 40 and 70, respectively.
For these models, we automatically estimate the opti-
mal Dirichlet parameter α using the Newton-Raphson
method [2]. We can see that when using a strong reg-

ularizer (i.e., λ is close to 1), the sparsity ratio will be
increased; however, the classification accuracy is dra-
matically decreased (please also see the performance
of regLDA− in the Figure 5 of the main paper). When
λ is small, the classification accuracy is improved a bit
as shown in Figure 5 (regLDA+) of the main paper,
but the sparsity ratio is still very small.

A.5. Comparison with Non-negative
Matrix Factorization

As we have discussed in Section 1, STC is related to the
non-negative matrix factorization [6]. Let X denote
the observed N × D word count matrix, where rows
represent terms in a dictionary and columns represent
documents. Then, non-negative matrix factorization
(NMF) is to find non-negative matrices U ∈ RN×K
and V ∈ RK×D such that X ≈ UV , where K is the
rank which is usually much smaller than N . Each
column of the matrix U represents a basis and each
column of V is the non-negative coefficient vector that
is used to reconstruct all the observed word counts in
a document. In [6], a similar log-Poisson loss is used
to estimate matrices U and V .

STC is significantly different from NMF, analogous
to the difference between latent Dirichlet allocation
(LDA) and mixture of unigrams [2]. First, NMF
uses one document-specific coefficient vector to recon-
struct all the observed word counts in the same doc-
ument. This assumption is often too limiting to ef-
fectively model a large collection of documents. In
contrast, STC allows different words in one document
to exhibit different sparsity patterns via using different
word codes. Second, for each document, NMF (as well
as the sparse coding method [7]) aims to reconstruct a
vector with all the words in a vocabulary, while STC
only reconstructs the words with non-zero counts. Us-
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Figure 3: (L) classification accuracy and (R) training time
of NMF and STC when using different number of topics.

ing the sparse representation could make STC more
efficient and scalable to a large vocabulary.

Empirically, the sparsity ratio of the “word codes”
(i.e., the document-specific coefficient vector, which
is the same for all the words in a document; we can
call them “document codes” as well.) is much smaller
(around 0.005 for different numbers of topics rang-
ing from 10 to 110) than the word code sparsity ratio
(or the document code sparsity ratio) of STC or even
gaussSTC which uses `2-norm regularizers. Therefore,
NMF is limiting in using one document-specific co-
efficient vector to reconstruct all the word counts in
that document and cannot identify the sparse topi-
cal meanings of each individual words. Although us-
ing a sparsity-inducing constraint [5] can improve the
sparseness of the coefficient vector in NMF, it still can-
not identify the sparse topical meanings of each indi-
vidual words because of the intrinsic limitation. More-
over, as shown in Figure 3, NMF performs worse than
STC on classification accuracy when the topic number
is large (e.g., larger than 60) and the standard mul-
tiplicative algorithm [6] is much more expensive than
our coordinate descent algorithm for training STC. In
this experiment, we actually only consider the words
with non-zero counts to make NMF scalable to the vo-
cabulary for 20 Newsgroup data, which contains more
than 60,000 words.

A.6. Comparison between Using `1 and
`2-norm on θ

Figure 4 shows the word-code sparsity ratio of STC
and MedSTC when using `1-norm or `2-norm on the
document code θ. We can see that using `2-norm leads
to a sparser word code in STC than that obtained by
using an `1-norm. For MedSTC, the sparsity ratios of
using two different norms are comparable.

Figure 5 shows the change of objective values and log-
Poisson loss (i.e., negative log-Poisson likelihood) of
STC during training. We compare the STC using `1-
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Figure 4: Word code sparsity ratio of STC and MedSTC
when using `2-norm or `1-norm on the document code θ.

norm or `2-norm on the document code θ. We can see
that the coordinate descent algorithm (for both types
of regularizers) is very stable and converges very fast.
In most cases, about 100 iterations are good enough.
We set the stopping criterion as the absolute relative
change of objective function is less than 1e−5, and the
maximum iteration number is 100.

Similarly, the coordinate descent algorithm for Med-
STC using `1-norm regularizer on θ is also very stable
and converges fast, as shown in Figure 6 (a), where we
set ` = 360 and γ = 10λ when doing the constrained
parameter searching. For the `2-norm regularizer on
θ, the objective value shows some disturbance, mainly
due to the non-smoothness of SVM hinge loss and the
larger ` used. But the log-Poisson loss curves under
both cases are decreasing stably. Comparing the log-
Poisson loss between STC and MedSTC, we can see
that using supervised side information (i.e., class la-
bels) can improve the fitness of the model.
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Figure 5: (a) objective function value and log-Poisson loss of STC using `1-norm on document code θ; and (b)
objective function value and log-Poisson loss of STC using `2-norm on document code θ, when using different
number of topics.
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Figure 6: (a) objective function value and log-Poisson loss of MedSTC using `1-norm on document code θ; and
(b) objective function value and log-Poisson loss of MedSTC using `2-norm on document code θ, when using
different number of topics.
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